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Abstract: Groundwater drinking water supply surveillance data were accessed to summarize water
quality delivered as public and private water supplies in southern Saskatchewan as part of an
exposure assessment for epidemiologic analyses of associations between water quality and type 2
diabetes or cardiovascular disease. Arsenic in drinking water has been linked to a variety of
chronic diseases and previous studies have identified multiple wells with arsenic above the drinking
water standard of 0.01 mg/L; therefore, arsenic concentrations were of specific interest. Principal
components analysis was applied to obtain principal component (PC) scores to summarize mixtures
of correlated parameters identified as health standards and those identified as aesthetic objectives
in the Saskatchewan Drinking Water Quality Standards and Objective. Ordinary, universal, and
empirical Bayesian kriging were used to interpolate arsenic concentrations and PC scores in southern
Saskatchewan, and the results were compared. Empirical Bayesian kriging performed best across
all analyses, based on having the greatest number of variables for which the root mean square error
was lowest. While all of the kriging methods appeared to underestimate high values of arsenic
and PC scores, empirical Bayesian kriging was chosen to summarize large scale geographic trends
in groundwater-sourced drinking water quality and assess exposure to mixtures of trace metals
and ions.

Keywords: exposure assessment; groundwater; water quality; arsenic; principal components analysis;
kriging; geostatistics; Saskatchewan

1. Introduction

Several studies have highlighted associations between exposure to arsenic from drinking water
and a variety of chronic diseases including type 2 diabetes, hypertension, cardiovascular disease and
cancer [1–7]. Poor water quality, especially aesthetic issues that impact consumer acceptance of tap
water, might also have indirect impacts on the development of chronic diseases such as diabetes and
cardiovascular disease by motivating the consumption of sugar-sweetened beverages as an alternative
to drinking water [8]. Additionally, mixtures of contaminants may act synergistically and have impacts
that are not appreciated when examining the isolated effects of individual contaminants [9–11].

In Canada, drinking water oversight is a provincial mandate. Guidelines for acceptable levels of
contaminants and regulations pertaining to water quality testing are established by each province, but
typically follow recommendations set forth in the federal Guidelines for Canadian Drinking Water
Quality [12,13]. In the province of Saskatchewan (SK), the Drinking Water Quality Standards and
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Objectives [14] apply to regulated water supplies. Standards are legally enforceable and are based
on parameters that are potentially harmful to human health. Objectives are guidelines based on
parameters that are not considered harmful to human health in the context of expected concentrations
in drinking water, but which can negatively impact the aesthetic qualities of the water.

In Saskatchewan, three tiers of drinking water systems are defined, of which two are subject to
regulation [15]. Public drinking water systems are monitored and regulated by the Saskatchewan Water
Security Agency and semi-public supplies are monitored by the Ministry of Health. Private water
supplies serve a single household or farm; these supplies are not regulated and have no monitoring
requirements. Residents who use private water supplies may lack the knowledge and resources to
routinely and adequately test their household water source, and therefore could be at greater risk
of exposure to drinking water of poor quality or that has elevated concentrations of contaminants
such as arsenic. Similarly, smaller water distribution systems may lack the resources to avoid placing
wells in aquifers of lower water quality, and the requirements for testing are based on the size of the
population served with less stringent requirements for smaller supplies [16]. Therefore, residents in
rural areas, whether using a smaller public system or a private water supply, may be vulnerable to
health effects related to the quality of water available at their household tap. Access to affordable
tap water alternatives such as bottled water may also be limited in rural areas as compared to those
available in urban locations, exacerbating the potential impacts of poor tap water quality for those
located outside urban centers.

Ground water quality has been previously identified as a public health concern in SK, particularly
for residents using private wells for their drinking water [17–21]. Approximately 28% of SK residents,
primarily in rural areas, use groundwater-based public drinking water supplies and another 15%
obtain drinking water from private water supplies [22]. A small study of arsenic levels in 61 private
and rural municipality-owned wells in SK found that 23% of the wells had arsenic concentrations
above the current SK standard of 0.01 mg/L [17]. Another study found that 99.6% of 535 wells
sampled exceeded at least one aesthetic objective or health standard and, of those, 35% exceeded a
health-related standard [23]. In addition, other minerals and ions such as iron and manganese, though
not considered substantial health risks, are frequently found in groundwater at concentrations that
exceed recommended levels and negatively affect the aesthetic quality of drinking water [19,23]. In a
recent survey of residents in rural SK, 25% of respondents reported having an aesthetic complaint
about their household drinking water [24].

Our goal was to summarize the quality of ground-sourced drinking water as part of the exposure
assessment for the investigation of associations between tap water quality and rates of type 2 diabetes
and cardiovascular disease in rural SK. Estimating exposure to constituents of drinking water is a
major challenge in investigating such associations. Previous work has suggested that geostatistics
can be used to map estimated exposure to arsenic through groundwater as a continuous surface
across a region based on a limited set of point measures [25–29]. Additionally, principal components
analysis (PCA) has been used as a variable reduction method to investigate groupings of groundwater
parameters [30–33] and has been combined with geostatistical methods to map underlying latent
processes contributing to overall water quality across a region [34–37]. However, we are not aware of
previous studies exploring the use of PCA and geostatistics to summarize groundwater quality in SK.
We are also not aware of studies exploring the use of PCA to summarize mixtures of contaminants for
exposure assessment in epidemiologic studies.

