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Abstract: Despite the usefulness of artificial neural networks (ANNs) in the study of various complex
problems, ANNs have not been applied for modeling the geographic distribution of tuberculosis
(TB) in the US. Likewise, ecological level researches on TB incidence rate at the national level
are inadequate for epidemiologic inferences. We collected 278 exploratory variables including
environmental and a broad range of socio-economic features for modeling the disease across the
continental US. The spatial pattern of the disease distribution was statistically evaluated using the
global Moran’s I, Getis–Ord General G, and local Gi* statistics. Next, we investigated the applicability
of multilayer perceptron (MLP) ANN for predicting the disease incidence. To avoid overfitting, L1
regularization was used before developing the models. Predictive performance of the MLP was
compared with linear regression for test dataset using root mean square error, mean absolute error,
and correlations between model output and ground truth. Results of clustering analysis showed that
there is a significant spatial clustering of smoothed TB incidence rate (p < 0.05) and the hotspots were
mainly located in the southern and southeastern parts of the country. Among the developed models,
single hidden layer MLP had the best test accuracy. Sensitivity analysis of the MLP model showed
that immigrant population (proportion), underserved segments of the population, and minimum
temperature were among the factors with the strongest contributions. The findings of this study can
provide useful insight to health authorities on prioritizing resource allocation to risk-prone areas.

Keywords: Artificial neural networks; geographic information system; hotspot detection; multilayer
perceptron; Tuberculosis

1. Introduction

Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis [1]. The disease is
primarily transmitted through the respiratory route by coughing or sneezing [2]. The disease mostly
attacks the lungs but can also affect other organs such as kidney and brain [3]. It can promote the
course of human immunodeficiency virus (HIV) infection into acquired immune deficiency syndrome
(AIDS) [4]. According to the World Health Organization (WHO) global TB report, it is estimated that
10.4 million incident cases in 2016 developed the disease, of which almost 1.7 million patients died [5].
This agency has ranked TB as the leading cause of death among HIV patients, the most common killer
from a single infectious agent, and the 9th leading cause of death, worldwide.

According to the statistics by the WHO, most TB cases (>90%) are reported in developing countries;
however, it can also occur in developed countries [6,7]. Despite efforts to eradicate TB in the US,
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the disease remains a major public health challenge [7]. In 2016, more than 9200 TB cases were reported
in various parts of the US, which placed the disease among the top notifiable infectious diseases in the
country [8]. Although the frequency of TB has decreased in recent years, it is not expected that the US
will achieve the goal of TB elimination in this century [9].

There are many factors that influence the spatial distribution of TB, which has made the disease
a multidimensional and complex public health problem [10–13]. Previous researches from different
parts of the world have demonstrated that TB transmission is related with various individual factors,
for example, age, gender, education level, race, migration, drinking alcohol, and presence of diseases
(such as HIV and diabetes) [14–16]. Moreover, at the ecological level, factors such as climate,
altitude, air pollution, economic level, unemployment rate, and poverty have found significant on TB
occurrence [17,18]. One of the major drawbacks of the highly applied traditional statistical models
in the study of TB is that these models are often based on several hard-to-meet assumptions [19,20].
This can bias the estimations of TB frequency/ incidence rate [21]. For instance, some assumptions
of the linear regression (LR) model are normality of all variables, the linear relationship between
inputs and output, constant variance of errors, and little or no multicollinearity. They also often
need a complete and/or long-term recorded dataset to achieve unbiased estimations [22]. On the
other hand, machine learning techniques (MLTs) may lead to appropriate estimations even with
noise-contaminated and incomplete data [23,24]. As advanced tools, MLTs have been successfully
used in analyzing and modeling various complex environmental disciplines, including in ecology,
geography, biomedicine, and epidemiology [25–29]. The growing popularity of MLTs can be attributed
to their abilities to approximate almost any complex non-linear functional relationship [30–32]. Despite
their capabilities in working with noisy and incomplete data as in most epidemiological studies, they
have been underused in spatial epidemiology [33,34].

