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Abstract: Exposure to bisphenol A (BPA) has been shown to impact human sperm quality. The
epigenetic mechanisms underlying the effect remain unknown. The acetylcholinesterase (ACHE)
gene is a sperm-expressed gene encoding the acetylcholine hydrolyzing enzyme acetylcholinesterase
and participates in the apoptosis of cells, including sperm. This study aimed to examine whether
BPA exposure is associated with the hydroxymethylation level of the sperm ACHE gene. A total of
157 male factory workers were studied, among whom 74 had BPA exposure in the workplace
(BPA exposure group) and 83 had no BPA exposure in the workplace (control group). Urine
samples were collected for BPA measurement and semen samples were collected to assay for ACHE
hydroxymethylation. Sperm ACHE hydroxymethylation level was higher in the BPA exposure group
(p = 0.041) compared to the control group. When subjects were categorized according to tertiles of
detected BPA level, higher ACHE hydroxymethylation levels were observed for the lowest, middle,
and top tertiles compared to those with BPA below the limit of detection (LOD). In a linear regression
analysis adjusted for confounders, a positive linear association between urine BPA concentration
and 5-hydroxymethylcytosine (5hmC) rate of the sperm ACHE gene was observed, although the
association did not reach statistical significance in all categories after being stratified by the BPA
tertile. In conclusion, 5hmC of the sperm ACHE gene was positively associated with BPA exposure,
which may provide supportive evidence for BPA’s effects on male fertility or other health endpoints.
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1. Introduction

Bisphenol A (BPA) is a synthetic industrial chemical that has been widely used in the
manufacturing of polycarbonate plastic and epoxy resins, such as water and baby bottles, reusable
food and drink containers and some dental sealants. BPA can enter the body through diet, the dermis,
and the respiratory tract [1–3]. Exposure to BPA has gained wide attention over the past decades due
to its ubiquitous exposure and potential endocrine disrupting effects, including weak estrogenic and
strong anti-androgenic and anti-thyroid activities [4–7]. An increasing body of evidence has shown
that exposure to BPA is associated with higher risks of adverse health effects in humans, including
cardiovascular disease, insulin resistant diabetes, obesity, and cancers [8–11]. Particularly, BPA
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exposure is associated with impaired male reproductive functions, including reduced semen quality,
altered reproductive hormones, and decreased sexual function [12–16]. However, the mechanisms
underlying these effects remain to be elucidated.

Epigenetic mechanisms have been demonstrated to play an important role in BPA’s biological
effects, including the effects on spermatogenesis [17,18]. For instance, long interspersed element-1
(LINE-1), the most abundant and the only active autonomous non-long terminal repeats (non-LTR)
retrotransposon in the human genome, showed an alteration in methylation following BPA
exposure [19]. However, little is known about how BPA modulates DNA demethylation. An essential
intermediate of active DNA demethylation processes, 5-hydroxymethylcytosine (5hmC), which is
oxidized from 5-methylcytosine (5mC) by the ten-eleven translocation (TET) family of proteins, has
been reported to modulate the demethylation associated with BPA [17,20,21]. A recent animal study
reported that exposure to BPA inhibits global DNA hydroxymethylation in the adult testis and
decreases testicular TETs [22]. More importantly, in our recent study based on pooled human sperm,
the total level of 5hmC increased significantly in subjects with BPA exposure [23]. 5hmC may be
another unique and dynamic marker of DNA demethylation regulation [24,25].

The acetylcholine hydrolyzing enzyme acetylcholinesterase (ACHE) is conventionally known for
terminating cholinergic neurotransmission. However, non-cholinergic roles of ACHE are observed
in animal and human sperm [26,27]. ACHE has been shown to be a potential marker and regulator
of apoptosis in some cells [28–30]. Studies have also revealed the functions of ACHE during
spermatogenesis, including interactions with the receptor of activated protein kinase C (RACK1)
to promote apoptosis and with the glycolytic enzyme enolase-α, increasing enolase activity, to reduce
sperm differentiation and sperm counts [31,32]. Our recent study based on pooled samples found that
the 5hmC levels of promoter regions in sperm-expressed genes (including ACHE gene) are significantly
higher than in sperm-repressed genes and that the ACHE gene is a sperm-expressed gene [23]. The
objective of our study was to examine the association between BPA and 5hmC in the sperm ACHE
gene in individuals, which may help us understand the mechanism of BPA’s effects on male fertility.