Previously collected water surveillance records represent an existing source of data by which
water quality can be summarized as a means of exposure assessment for epidemiological models of
associations between household water quality and health. Our objective was to evaluate the use of
existing water quality monitoring data from public systems and private water supplies to describe
ground-sourced drinking water quality, and use PCA to summarize metals and ions included in the
monitoring of health standards and aesthetic objectives. Our secondary objectives were to compare
the performance of ordinary kriging, universal kriging, and empirical Bayesian kriging for predicting
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arsenic concentrations and principal component scores derived from principal components analysis,
and to evaluate the potential use of these tools in human health exposure analysis for large rural
areas of western Canada. The results of this analysis were later used to estimate groundwater-sourced
drinking water arsenic concentrations and principal components summarizing water health standard
and aesthetic parameters for geographic regions across rural Saskatchewan. The estimates were needed
to inform an exposure analysis for epidemiological investigation of associations between water quality
and diabetes, hypertension, and cardiovascular disease in rural SK.

2. Materials and Methods

2.1. Study Area

Saskatchewan is a province located in central Canada with borders approximately located along
49◦ N and 60◦ N, and 102◦ W and 110◦ W. The geostatistical analysis was limited to the southern part of
the province, because the water monitoring data were very sparse in the sparsely-populated northern
part of the province (Figure 1). The study area for the geostatistical analysis was bounded by the
solid line in Figure 1 and encompassed an area just over 327,900 km2 and was home to approximately
1 million people in 2010.
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2.2. Data Sources

All data were obtained from the Saskatchewan Water Security Agency. The public supply data
originated from 492 groundwater sourced systems that fall under regulation of the Water Security
Agency and were collected during 1985–2012, and consisted primarily of treated water samples. Wells
considered to be under the influence of surface water were excluded, but otherwise well depths were
not readily available. The private water supply data were collected from 4093 wells as part of the Water
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Security Agency’s Rural Water Quality Advisory Program (RWQAP), a unique program designed
to provide advice and subsidized water testing services to private well owners during 1996–2011.
Well depth was reported by landowners, and subject to considerable uncertainty. Furthermore, well
depth was not available for over 25% of samples; therefore, well depth was not considered in the
analysis. All chemical analyses were performed using methods accredited by the Canadian Association
for Laboratory Accreditation Inc. [38] at the Saskatchewan Disease Control Laboratory (Regina, SK,
Canada) or the Saskatchewan Research Council Environmental Analytical Laboratories (Saskatoon,
SK, Canada). The densities of sampling sites for public water supplies and private wells are shown in
Figure 1.

All analyses were carried out separately for public water supply data and private well data.
Concentrations for all parameters, for both private and public supply databases, were converted to
mg/L. Only samples from groundwater sources were retained, and samples with missing location
information were discarded. Because analytic methods and detection limits changed over time, data
were compared to the detections limits corresponding to the sampling date; for samples where the
parameter concentration was reported as below the detection limit, half the detection limit was imputed
for the missing value [26,39]. The distributions for all parameters were right skewed and natural
logarithm transformations were applied prior to analysis. Descriptive statistics for parameters of
interest, along with the proportion of samples exceeding Saskatchewan’s standards or objectives, and
the proportion of samples that were below detection limits were summarized for the public water
supply data and the private well data.

Cyanide, mercury, cadmium, chromium, and fluoride were excluded from the analysis for both
public supplies and private wells to maintain consistency in the analysis of the different types of
supplies. Cyanide and mercury were sampled less frequently than the other metals and ions of
interest in public systems. Cyanide was not sampled in the private wells and mercury was sampled
infrequently. Additionally, 98% of cadmium and 72% of chromium samples were below detection limit
for the public water supply data, and 92% of cadmium and 91% of chromium samples were below
detection limit in the private well data. Fluoride was infrequently reported for private wells, but was
added to some municipal supplies [40] and was also excluded.

The water quality data for the public water supplies consisted of repeated measures taken at
irregular intervals during 1985–2012. Because kriging methods implemented in ArcGIS require a single
measure at each point location, a generalized linear mixed model (GLMM) with no fixed effects was
used to estimate a single predicted value for each water parameter for each water supply location,
using the Mixed procedure with maximum likelihood estimation in SAS (SAS Institute Inc., Cary, NC,
USA). The GLMM included a random intercept µ~N(0, σ2) to account for between supply variation, as
well as a structured error term with a spatial power covariance structure based on the time between
sampling to account for the non-equidistant repeated sampling within water supplies [41,42].

The private well data consisted of measures at a single point in time for each location. However,
due to privacy considerations, private well locations were generalized to the centroid of the section of
land on which they were located before confidential data access was granted for this analysis. A section
is approximately 1.6 km by 1.6 km and corresponds to a parcel of land described by the grid-based
land description system used in western Canada [43]. Wells with duplicated generalized locations
were manually jittered by alternately increasing or decreasing the latitude and longitude by increments
of 10 m for each subsequent duplicate well location until no duplicate locations remained.

2.3. Principal Components Analysis

Principal components analysis (PCA) is a multivariate statistical technique that can be used to
reduce the dimensionality of a dataset with numerous correlated variables and categorize variables
into groups based on their covariance. The resultant independent principal components account for
the variance in the observed data, except for that explained by components that are not retained. These
independent principal components can then be used as predictor variables in subsequent analyses.
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PCA was performed using SAS (SAS Institute Inc., Cary, NC, USA) and applied separately to the
public supply and private supply data, separated into groups of water parameters identified as health
standards and as aesthetic objectives according to the Saskatchewan Drinking Water Quality Standards
and Objectives. For the public water supply data, the single predicted value for each supply was used
in PCA, while values for each individual well were used in the PCA of private well data.