Inspired by human neural processing, artificial neural networks (ANNs) are among the most
popular MLTs used in recent years in environmental studies. Artificial neural networks have a large
number of highly interconnected processing elements (neurons) working in unison to solve specific
problems [35]. Compared to the traditional statistical models, ANNs are independent of the statistical
distribution of data and do not require a priori knowledge about the data for deriving patterns. ANNs
are simplified mathematical models that can map the relationship between input and output layers by
receiving several examples (training data). A properly trained network can further be used to predict
outcome(s) from new data (test data) [25].

There have been few published ANN architectures in spatial modeling of infectious diseases,
worldwide. Aburas et al. applied an ANN model with a back-propagation algorithm to predict the
frequency of confirmed dengue cases using Singaporean National Environment Agency data [36].
Results of their model showed a correlation coefficient of 0.91 between actual and predicted values.
They also identified influential environmental factors predicting the number of dengue cases including
mean temperature, mean relative humidity, and total rainfall. Laureano-Rosario et al. used ANN to
predict dengue fever (DF) occurrence in a region in Puerto Rico, and in several coastal municipalities
in Mexico [37]. The developed ANN models were trained with 19 years of DF data for Puerto Rico
and six years’ data for Mexico. Sea surface temperature, precipitation, air temperature, humidity,
previous DF cases, and population size were used as explanatory variables. Their results showed
that the ANN successfully modeled DF outbreak occurrences with the overall power of 70% in both
areas. The variables with the most influence on predicting DF outbreak were population size, previous
DF cases, air temperature, and date. In the US, Xue et al. developed the least square (LS) regression
analysis and a neural network trained by the genetic algorithm to evaluate influenza activity in 10
geographic regions [38]. They compared the models using three evaluation metrics: mean square error,
mean absolute percentage error, and relative mean square error. All three evaluation indices used
in their study were lower than the corresponding metrics for the LS regression model showing the
superiority of the genetic algorithm-based neural network to the LS regression model.
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To date, TB control efforts have relied on the empirically developed WHO DOTS (directly
observed treatment, short-course) control strategy which focuses on “case-finding” rather than
“place-finding” [39]. Previous studies from different parts of the US and at different levels have
shown the association of TB with socio-economic status. Mullins et al. used purely spatial scan
statistics to identify spatial clusters of census tracts with high TB prevalence rates in Connecticut.
They found six clusters of TB containing 126 census tracts [40]. Persons in these clusters were more
likely to be black non-Hispanic and less likely to be Asian. Bennett et al. used multivariate logistic
regression to assess the association between demographic and clinical characteristics and latent TB
infection in refugees in San Diego, California [41]. They found that the highest prevalence rate was
among refugees from sub-Saharan Africa and those with less education. In a study in Harris County
(in Texas), Feske et al. showed a positive association between the percent of individuals using public
transportation in census tract and location of clusters detected by Getis–Ord’s Gi* hotspot analysis [42].

Ecological level researches on TB incidence rate at the national level are inadequate for
epidemiologic inferences especially in the US. Therefore, it is crucial to perform an ecological study
across the continental US to identify the location of statistically significant hotspots and to determine
the relationship between environmental and socio-economic factors and TB incidence to provide useful
insight to policymakers in planning for TB control at a larger scale. To our knowledge, no study has
utilized ANNs in modeling the geographic distribution of TB incidence rate in the US. Integration of
the GIS and ANN can improve policymakers’ insight in identifying potential TB high-risk areas and
risk factors useful for future mitigation efforts. We examined the spatial distribution of the disease and
applicability of MLTs in TB modeling with the following assumptions (1) all reported county-level
TB incidence rates represent the status of TB in the continental US and (2) the TB incidence rate is
influenced by environmental and socioeconomic factors.

2. Material and Methods

2.1. Tuberculosis Data

Data on all reported TB cases in the continental US between 2006 and 2010 were obtained from the
paper of Scales et al. in the American Journal of Preventive Medicine [43]. All data are at the county
level (n = 3109) and are publicly available [44]. Latent TB cases were not reported and included in
this study. To alleviate variations of TB incidences, particularly in counties with a small population
size such as Loving and King counties in Texas (n < 300 populations), the cumulative incidence was
calculated (2006–2010). For this purpose, five-year corresponding population estimates from the
American Community Survey (ASC) [45] were used. Tuberculosis incidence rates were imported into
ArcGIS 10.5 (ESRI, Redlands, CA, USA) and geocoded at the county level.