2. Materials and Methods

2.1. Study Population

Male participants came from a prospective cohort study that has been described in detail
elsewhere [12,19,33]. In brief, 74 males were recruited from factories that manufacture BPA and
epoxy resin in three regions (Ningbo, Wuxi, and Yueyang) of China from 2004 to 2008 (BPA exposure
group) and 83 males from factories without occupational BPA exposure in the same region during the
same period (control group). The study was approved by the ethics committee board of the Shanghai
Institute of Planned Parenthood Research (IRB00008297), and all participants signed informed consent
before participating in the study.

2.2. Data and Biosamples Collection

Information on socio-demographic characteristics (age and education), lifestyle factors (smoking
and alcohol consumption), and history of disease (any acute or chronic disease of the liver, kidney, or
other organs) were collected through in-person interviews by trained interviewers. Semen and urine
samples were also collected at the same time using the methods previously described [12,19].

2.3. BPA Measurement

BPA can be measured in various biological samples. Although plasma, urinary, and seminal BPA
are correlated with each other [34–36], urinary BPA is most widely used in epidemiological studies [37].
In the present study, we only measured urinary BPA concentration of the workers. We did not have
measurements of BPA levels in semen. Two urine samples (pre-shift and post-shift) were collected from
each male worker of the BPA-exposed group, and one urine sample was collected from those of the
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control group. For each urine specimen, modified high-performance liquid chromatography (HPLC)
was utilized to measure the total urine BPA concentration (free plus conjugated species), as previously
described [38]. Briefly, urine samples were treated with phosphorous acid buffer/β-glucuronidase
for hydrolyzation and were subsequently extracted twice using ether (HPLC grade, Dikma, Foothill
Ranch, CA, USA). The supernatants were collected and evaporated with nitrogen gas. The residue
was dissolved in 60% acetonitrile and analyzed using HPLC equipment. The limit of detection (LOD)
was 0.31 µg/L. Creatinine-corrected (µg/g creatinine) BPA concentration was used in the analyses to
account for urine dilution. To better represent the actual BPA exposure levels for the BPA-exposed
group, the mean BPA concentrations of the pre-shift and post-shift samples were used in the analysis.

2.4. DNA Extraction and DNA Hydroxymethylation Analysis

The sperm DNA was prepared as described previously [19]. Briefly, sperm specimens were
treated by guanidine hydrochloride and sodium citrate to isolate sperm pellets, and then precipitated
with ethanol. Then, sperm DNA was isolated by a standard phenol/chloroform purification method
and qualified by electrophoresis on an agarose gel and visualized with ethidium bromide.

5hmC was analyzed and quantitated using the EpiMark 5hmC and 5mC Analysis Kit (NEB,
#E3317S) according to the manufacturer’s protocols. Briefly, DNA was first mixed with UDP-glucose,
then split into two parts that were incubated with or without T4 beta-glucosyltransferase (T4-βGT),
respectively, for 16 h at 37 ◦C. This glucosylation was followed by restriction endonuclease digestion.
Both reaction mixtures were run in triplicate and were mock digested for at least 4 h with MspI or
with HpaII. Samples were treated with proteinase K and incubated at 40 ◦C for 30 min. Proteinase
K was then inactivated by incubating at 95 ◦C for 10 min. The fraction of glycosylated DNA and,
therefore, protected MspI sites, as well as the fraction of 5mCand 5hmCsensitive sites (determined
using HpaII restriction) at ACHE gene loci, were quantified by quantitative polymerase chain reaction
(qPCR) using primers (F-ATGCAGTGACAGGCACAGAC, R-TGAGTGTCCCACGTCACCTTT).
The rate of hydroxymethylation was calculated using the formulae in the kit according to the
manufacturer’s protocols.