Log transformed concentrations (mg/L) were converted to standardized z-scores prior to
performing PCA to mitigate the effect of measurement scales and to ensure that highly variable
parameters did not dominate the analysis [44,45]. Kaiser’s measure of sampling adequacy (KMO) [46]
and Bartlett’s test of sphericity [47] were performed to assess the sampling adequacy and correlation
of these data and therefore their suitability for PCA. In each analysis, principal components (PC) with
an eigenvalue of greater than one were retained [48], and subject to varimax rotation to maximize
the variation explained by each of the retained principal components and to obtain the final principal
component loadings and coefficients. Principal component (PC) scores for each of the retained
principal components were calculated for the public supplies and private wells for use in the
geostatistical analysis.

2.4. Geostatistical Analysis

Kriging is a geostatistical method that incorporates spatial autocorrelation in continuous variables
to interpolate values at locations at which they have not been measured [49]. The basis of kriging is the
semivariogram model, which uses the semivariance between point measures to summarize the spatial
relationships in variables. Ordinary kriging and universal kriging are methods for which estimation
is based on weighted least squares and the assumption that the calculated semivariogram is the true
model for the data. Ordinary kriging differs from universal kriging in that ordinary kriging assumes a
constant unknown mean across a given area, while universal kriging assumes a constant trend in the
data [49].

Empirical Bayesian kriging first became available in ArcGIS version 10.1, and is based on restricted
maximum likelihood estimation [50]. Additionally, it allows for uncertainty in the semivariogram
model by a process of data subsetting and simulation to estimate a range of semivariogram models.
As a result, empirical Bayesian kriging requires fewer assumptions about the semivariogram model
form, is considered accurate for moderately non-stationary data, and provides more accurate estimation
of prediction standard errors than other kriging methods [50].

Principal component scores and log transformed arsenic concentrations were mapped in
ArcMAP 10.3 (ArcGIS, ESRI, Redlands, CA, USA) to compare the performance of ordinary, universal
and Empirical Bayesian Kriging for the prediction of arsenic concentrations, PC scores for health
standards (PChealth), and PC scores for aesthetic objectives (PCaesthetic). The analyses for each of these
three types of data were performed separately for public water supply data and private well data.

Variogram models for each variable were developed using SAS 9.4 software (SAS Institute Inc.,
Cary, NC, USA) [51]. First or second order large scale trends were identified in the data for each
variable using regression analysis. Where trends were detected, the residuals from the regression
models were used to develop variogram models. The average nearest neighbor distance for the
sampling locations for each variable were calculated in ArcGIS 10.3 and set as the lag distance for
the variograms, and half the study area extent divided by the lag distance was used to calculate the
maximum number of lags, which limits the semivariogram lag to half the extent of the sampling
area [51]. The fits of spherical, exponential, and Gaussian models were compared using the Akaike
Information Criterion (AIC) for each variable in each of the public and private water supply datasets.
The presence of anisotropy was evaluated visually by dividing the variogram into eight directions
(22.5◦ angles); however, for the final analysis, an omnidirectional variogram was modeled.

ArcMAP 10.3 (ArcGIS, ESRI, Redlands, CA, USA) was used to perform ordinary, universal and
empirical Bayesian kriging for each variable. The order of trend removal and lag distance were set
based on the variogram models developed in SAS. For the public water supply data, the number
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of lags was set to the maximum number of lags calculated for the SAS variogram models, but for
the private well data 100 lags were used for each kriging model because the calculated maximum
number of lags for each parameter exceeded the maximum of 100 allowed in ArcMAP. Because the
spherical form of the variogram model had the lowest AIC for all but two of the variogram models
(PC4aesthetic for public water supplies and PC3health for private wells), the model form was specified as
spherical for each variable for ordinary and universal kriging. Because empirical Bayesian kriging is
less interactive and spherical models are not available, the settings for Bayesian Kriging were left at
default values, such that subsets of 100 points and 100 simulations were modeled for each variable
using a power-based model.

The root mean square prediction error (RMSE) in the kriging cross validation analysis performed
in ArcMAP was used to compare the ability of ordinary, universal, and empirical Bayesian kriging to
predict values for each parameter [52]. In cross validation, each point is sequentially omitted from
the dataset and the remaining points used to predict a value for that point; the difference between the
predicted and measured value is the prediction error. The method that resulted in the greatest number
of parameters with the lowest RMSE was identified as the optimal kriging method for the water data.

3. Results

For both public water supply (Table 1) and private well data (Table 2), the medians of most
parameters, with the exception of manganese, were below the values specified in Saskatchewan’s
Drinking Water Quality Standards and Objectives. However, the 95th percentile value exceeded the
standard or objective for several parameters including arsenic, uranium, iron, manganese, sodium,
sulfate, alkalinity, hardness and total dissolved solids. When the values for public systems after
repeated measures modeling (Table 3) were compared to the summary statistics for the raw data
(Table 1), the median values were similar, but the maximums were smaller.

Table 1. Descriptive statistics for individual samples in public water supplies in Saskatchewan during
1985–2012, along with the Saskatchewan standards and objectives, percent of samples exceeding the
respective standard or objective, and percent of samples below detection limit for the water parameters
included in the analysis.