2.2. Explanatory Data

In this study, 278 environmental and socio-economic factors were collected from various sources
and considered as explanatory variables based on previous studies and domain knowledge. From the
Center for Disease Control and Prevention (CDC) wonder database [46], climate data were derived
including daily maximum and minimum air temperature (◦F), and daily maximum heat index (◦F).
Also, the average number of diabetes cases [47] during the study period were obtained from this
database. Topographic data including minimum, maximum and mean of altitude and slope were
obtained from the national map website [48]. The county-level values of these data were calculated
using zonal statistics in ArcGIS Spatial Analyst extension. Socioeconomic data were acquired from
the US Census Bureau [49]. A broad range of socio-economic factors including age group, agriculture,
immigration, education level, employment rate, health, Hispanic or Latino population, income, poverty,
and race were obtained across the nation from this database. All population-based predictors were
normalized to the county’s population size. The full dataset description of exploratory variables is in
Supplementary Table S1. All data used in this study are downloadable from the above sources.
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2.3. Global and Local Clustering

After mapping TB incidence rates at the county level, the empirical Bayes smoothing method
was implemented in the GeoDa software [50] to adjust the crude incidence rates toward the global
mean. This helps to reduce the variance instability associated with counties with a small population
size [51]. Thus, the response variable changed to (logged) smoothed TB incidence rate (STIR) rather
than the crude incidence rate with more than 900 counties with 0 value which makes modeling difficult.
All these counties have non-zero STIR values. Next, the spatial pattern was statistically evaluated
using the global Moran’s I and Getis–Ord General G.

Global Moran’s I measures the similarities between the TB incidence rates of neighboring counties
as follows [52,53]:

I =
n ∑n

i=1 ∑n
j=1,j 6=i wijzizj

s0 ∑n
i=1 z2

i
(1)

s0 = ∑ n
i=1 ∑ n

j=1wij (2)

where zi and zj are the deviations of STIR for counties i and j from average incidences (i.e.,
(xi − x),

(
xj − x

)
), respectively; wij is the spatial weight based on Rook’s contiguity (i.e., common

borders between counties i and j); and s0 is the aggregation of all spatial weights.
Moreover, the Getis–Ord General G statistics, developed by Getis and Ord was used as a measure

of clustering of the high or low value of STIR [54]. A positive or negative Z-score for G indicates spatial
clustering of high (hotspot) or low (coldspot) values, respectively. The formula for the general G of
spatial association is:

G =
∑n

i=1 ∑n
j=1 wijxixj

∑n
i=1 ∑n

j=1 wij
∀j 6= i (3)

Getis–Ord Gi* statistics [55] was applied on the smoothed rates to identify the locations of
statistically significant hotspots of the STIR (p < 0.05). Using the same notation as in Equations (1) and
(2), this statistic is computed as follows [42,51]:

G∗i =
∑n

j=1 wijxj − X ∑n
j=1 wij

S

√
[n ∑n

j=1 w2
ij−
(

∑n
j=1 wij

)2
]

n−1

(4)

S =

√
∑n

j=1,j 6=i
(
xj − x

)2

n− 1
− x2 (5)

2.4. Artificial Neural Networks

An ANN is a computational model, which consists of several simple processing elements called
neurons [56]. The neurons are usually structured in layers: the input layer, the hidden layer(s) and
the output layer. In this study, we used ANNs with one and two hidden layers, however, theoretical
research has shown that almost any complex and non-linear function can be estimated by an ANN
with a single hidden layer [57]. Additionally, having more hidden layers increases the number of
parameters, which may lead to over-fitting (i.e., memorizing the data while training). The aim of
the hidden layer is to find a multi-dimensional expansion of the input layer, which can be better
transformed to the pattern in the output layer [58]. The neurons in the input layer are connected to
all neurons in the hidden layer. Similarly, all the neurons in the hidden layer are connected to every
neuron in the output layer (Figure 1). In this system, selected explanatory variables are fed to the input
layer and passed through the hidden layer that processes them using simple mathematical operations.
The relationship between input and output layers of ANNs is trained by observing a series of known
examples from the training dataset and adjusting the weights accordingly. Once the training phase is
completed, the network is usually able to generalize what it has learned to the test data with similar
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attributes of input. We developed a multi-layer perceptron (MLP) neural network with one and two
hidden layers to approximate the dependency of log (STIR) in the continental US to environmental
and socio-economic factors.