2.5. Statistical Analysis

The distributions of creatinine-corrected BPA concentrations by subjects’ characteristics were
tabulated. The urine BPA concentrations were natural log (ln) transformed to achieve a normal
distribution and then an independent t-test or one-way ANOVA analysis was performed to analyze
differences in BPA levels. When the concentration of BPA was below the limit of detection, a value of
LOD/

√
2 was employed. To make the results more interpretable, we classified subjects with detected

urine BPA levels into three categories. Therefore, all subjects were divided into four groups: BPA
undetected (lower than the LOD level), lowest tertile, middle tertile, and top tertile. Means (SD) and
5th, 25th, 50th, 75th, and 95th percentiles of 5hmC rates of sperm ACHE gene were used to describe
the distribution of 5hmC by occupational BPA exposure (yes or no) and the urine BPA levels. Rates of
5hmC were then natural log (ln) transformed to achieve a normal distribution for the linear regression
analysis, which was used to examine the association between categorized BPA exposure and 5hmC.
Age, smoking, alcohol consumption, and history of disease, which had been reported to be associated
with 5hmC [39–41], were adjusted for as potential confounders.

We also conducted a linear regression analysis to examine the linear association between BPA
exposure and 5hmC using continuous BPA level (log transformed). We repeated the analyses within
each tertile of urine BPA to examine whether the association varied by exposure dosage. Subgroup
analyses were also conducted in the non-occupational exposed group, results of which reflect the effect
of environmental low dose BPA exposure and would corroborate the findings to some extent. All
statistical analyses were performed using SPSS 19.0 software package (IBM SPSS, Armonk, NY, USA).
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3. Results

The detection rates of urinary BPA levels in the exposure group and control group were 100%
and 36.14%, respectively. The mean BPA concentrations in the pre-shift and post-shift samples were
used in the exposure group. The difference and distribution of BPA levels between the pre-shift
and post-shift exposure groups are presented in a supplemental table (Table S1). BPA levels by the
characteristics of the study subjects are presented in Table 1. Compared to men with middle school or
below, BPA levels in those with high school and with college and above were relatively lower (Table
S2). The most important determinants for a high BPA level in this study population was occupational
exposure. The geometric mean (GM) of BPA concentration in the occupational BPA exposure group
was significantly higher than that of the control group (199.13 µg/g Cr vs. 0.77 µg/g Cr). The GM
of BPA levels were 3.93 µg/g Cr, 42.58 µg/g Cr, and 2937.79 µg/g Cr for the lowest, middle, and
top tertiles, respectively. Urine BPA levels were not associated with age, history of chronic diseases,
smoking, and alcohol consumption.
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Table 1. Distribution of urine bisphenol A (BPA) by characteristics of the study population (µg/g Cr).

Characteristics
BPA (µg/g Cr)

N (157) GM (GSD) Median (Q1, Q3) Minimum Maximum 5th 95th p Value cd

Age (years)

<29 55 10.91 (32.94) 7.90 (LOD, 61.00) LOD 109,600.22 LOD 22,991.39 0.81
30–35 39 10.60 (17.55) 11.67 (1.45, 43.01) LOD 22,620.79 LOD 20,983.27
>36 63 7.43 (54.55) 1.12 (LOD, 614.93) 0.16 264,219.38 LOD 13,418.01

Education

≤Middle school 41 35.94 (116.96) 28.52 (LOD, 3257.32) LOD 264,219.38 LOD 101,203.06 <0.01
High school 86 7.59 (20.75) 9.41 (LOD, 55.54) 0.16 22,620.79 LOD 1918.31
≥College 30 2.60 (9.89) 2.91 (LOD, 21.18) LOD 1411.29 LOD 1010.85

History of disease a

No 127 9.57 (36.07) 8.44 (LOD, 125.22) 0.16 264,219.38 LOD 21,965.79 0.83
Yes 30 8.18 (31.94) 8.80 (LOD, 115.08) LOD 3723.77 LOD 8385.03

Smoking

No 51 5.31 (38.62) 1.24 (LOD, 282.81) 0.16 109,600.22 LOD 12,209.85 0.17
Yes 106 12.15 (32.71) 12.48 (LOD, 74.69) LOD 264,219.38 LOD 19,048.45