Samples Mean SD Median P95 Max SK Standard Exceedances Below DL
(n) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Percent of Samples Percent of Samples

Health standards

Arsenic 4732 0.003 0.007 0.001 0.014 0.098 0.01 6.9 22.9
Barium 4485 0.05 0.10 0.02 0.18 2.40 1 0.04 2.8
Boron 4116 0.36 0.50 0.24 1.20 6.00 5 0.2 5.5
Lead 4569 0.0019 0.0078 0.0005 0.0070 0.4100 0.01 2.5 67.3

Nitrate 9562 11.6 20.5 3.0 42.0 933.0 45 4.1 31.4
Selenium 4527 0.001 0.006 0.001 0.004 0.140 0.01 1.9 72.2
Uranium 4617 0.006 0.011 0.003 0.023 0.180 0.02 7.3 16.9

Aesthetic objectives SK Objective

Alkalinity 5404 408 154 408 674 2451 500 22.0 0
Chloride 5435 48.5 86.9 18.0 233.4 1803.0 250 4.2 3.8
Copper 4497 0.084 0.290 0.018 0.310 6.200 1 1.2 6.8

Hardness 4162 536 341 489 1107 7800 800 20.7 0.2
Iron 4587 0.30 1.33 0.06 1.08 46.00 0.3 18.8 5.9

Magnesium 3120 55.5 37.4 49.0 125.0 449.0 200 0.002 4.3
Manganese 4614 0.26 1.58 0.07 0.98 101.00 0.05 53.5 7.2

Sodium 4353 162 190 80 585 1868 300 18.8 0.1
Sulfate 4284 403 367 326 1045 9000 500 32.5 2.5

TDS 4290 1283 661 1199 2453 6687 1500 34.6 0
Zinc 4481 0.03 0.24 0.01 0.08 11.00 5 0.04 25.4

SD = standard deviation, P95 = 95th percentile, max = maximum, DL = detection limit, TDS = Total Dissolved Solids.
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Table 2. Descriptive statistics for individual samples in private water supplies in Saskatchewan during
1996–2011, along with the Saskatchewan standards and objectives, percent of samples exceeding the
respective standard or objective, and percent of samples below detection limit for the water parameters
included in the analysis.

Samples Mean SD Median P95 Max SK Standard Exceedances Below DL
(n) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Percent of Samples Percent of Samples

Health Standards

Arsenic 4082 0.005 0.012 0.001 0.023 0.210 0.01 13.5 21.3
Barium 4082 0.08 0.14 0.03 0.26 2.19 1 0.4 0.3
Boron 4082 0.33 0.54 0.15 1.40 7.10 5 0.2 1.8
Lead 4082 0.0007 0.0043 0.0005 0.0014 0.2100 0.01 0.7 72.9

Nitrate 3996 24.5 73.5 1.20 126.0 1300.0 45 12.2 27.4
Selenium 4076 0.008 0.036 0.001 0.033 0.840 0.01 11.2 41.1
Uranium 4076 0.012 0.021 0.005 0.044 0.400 0.02 17.8 11.9

Aesthetic Objectives SK Objective

Alkalinity 4019 416 148 399 671 1620 500 21.8 n/a
Chloride 4019 69.8 178.0 21.0 257.0 4090.0 250 5.2 1.7
Copper 4080 0.011 0.037 0.003 0.044 1.100 1 0.02 24.1

Hardness 4019 695 569 557 1760 6810 800 30.7 0.3
Iron 4091 1.24 2.81 0.12 6.00 40.00 0.3 40.5 1.2

Magnesium 4019 81.0 84.4 60.0 220.0 1450.0 200 6.1 0.3
Manganese 4091 0.44 0.68 0.18 1.70 11.00 0.05 68.2 2.5

Sodium 4019 181 237 84 653 2710 300 20.8 0
Sulfate 4019 546 618 354 1680 7690 500 39.1 0.15

TDS 4019 1560 1030 1330 3450 11300 1500 42.7 n/a
Zinc 4081 0.19 1.00 0.02 0.76 31.00 5 0.4 15.8

SD = standard deviation, P95 = 95th percentile, max = maximum, DL = detection limit, n/a = no detection limit
available, TDS = Total Dissolved Solids.

Table 3. Descriptive statistics for predicted concentrations after repeated measures modeling for each
parameter by site for public water supplies in Saskatchewan, along with Saskatchewan standards and
objectives, and the percent of sites with a predicted concentration exceeding the standard or objective.
A summary of the number of samples per site incorporated in repeated measures models for each
parameter is also shown.

Mean Predicted Concentration Number of Samples per Site

Sites Mean SD Median P95 Max SK Standard Exceed Min Median Max
(n) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Percent of Sites (n) (n) (n)

Health Standards

Arsenic 492 0.002 0.003 0.001 0.007 0.039 0.01 2.0 1 9 59
Barium 491 0.04 0.07 0.02 0.13 0.74 1 0 1 9 28
Boron 477 0.35 0.41 0.23 1.13 3.03 5 0 1 9 26
Lead 491 0.0006 0.00004 0.0006 0.0007 0.0007 0.01 0 1 9 28

Nitrate 497 2.67 6.24 1.03 10.42 95.18 45 0.2 1 11 366
Selenium 492 0.001 0.001 0.0003 0.002 0.012 0.01 0.2 1 9 28
Uranium 491 0.005 0.006 0.003 0.016 0.076 0.02 2.6 1 9 33

Aesthetic Objectives SK
Objective

Alkalinity 503 400 127 400 612 900 500 18.1 1 10 36
Chloride 499 42.9 64.2 19.8 173.7 489.8 250 2.4 1 10 257
Copper 492 0.024 0.025 0.015 0.075 0.170 1 0 1 9 28

Hardness 501 492 296 457 10497 14827 800 15.2 1 8 32
Iron 482 0.10 0.12 0.060 0.29 1.18 0.3 4.1 1 9 34

Magnesium 483 52.3 34.0 46.4 116.1 191.9 200 0 1 6 26
Manganese 483 0.12 0.19 0.06 0.45 1.84 0.05 52.6 1 9 34

Sodium 488 160 176 87 561 883 300 18.0 1 8 34
Sulfate 480 383 318 304 995 1930 500 30.0 1 8 34

TDS 487 1277 590 1189 2355 3467 1500 33.1 1 8 34
Zinc 491 0.01 0.01 0.01 0.02 0.10 5 0 1 9 28

SD = standard deviation, Min = minimum, P95 = 95th percentile, Max = maximum, Exceed = predicted concentration
exceeds standard or objective, TDS = Total Dissolved Solids.