Multi-layer perceptron is the most commonly used ANN structure in environmental
modeling [59,60]. During the training phase of MLP, each input feature is multiplied by its
corresponding weight. The results are then summed and passed through a smooth non-linear activation
function to produce the output. The Logistic function and hyperbolic tangent are among the widely
used activation functions [61,62]. In a supervised learning setup, the difference between the (MLP)
output and actual output/target (i.e., the error or cost function) can be calculated as in Equation (5) [63]:

error =
1
2

n

∑
i=1

(ti − oi)
2 (6)

where o and t are model output and target respectively, and n is the training sample size. To minimize
the cost function, a back-propagation algorithm based on stochastic gradient descent is used to adjust
each weight in the MLP model. The updated value for each weight is calculated as in Equation (6):

w(k+1) := w(k) − α
∂error
∂w(k)

(7)

where α or learning rate controls how much the coefficients can change on the kth update. More
detailed information about back-propagation MLP is presented in [64,65].
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Figure 1. Topological architecture of multi-layer perceptron neural network (MLPNN) used in this
study [63].

2.5. Model Pre-Processing

To develop the models, the entire dataset was randomly divided into three different partitions:
(1) training data: to learn and update the weights and biases in network (60% of the total data) (2)
cross-validation data: to avoid overfitting problem by tuning models’ parameters during training
phase (15% of the total data) (3) test data: to evaluate accuracy and predictive power of the network
after the training process (25% of the total data). The spatial distribution of training, cross-validation,
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and test data as shown in Figure 2. For the purpose of comparison, we used the same training,
cross-validation and test data for all developed models.
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The next step was to standardize the input data before using them in the ANN models. Input data
have different ranges and units, this pre-processing step can enhance the performance of models by
faster convergence [25,66]. There are several standardization formulas presented in the literature. Here,
we use the following equation which transforms the input data to the range of 0 to 1 as in Equation (8):

Xs =
Xi − Xmin

Xmax − Xmin
(8)

where Xi is the initial (actual) value; Xmin and Xmax are the minimum and maximum of the initial
values and Xs is the respective standardized value. Moreover, after training the network, the output of
the model is returned to the original form through the Equation (9):

Xi = Xs ∗ (Xmax − Xmin) + Xmin (9)

Multi-layer perceptron and linear regression (LR) models are sensitive to redundant explanatory
variables because noise reduces model accuracy and generalizability. Thus, a ‘proper’ selection
of independent variables is crucial for better performance. We applied L1-regularization or least
absolute shrinkage and selection operator (LASSO) on the training and cross-validation dataset before
developing the models. This process produces a sparse solution (i.e., few non-zero coefficients)
which reduces overfitting and enhances interpretability of the results [67]. Detailed information of L1
regularization technique can be found in Park and Hastie [68].

In the MLP model, 8 and 1 neurons were used in the input and output layers, respectively.
These numbers correspond to the 8 explanatory variables selected during L1 regularization and
one response variable (i.e., log (STIR)). There is no deterministic rule to determine the number
of neurons in the hidden layer. The grid search was used to tune hyper-parameters in MLP
with one and two hidden layer(s). This approach systematically evaluates the developed model
for each combination of model parameters. For MLP, the tangent hyperbolic activation function(
∅(x) = 1−e−x

1+e−x

)
, a non-linear and symmetric function which maps any real value to [−1, 1], was
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used in the hidden layer(s) [69]. In addition, a linear identity function ( f (x) = x) was applied as an
activation function in the output layer. All computer codes were developed in the Python programming
language (Supplementary Material).

2.6. Model Evaluation

We computed three types of evaluation metrics to assess and compare the generalization capability
of MLP with LR in predicting log (STIR) in the continental US. These statistics include root mean
square error (RMSE), mean absolute error (MAE) and correlation coefficient (R) between model output
and ground-truth.