Alcohol consumption

No 119 10.77 (37.53) 9.99 (LOD, 232.80) 0.16 264,219.38 LOD 22,620.79 0.36
Yes 38 5.84 (27.52) 6.48 (LOD, 67.96) LOD 3723.77 LOD 3373.04

Occupational exposure to BPA

No 83 0.77 (6.33) 0.22 (LOD, 5.63) 0.16 74.5 LOD 23.11 <0.01
Yes 74 199.13 (19.65) 180.59 (23.39,1928.01) 0.74 264,219.38 1.45 23,979.51

Categories by urine BPA level

BPA undetected (below LOD) b 53 LOD LOD (LOD, LOD) LOD LOD LOD LOD <0.01
Low tertile (LOD-13.84) 35 3.93 (2.96) 5.63 (1.55, 8.82) 0.16 13.84 0.36 13.44
Middle tertile (13.84–274.83) 35 42.58 (2.26) 32.90 (22.78, 74.50) 15.15 274.84 15.39 250.78
Top tertile (>274.83) 34 2937.79 (5.48) 2161.23 (683.21, 9771.63) 282.81 264,219.38 353.49 148,255.01

a: Disease refers to any acute or chronic disease of the liver, kidney, or other organs. b: The urine BPA values of undetectable were input as LOD/
√

2. c: The urine BPA concentrations were
natural log (ln) transformed. d: Independent t-test or one-way ANOVA analysis. GM: Geometrical Mean. GSD: Geometric Standard Deviation. LOD: Limit of detection.
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The distribution of 5hmCof the sperm ACHE gene by occupational BPA exposure (yes or no) and
categories of urine BPA levels are described in Table 2. The 5hmC rate of the sperm ACHE gene was
higher in the BPA exposure group (median 1.075% vs. 0.54%, respectively; p = 0.041) compared to the
control group. After potential confounders were adjusted for, subjects who were in the lowest, middle,
and top tertiles of detected BPA had higher 5hmC rates than those with undetected BPA (1.11%, 1.15%,
0.945% vs. 0.52%). The differences were statistically significant except for the top tertile group (Table 3).

Table 2. Distribution of the 5-hydroxymethylcytosine (5hmC) rate of the sperm acetylcholinesterase
(ACHE) gene by characteristics of the study population and BPA exposure.

Groups 5hmC Rate of Sperm ACHE Gene

N 5th% 25th% 50th% 75th% 95th%

Occupational exposure to BPA

No 83 0.12 0.27 0.54 1.35 2.41
Yes 74 0.11 0.43 1.075 1.78 2.57

Categories by urine BPA level

BPA undetected 53 0.11 0.22 0.52 1 1.81
Low tertile (LOD-13.84) 35 0.15 0.44 1.11 2.07 2.49
Middle tertile (13.84–274.83) 35 0.13 0.48 1.15 2.03 2.61
Top tertile (>274.83) 34 0.1 0.23 0.945 1.61 2.57

Age (years)

<29 55 0.11 0.36 0.58 1.74 2.43
30–35 39 0.11 0.36 0.84 1.69 2.61
>36 63 0.12 0.31 0.72 1.49 2.46

Smoking

No 51 0.13 0.33 0.58 1.19 2.49
Yes 106 0.11 0.37 0.75 1.66 2.56

Alcohol consumption

No 119 0.11 0.36 0.84 1.61 2.56
Yes 38 0.11 0.29 0.55 1.48 3.01

History of disease

No 127 0.13 0.31 0.63 1.51 2.43
Yes 30 0.05 0.43 0.93 1.81 2.61

Table 3. Linear regression of BPA exposure and the 5hmC rate of the ACHE gene.