3.1. Principal Components Analysis

Bartlett’s test of sphericity was satisfied for each dataset indicating that there was sufficient
correlation among the variables for PCA to be useful (p < 0.001 for each dataset). The KMO measure of
sampling adequacy was above the recommended minimum value of 0.6 [46] for the data for aesthetic
objectives for public water supplies (KMO = 0.63), for health standards in private wells (KMO = 0.62)
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and aesthetic objectives for private wells (KMO = 0.68). However, the KMO was 0.49 for the health
standards in the public water supply data. Removing the parameter with the lowest individual
measure of sampling adequacy (arsenic) did not substantially improve the KMO. Despite the low
KMO, PCA was completed for this dataset to facilitate planned comparisons.

For health standards, analysis of the public supply data yielded three PCs accounting for 63.7%
of the variance, while the private supply analysis yielded three PCs that accounted for 67.6% of the
variance (Table 4). The first health standards principal component (PC1health) was associated with
nitrate and selenium for both types of supplies. However, PC1health was more strongly associated
with uranium in private wells than in public supplies, while PC1health was more strongly associated
with lead in public supplies than in private wells. The second PChealth exhibited opposite pattern,
demonstrating a positive association with boron and a negative association with barium in public water
supplies, and a negative association with boron and positive association with barium in private wells.
The third PChealth was associated with arsenic for the public supplies, but only weakly associated with
arsenic in private supplies. For public supplies, PC3health was also weakly associated with uranium,
but, in the private supplies, PC3health was associated with lead.

Table 4. Principal components analysis on public water supplies and private well water supplies:
varimax rotated principal components patterns, eigenvalues and percent of variance explained for each
retained component. The loadings in bold font indicate the principal component with the maximum
loading for each measured variable.

Public Water Supplies Private Wells

Health Standards

PC1 PC2 PC3 PC1 PC2 PC3
Arsenic −0.121 0.142 0.808 −0.341 −0.091 0.474
Barium 0.047 −0.818 −0.141 −0.041 0.893 0.100
Boron −0.062 0.903 −0.123 −0.195 −0.818 0.168
Lead 0.472 0.092 0.171 0.156 0.026 0.893

Nitrate 0.768 −0.071 −0.164 0.770 0.275 −0.110
Selenium 0.867 −0.220 0.019 0.853 −0.007 0.074
Uranium 0.387 −0.290 0.576 0.772 −0.013 −0.049

Eigenvalue 2.127 1.275 1.059 2.290 1.381 1.057
Cumulative variance (%) 30.4 48.6 63.7 32.7 52.5 67.6

Aesthetic Objectives

PC1 PC2 PC3 PC4 PC1 PC2 PC3
Alkalinity 0.755 0.111 0.164 −0.198 0.687 −0.023 0.217
Chloride 0.753 −0.193 0.002 0.226 0.779 0.043 −0.195
Copper 0.127 0.012 −0.200 0.714 0.030 0.223 −0.757

Hardness 0.009 0.973 0.066 0.042 0.067 0.960 0.038
Iron 0.138 −0.089 0.901 0.053 0.117 0.121 0.784

Magnesium −0.014 0.961 0.055 0.038 0.103 0.951 0.020
Manganese 0.188 0.452 0.711 −0.065 0.062 0.468 0.663

Sodium 0.914 −0.199 0.136 0.026 0.922 −0.116 0.118
Sulfate 0.663 0.517 0.018 0.116 0.609 0.555 0.076

Total Dissolved Solids 0.920 0.288 0.121 −0.016 0.907 0.325 0.082
Zinc −0.089 0.078 0.237 0.763 −0.091 0.396 −0.375

Eigenvalue 3.746 2.362 1.264 1.181 3.775 2.184 1.779
Cumulative variance (%) 34.1 55.5 67.0 77.8 34.3 54.2 70.4

PC = principal component.

For the aesthetic objectives, PCA on the public supply data yielded four PCs explaining 77.8% of
the variance, while the private supply data yielded only three PCs accounting for 70.3% of variance
(Table 4). For both types of supplies, the first aesthetic objectives PC (PC1aesthetic) was associated most
strongly with alkalinity, chloride, sodium, sulfate, and total dissolved solids. In addition, for both
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types of supplies, the second PCaesthetic was characterized by strong associations with hardness and
magnesium, and weak associations with sulfate and manganese. In addition, private supplies had a
weak association of zinc with PC2aesthetic. The third PCaesthetic for public and private supplies were
associated primarily with iron and manganese, but, in private systems, PC3aesthetic also exhibited a
negative association with copper. Conversely, the PC4aesthetic retained only from the public supply
was associated with copper and zinc.

3.2. Geostatistical Analysis

Of the 492 groundwater-sourced public water supplies sampled, 480 fell within the study area
outlined in Figure 1 and were used in the geostatistical analysis. Arsenic concentrations were available
from all 480 public water supply locations within the study area. Health standards PC scores were
available for 459 locations and aesthetic objectives for 435 locations.

Of the 4093 private wells sampled, 4084 fell within the study area and were used in the
geostatistical analysis. Arsenic concentrations were available for 4073 private wells within the study
area; health standards PC scores were available for 3970 private wells; and aesthetic objectives for
3999 private wells in the study area.

The number of data points, lag distance, and number of lags used as inputs in ordinary and
universal kriging are summarized in Table 5. Visual inspection of plots for anisotropy suggested the
few observed differences were minor, thus isotropic models were assumed for all variables.

Table 5. Summary of parameters used as input for variogram models for ordinary and
universal kriging.

Variable Number of Sites Lag Distance (km) Number of Lags Large Scale Trend

Public Supplies

Arsenic 480 13.03 31 2nd order
PC1health 459 13.44 30 2nd order
PC2health 459 13.44 30 2nd order
PC3health 459 13.44 30 2nd order

PC1aesthetic 435 13.84 29 2nd order
PC2aesthetic 435 13.84 29 2nd order
PC3aesthetic 435 13.84 29 2nd order
PC4aesthetic 435 13.84 29 1st order

Private Supplies

Arsenic 4073 2.52 100 1st order
PC1health 3970 2.55 100 2nd order
PC2health 3970 2.55 100 2nd order
PC3health 3970 2.55 100 2nd order

PC1aesthetic 3999 2.54 100 2nd order
PC2aesthetic 3999 2.54 100 2nd order
PC3aesthetic 3999 2.54 100 1st order

PC = principal component.

The RMSE values from each of the kriging models for each of the variables demonstrate that,
overall, the Bayesian kriging resulted in the lowest RMSE for nine variables, whereas ordinary kriging
resulted in the lowest RMSE for six variables (Table 6).

For each type of kriging, cross-validation plots of predicted vs. measured values (Appendix A,
Figures A1–A8) revealed that, for low measured values, predicted values tended to be overestimated,
and that, for higher measured values, predicted values tended to be underestimated.
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Table 6. Root mean square error values for each parameter obtained from cross validation analysis of
ordinary, universal and empirical Bayesian kriging models for public water supply and private well
data. The lowest RMSE for each variable is bolded.

Ordinary Universal Bayesian

Municipal Systems

Arsenic 1.0115 1.2634 1.0180
PC1health 0.9730 1.0300 0.9734
PC2health 0.9510 3.5363 0.9586
PC3health 0.8987 1.0865 0.8925

PC1aesthetic 0.9276 1.0293 0.9268
PC2aesthetic 0.8899 0.9567 0.9013
PC3aesthetic 0.9993 6.2933 0.9822
PC4aesthetic 1.0204 1.0239 1.0232

Private Wells

Arsenic 1.5949 1.6081 1.5593
PC1health 0.9130 212.78 0.9090
PC2health 0.8388 0.9111 0.8200
PC3health 0.9536 1.0299 0.9626

PC1aesthetic 0.8234 211.46 0.8091
PC2aesthetic 0.8618 0.8918 0.8020
PC3aesthetic 0.9630 0.9724 0.9606

Results from empirical Bayesian kriging of log transformed arsenic concentrations from the public
and private water supply data within the study area were back transformed to obtain surfaces of
predicted arsenic concentrations (Figure 2).
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Figure 2. Arsenic concentrations (µg/L) predicted by empirical Bayesian kriging for: public water
supply data (left); and private well data (right) in study area in southern Saskatchewan.

Prediction surfaces based on the natural logarithm transformed arsenic concentrations are shown
in Figure 3a, along with their corresponding prediction standard error surfaces, which illustrate the
amount of uncertainty associated with the predicted values (Figure 3b). Surfaces for each of the
principal components are available in Appendix B (Figures A9–A15).
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concentrations (a); and the prediction standard error maps (b) for public supplies (left) and private
supplies (right) in study area in southern Saskatchewan.

4. Discussion

In Saskatchewan, groundwater sources are primarily utilized by residents of rural and remote
areas [53]. A considerable number of water samples exceeded drinking water standards and objectives
in the surveillance data, highlighting the need to promote adequate testing of drinking water in rural
areas. Generally, it appears that contaminants listed as aesthetic objectives exceed guideline values at a
higher frequency than the health-related standards. As expected, the raw groundwater sampled from
private wells exceeded standards and objectives more frequently than the water from the regulated,
treated public water supplies. However, a considerable number of samples from public supplies still
exceeded guidelines, especially for aesthetic objectives.

In a previous study, a sample of 283 wells in Saskatchewan [19] found that approximately 45% of
the wells exceeded the Saskatchewan drinking water objective for sulfate, 47% exceeded the objective
for iron, 61% exceeded the objective for hardness, and 79% exceeded the objective for manganese. Our
study reflected a similar pattern, although the rates of exceedances were slightly lower; approximately
39% for sulfate, 40% for iron, 31% for hardness, and 68% for manganese in the private wells, and 32%
for sulfate, 19% for iron, 21% for hardness and 53% for manganese in public supplies. A previous
study from Saskatchewan reported that having aesthetic complaints about tap water was associated
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with the perception that tap water was unsafe [24]. The aesthetic quality of tap water could act
as a determinant of health by increasing consumption of water alternatives which may include
sugar-sweetened beverages [8].

Previous studies have also investigated concentrations of arsenic [17] and nitrate [18] in
Saskatchewan wells. Thompson et al. [17] sampled 61 wells (private wells and wells maintained
by rural municipalities) for arsenic, and found that 23% exceeded the current Saskatchewan drinking
water standard applied to regulated public water supplies. In our study, just over 13% of private
wells exceeded the standard, while approximately 7% of public supply samples exceeded the standard.
Thompson [18] found that 14% of wells tested exceeded the standard for nitrate for regulated
waterworks, while 12% of the private wells included in our study exceeded the standard. However,
only 4% of public supplies exceeded the nitrate standard.

4.1. Principal Components Analysis

PCA has been used in previous studies to examine and interpret patterns of groundwater quality
parameters [30–34,54]. These types of studies typically identify common factor patterns and interpret
them with respect to presumed natural and anthropogenic processes that impact groundwater quality,
and are often focused on major ions (e.g., sodium, chloride, magnesium, sulfate) that would fall under
aesthetic objectives in the Saskatchewan Drinking Water Quality Standards and Objectives. PCA
analysis of groundwater has often included nitrate, which falls under Saskatchewan health standards,
as a marker for anthropogenic influences on groundwater (e.g., [30–32,34]). However, the full range of
parameters included in such studies has not been consistent, particularly with respect to the inclusion
of trace metals, making it somewhat difficult to compare results. Comparison to our study was further
hampered because we analyzed health standards and aesthetic objectives separately to align our
analysis with Saskatchewan Drinking Water Quality Standards and Objectives.