Groups 5hmC Rate of Sperm ACHE Gene a

N Crude β(95%CI) b Crude p-Value Adjusted β bc (95%CI) p-Value

Occupational exposure to BPA

No 83 Ref Ref
Yes 74 0.337 (0.019, 0.655) 0.038 0.336 (0.014, 0.657) 0.041

Categories by urine BPA level

BPA undetected 53 Ref Ref -
Low tertile (LOD-13.84) 35 0.642 (0.218, 1.065) 0.003 0.661 (0.220, 1.102) 0.004
Middle tertile (13.84–274.83) 35 0.67 (0.246, 1.093) 0.002 0.682 (0.237, 1.127) 0.003
Top tertile (>274.83) 34 0.276 (−0.151, 0.703) 0.204 0.274 (−0.160, 0.708) 0.213

Age (years) d

<29 55 Ref Ref
30–35 39 0.106 (−0.317, 0.528) 0.622 0.032 (−0.395, 0.458) 0.883
>36 63 −0.019 (−0.392, 0.353) 0.919 −0.036 (−0.411, 0.339) 0.850

Smoking d

No 51 Ref Ref
Yes 106 0.141 (−0.2, 0.48) 0.416 0.176 (−0.178, 0.531) 0.327

Alcohol consumption d

No 119 Ref Ref
Yes 38 −0.124 (−0.499, 0.251) 0.515 −0.141 (−0.529, 0.247) 0.473

History of disease d

No 127 Ref Ref
Yes 30 0.064 (−0.34, 0.47) 0.755 0.063 (−0.348, 0.475) 0.762

a: Rates of 5hmC were natural log (ln) transformed. b: Adjusted for age, history of disease, smoking, and alcohol
consumption.c: Urine BPA were categorically variable. d: Analyzed in occupational exposure to BPA.
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The linear regression analysis using the continuous BPA level found that increasing BPA was
associated with increased 5hmC, but the association was marginally statistically significant (β = 0.046,
95%CI: 0.000, 0.0092). When the analyses were repeated within each tertile of urine BPA levels and in
the control group, we observed statistically significant linear associations between urine BPA levels
and 5hmC among those in the middle tertile group (β = 0.453, 95%CI: 0.070, 0.835) and those in the
control group (no occupational BPA exposure) (β = 0.144, 95%CI: 0.003, 0.285) despite the markedly
reduced sample size (Table 4).

Table 4. Linear regression of BPA exposure and the 5hmC rate of the sperm ACHE gene a.

Groups N Crude β (95%CI) Crude p-Value Adjusted β b (95%CI) p-Value

All subjects 157 0.048 (0.003, 0.093) 0.036 0.046 (0.000, 0.092) 0.051

Low tertile (LOD-13.84) 35 0.068 (−0.229, 0.366) 0.642 0.104 (−0.231, 0.440) 0.529

Middle tertile (13.84–274.83) 35 0.402 (0.025, 0.779) 0.002 0.453 (0.070, 0.835) 0.021
Top tertile (>274.83) 34 0.160 (−0.051, 0.37) 0.133 0.137 (−0.097, 0.370) 0.242
Non-occupational exposure 83 0.127 (0.01, 0.244) 0.033 0.144 (0.003, 0.285) 0.045

Age (years) c

<29 55
30–35 39 0.105 (−0.317, 0.528) 0.622 0.087 (−0.337, 0.512) 0.685
>36 63 −0.019 (−0.391, 0.353) 0.919 −0.005 (−0.38, 0.371) 0.981

Smoking c

No 51
Yes 106 0.141 (−0.2, 0.48) 0.416 0.122 (−0.236, 0.48) 0.501

Alcohol consumption c

No 119
Yes 38 −0.123 (−0.499, 0.251) 0.515 −0.122 (−0.511, 0.268) 0.537

History of disease c

No 127
Yes 30 0.064 (−0.34, 0.47) 0.755 0.065 (−0.347, 0.477) 0.756

a: Rates of 5hmC and urine BPA concentrations were natural log (ln) transformed. b: Adjusted for age, history of
disease, smoking, and alcohol consumption. c: Analyzed in all subjects.

4. Discussion

In the present study, we provide the first epidemiological evidence that BPA exposure is associated
with increased 5hmC of the sperm ACHE gene in men. The linear association is also observed among
subjects without occupational BPA exposure.

Our findings are comparable to those found in previous studies that focused on 5hmC changes in
response to endo- and exogenous factors [42,43]. Sanchezguerra et al. recently found that exposure to
ambient PM10 could affect the blood genomic content of 5hmC [42].