We limited our analyses to include parameters that were routinely sampled from both the public
and private supply data to facilitate comparison between the differing supplies. We expected the results
to differ between the types of systems because the public supply data represent treated water supplies
and the private well data represent raw water samples. While there were some differences in the
principal components extracted from the public and private data, there were some striking similarities,
especially in the results for the aesthetic objectives, even though four PCaesthetic were retained for the
public supply data and three for the private well data. The first PCaesthetic was associated with the
same group of variables in both datasets: sodium, chloride, sulfate, alkalinity and total dissolved
solids. Additionally, hardness and magnesium were strongly associated with the second PC, and iron
and manganese with the third PC in both public and private water supplies. The consistent patterns of
these parameters between the datasets suggest relatively strong associations between these parameters
in Saskatchewan groundwater.

The PCA for health standards also exhibited some consistencies: nitrate and selenium were
strongly associated with the first PC1health for both public and private supplies. Arsenic was associated
with the third PChealth in both datasets, but strongly associated with that PC in the public supply data.
In contrast, uranium was associated with PC3health in public supplies and with PC1health in private
wells. In addition, lead was associated with PC1health in public supplies, and with PC3health in private
wells. Because lead contamination of water can be associated with leaching from distribution systems,
differences in the covariance of lead with other parameters between public supplies and private wells
is not unexpected. However, caution is warranted in the interpretation of the PCA for health standards
from the public supply data considering the low Kaiser’s measure of sampling adequacy for these data.

4.2. Geostatistical Analysis

Kriging has previously been validated as a method to summarize arsenic concentrations in
groundwater quality and in one study was found to be superior to using an area average or nearest
well as a proxy to predict well concentrations [26]. While some studies have investigated the use
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of indicator kriging to model the probability of higher arsenic concentrations using geological and
hydrological covariates [25,27], some recent studies have compared various kriging methods that are
accessible in GIS software to investigate prediction of arsenic concentrations in groundwater [28,29].
James et al. [29] evaluated the performance of various kriging methods (ordinary, universal, simple
kriging with varying means, kriging with external drift, cokriging with ordinary kriging and cokriging
with universal kriging) over a relatively small area in Colorado and found that ordinary kriging
performed best. Gong et al. [28] compared inverse distance weighted interpolation with kriging using
Gaussian and spherical models as well as cokriging in predicting arsenic concentrations over various
regions in Texas, and found regional differences in the performance of kriging, and concluded that
kriging over smaller areas was more accurate than over large geographic regions.

In the present study, Bayesian kriging had the lowest RMSE for the greatest number of variables
and was considered the optimal method for our data. However, values of RMSE for ordinary kriging
were very similar to those for Bayesian kriging, so there does not appear to be much difference between
these methods in the accuracy of the predicted values on cross validation.

We elected not to use covariate information such as well depths or geological data in our models
due to difficulty in obtaining accurate covariate data over our study area. Furthermore, a previous
study in SK demonstrated a lack of correlation between well depths and concentrations of the water
parameters studied [55]. While depth might be expected to improve modeling of arsenic concentration,
conflicting results from other studies suggest that the contribution of depth may be dependent on
the study area. For example, a negative correlation between increasing well depth and arsenic
concentrations has been reported for wells in Bangladesh [56,57], while a positive association between
well depth and arsenic was reported in North Carolina [58]. Yang et al. [27] did not detect any
association between arsenic concentration and well depth in Maine. In one study, including well depth
in cokriging models did not improve the ability of kriging to predict arsenic levels [29]. Gong et al. [28]
found that incorporating well depth in cokriging did not necessarily improve the correlation between
predicted and actual values, but did improve the performance of regression models used to predict
arsenic levels. Furthermore, Yu et al. [57] investigated factors affecting arsenic at different geographic
scales and concluded that much of the variability in arsenic concentrations at a scale of less than 3 km
could be explained by well depth, while geology was the most important factor at scales of greater than
10 km. This suggests that given the large scale of our study area relative to other reported studies, it is
unlikely that adding well depth as a covariate would have improved our models. While incorporation
of geological data might have improved our predictions, this information was not available for the
large study area.

Others have reported a tremendous amount of heterogeneity in groundwater concentrations of
arsenic over small scales that is poorly understood [27,57]. In Bangladesh, wells within a radius of
less than 1 km were found to vary by up to 1000 µg/L [57]. In another study of a relatively small
region of Bangladesh, wells in close proximity exhibited extremely variable arsenic concentrations,
especially wells less than 30 m in depth [59]. This issue was also highlighted in the geostatistical
analysis of arsenic in wells in Michigan; residuals for predicted arsenic values were mapped and no
spatial pattern in the residuals was detected [26]. The close proximity of wells with negative and
positive residuals of greater than 10 µg/L reflected high variability in arsenic concentrations over short
distances [26]. Additionally, a study in Texas compared geostatistical methods among regions, and
found the performance of the different methods varied less within a given area than across the different
regions [28]. This suggests that variability in the distribution of groundwater arsenic across regions
is a limiting factor in identifying a single method that would perform uniformly well in different
geographic areas. Given the apparent differences in processes influencing spatial variability of arsenic
at different scales, it is possible that developing kriging models over smaller targeted areas with a high
density of samples could improve the performance of predictions for some local regions. However, this
analysis was intended to estimate the mean arsenic concentrations along with principal components
representing drinking water quality over a total area of approximately 327,900 km2.
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Interpretation of mapped results of PCA is less straightforward because the values are a
representation of a combination of parameters that contribute to the PCA components. For example,
areas with high values for the first PC for aesthetic objectives represent higher predicted concentrations
of one or more of the contributors to this component, including sodium, chloride, sulfate, alkalinity
and total dissolved solids. Nevertheless, this method is useful for examining patterns in common
grouping of parameters and allowed extraction of factor scores to summarize mixtures of variables
over geographic regions for use in epidemiological analyses.

Previous studies have used geostatistical methods to map the scores resulting from PCA or FA
and used the resultant maps to predict the factors that may be impacting groundwater quality, such
as pollution or salt water intrusion [34–37]. It does not appear that the use of kriging with PCA or
factor analysis has been well-validated for prediction of groundwater quality. We are not aware of
other studies that have assessed the ability of kriging to accurately predict PCA scores at unmeasured
locations so we have not compared our results to others.

We would expect to see a reduction in predictive ability by combining a variable reduction method
such as PCA with kriging. PCA reduces the dimensionality of a dataset while capturing as much of the
information in the original variables as possible. In our data, the percentage of variance in the original
measures described by the retained PCs ranged 63.7–77.8%. While spatial patterns of arsenic have been
studied extensively, spatial patterns of the other variables, and especially mixtures of variables, have
not. Therefore, it is possible that the PCs we extracted are subject to variability at scales not captured
by our analysis. The use of PCA combined with kriging of factor scores should not be discounted as a
means of summarizing water quality but should be investigated further, ideally with higher density
sampling over smaller geographical regions.

Although the data from public water supplies consisted of repeated measures over time for
most sites, the decision was made to model a mean value for each parameter at each site rather
than specifically estimating concentrations and component scores at particular points in time. The
capacity to estimate time-specific values was limited as not all sites had the same intensity of sampling
and sufficient samples to provide a precise estimate for every year in the dataset. Finally, and most
importantly, the primary objective of this study was to estimate exposures to metals and ions in
drinking water for an epidemiologic study of associations between water quality and chronic diseases
with uncertain induction periods. The relevant exposure period over which environmental exposures
contribute to chronic diseases is uncertain and represents a potential source of misclassification [60,61].
Because the precise time period of interest for estimating exposure was unknown, an estimate of
average past exposure was deemed more appropriate for the planned epidemiological analysis than
estimating exposures for specific time points, for example, using space-time kriging models.

4.3. Limitations

It is estimated that there are over 66,000 wells in Saskatchewan [17] and our sample of 4093 private
wells is a non-random sample of less than 10% of privately owned wells in the province. Because
the database consists of samples taken through participation in a voluntary water quality program, it
could disproportionately represent residents with concerns about their well water quality. The results
from private wells and public water supplies were similar, suggesting this was not a substantial issue.

Although the public supply data represent data from all available public water supplies across
Saskatchewan, there were relatively few locations represented in the public supply data relative to the
size of the study area, resulting in a low sampling density that may have particularly impacted the
ability of kriging to capture the variability of arsenic at small spatial scales.
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Our PCA may have been hampered by not being able to make use of a full suite of parameters and
high proportions of concentrations below detection limits for some variables, especially with respect
to the health-related standards. We also made the decision to separately analyze aesthetic and health
parameters because they are segregated into drinking water standards and objectives. It is possible
that considering all available parameters together could have improved the performance of the PCA,
although it seems likely that the high number of samples below detection limits would continue to
limit the usefulness of some of the variables measured as health standards.

Kriging methods rely on an estimation of the spatial structure of data. While semivariogram
models provide a means of investigating spatial relationships, kriging typically requires the assumption
that the chosen semivariogram model represents the true spatial structure. This assumption is relaxed
with empirical Bayesian kriging allowing for uncertainty in the semivariogram parameters which
likely contributes to the superior predictive performance of this method in our study. However, the
performance of empirical Bayesian kriging was only marginally better than that of ordinary kriging.
Other researchers have investigated Bayesian statistical methods to predict arsenic groundwater
concentrations which incorporate spatial relationships using alternatives to semivariograms [58,62].
Methods such as these could potentially be used to improve prediction of arsenic concentrations and
overcome some of the limitations of kriging especially when spatial variability arises from processes at
different scales, limiting the effectiveness of variogram modeling even after allowing for uncertainty
in the semivariogram.

5. Conclusions

In this study, we investigated the use of PCA and kriging to predict groundwater water quality
across southern Saskatchewan as part of the exposure assessment for epidemiological investigation of
links between water quality and chronic disease.

A considerable number of samples from rural public water supplies and private wells exceeded
the standards and objectives set by the province of SK for regulated supplies, highlighting the need
for study of potential health impacts associated with consumption of drinking water of poor quality
in rural populations. Arsenic concentrations exceeded the health standard of 0.01 mg/L in 7% of
public water supplies and 13% of private wells. Guidelines for aesthetic objectives were exceeded with
greater frequency than health standards. These results suggest that the investigation of health impacts
of unpalatable water and mixtures of contaminants may be particularly important.

We compared ordinary, universal and Bayesian kriging for predicting log arsenic concentrations
and PC scores across the study area for public and private water supplies. Across the variables
investigated, empirical Bayesian kriging resulted in the greatest accuracy of the most predicted values.

As a method that is accessible in commercial software packages, empirical Bayesian kriging
represents a flexible and viable statistical technique that could be used to summarize water quality as a
method of exposure assessment. While geostatistical analysis may be more informative if applied over
smaller regions and higher sampling densities, the objective of this study was to estimate exposure to
drinking water parameters over a very large geographic area in rural Saskatchewan.
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