An increasing number of studies have suggested that BPA may affect human health by epigenetic
regulation [13,19,44,45]. The emerging epigenetic modification, 5hmC, has been shown to play a
role in regulating gene function during the differentiation of spermatogenic cells [46,47]. There is
evidence that ACHE overexpression or activity is detected in apoptotic cells after the induction of
apoptosis by different stimuli in many different type cells, such as hematopoietic stem cells, human
neuroblastoma cells, and other cell lines [29,30,48]. The molecular mechanism underlying these effects
is likely that ACHE promotes caspase-9 activation to increase nuclear condensation and polymerase
cleavage [29,49–51]. Some studies reported that the transcriptional activity of the gene could be
enhanced by DNA hypomethylation [46], which indicates that DNA hydroxymethylation in the ACHE
promoter raises the gene activity. Abnormal ACHE expression is reported to be associated with sperm
counts and motility [31]. This is supported by a recent report that the 5hmC rate of the sperm ACHE
gene is higher in asthenozoospermia and oligoasthenozoospermia men than in normozoospermia
men [52]. In our study, the higher rate of 5hmC of the sperm ACHE gene in subjects was associated
with higher BPA exposure. This suggests the presence of upregulation of ACHE activity in the
sperm from BPA-exposed men, which may eventually contribute to poor sperm concentration in the
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BPA-exposed men whom we had observed [12]. Our result is also in line with our previous report on
the genome-wide upregulation of DNA 5′-hydroxymethylation in the spermatozoa of men exposed to
BPA [23]. However, further studies need to be done to understand the changes in sperm quality across
5hmC levels.

A growing body of literature has reported adverse effects following developmental exposure
to low doses of BPA [53,54]. Male rodents exposed to low levels of BPA displayed health impacts
including altered serum testosterone levels and sperm quality [54,55]. In the present study, we did
not observe a stronger association in the subgroup with the highest BPA exposure. In addition, we
observed a similar association among the unexposed group. This non-monotonic effect is consistent
with previous reports [53,56,57], in which the biological effect of BPA is not always stronger in high
dose exposure than low dose exposure.

The relationship between environmental exposures and 5hmC of the sperm ACHE gene has not
been reported previously. Our findings may have implications for understanding environmental
exposure-induced male infertility via measuring 5hmC of the sperm ACHE gene. Measuring the levels
of 5hmC in semen specimens rather than other tissues to assess the potential epigenetic effect of BPA
on semen quality is straight-forward and accurate. However, there are some limitations in our study.
First, we did not investigate sperm ACHE gene expression in this study because of the limited amount
of individual semen samples. Next, we only detected one CpG site near the transcription start site
(TSS) in the ACHE promoter region, which could not fully describe the relationship between the 5hmC
of ACHE and its transcript expression level. Third, the high occupational exposure has restricted the
generalizability of the present study. BPA concentrations of some subjects in the top tertile group in
the present study are much higher than those reported in the USA [58]. However, in the present study,
we did not observe a stronger association in the subgroup with the highest BPA exposure. It is less
likely that the observed association can be explained by the extremely high exposure. Fourth, the
levels of BPA were measured based on a single spot urine sample (the unexposed group) or samples
pre and post one shift (the exposed group), which may not be perfect surrogates of long-term BPA
exposure, thus attenuating the observed association due to non-differential misclassification. However,
it has been reported that a single urine sample can be relatively representative of exposure within
a certain period [59]. Finally, similar to many studies collecting biological specimens, participants’
refusal to provide biological samples (urine and/or semen) may lead to potential participation bias.
However, since subjects in our study were not aware of both their BPA exposure and sperm ACHE
hydroxymethylation levels before the biosamples were collected, the refusals may be considered
random or undifferentiated in relation to exposure and outcome measures. Therefore, it seems unlikely
that the observed association could be explained by participation bias.

5. Conclusions

In conclusion, our results indicate that 5hmC of the sperm ACHE gene is positively associated
with BPA exposure. This provides supportive evidence for the effects of BPA on male fertility and
other environmental exposure-related diseases.
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