Due to the fully connected architecture of MLP, it is difficult to define the explicit relationship
between input and output variables by coefficients [70]. Sensitivity analysis is a common way to
address this problem. In this analysis, each factor was excluded from the model, individually, and the
RMSE of resulting models were compared. The most influential factor, among the selected features,
is the one that its absence increases the RMSE of the model the most. Using sensitivity analysis,
we identified the most influential factors in predictions of the log (STIR). Finally, we ranked them
according to their decreasing importance.

3. Results

Between 2006 and 2010, 64,496 TB cases were reported across the continental US. The number of
TB cases showed a consistent declining trend from 14,119 to 11,284 annual cases (Figure 3). Among
the states, the highest average TB incidence rates were identified in Louisiana (5.30 cases per 100,000),
Arizona (5.05 per 100,000) and Georgia (4.7 per 100,000).
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Figure 3. The frequency of TB cases (left) and the cumulative TB incidence rate (right) across the
continental US (2006–2010).

The global Moran’s I and general G indicated significant spatial clustering of STIR in the
continental US for the study period (Moran’s I = 0.13, Z-score = 32.13, p < 0.005; General G = 0.002,
Z-score = 15.3, p < 0.005). The hotspot analysis (Getis–Ord Gi*) identified that about 7% of the
continental US counties (n = 216) were part of hotspots. The hotspots of STIR were distributed
unequally, almost restricted to the southern half of the country and particularly in the southern and
southeastern counties of the US (Figure 4). Table 1 summarizes the top 10 states with the largest
number of counties detected as part of STIR hotspots by the Getis–Ord Gi* technique.
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Table 1. Top 10 states with the largest number of hotspot counties (p < 0.10) of smoothed tuberculosis
(TB) incidence rate (STIR) in the continental US, 2006–2010.

Rank State No. Hotspot
Counties

Percentage
(#hotspots/#counties)

1 Georgia 57 35.8%
2 Texas 30 11.8%
3 North Carolina 23 23.0%
4 Louisiana 22 34.3%
5 Florida 20 29.9%
6 California 17 22.7%
7 South Carolina 17 37%
8 Arkansas 12 16.0%
9 Mississippi 12 14.6%
10 Alabama 10 14.9%

Based on the results of L1 regularization, the environmental and several socio-economic factors
were selected. Out of 278 explanatory variables, only 8 factors were incorporated as input variables for
the models: (1) RHI820: resident population: not Hispanic, white alone (July 1-estimate) (proportion of
county population); (2) LFE330: employed persons by industry (NAICS)-agriculture, forestry, fishing
and hunting, and mining (proportion of county population); (3) minimum temperature; (4) POP778:
year of entry by citizenship status in the United States entered 2000 or later-foreign-born (proportion
of county population) (5) IPE110: people of all ages in poverty (proportion of county population);
(6) SPR440: social security-benefit recipients (proportion of county population); (7) HIS305: Hispanic
or Latino persons, educational attainment, 25 years and over, male (proportion of county population);
(8) POP730: population one year and over by residence-moved from different county within same
state 2005–2009 (proportion of county population).
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All Pearson correlation values among the selected variables were under 0.5, thus we considered
the selected factors as relatively uncorrelated (Table 2). The log (STIR) was positively correlated with
all variables except for household income (p < 0.05).

Table 2. Pearson correlation analysis between selected variables for modeling STIR, continental US.

POP730 LFE330 IPE110 POP778 Min Temp SPR440 HIS305 RHI820

POP730 1.000 0.051 0.041 0.064 −0.124 −0.078 −0.138 −0.024
LFE330 0.051 1.000 0.018 0.057 0.136 −0.499 −0.186 −0.040
IPE110 0.041 0.018 1.000 0.266 −0.231 −0.108 0.066 0.384
POP778 0.064 0.057 0.266 1.000 −0.005 0.091 −0.390 0.248

Min Temp −0.124 0.136 −0.231 −0.005 1.000 0.066 −0.032 0.308
SPR440 −0.078 −0.499 −0.108 0.091 0.066 1.000 −0.015 0.003
HIS305 −0.138 −0.186 0.066 −0.390 −0.032 −0.015 1.000 0.403
RHI820 −0.024 −0.040 0.384 0.248 0.308 0.003 0.403 1.000

Preliminary results of the developed LR model showed that the selected predictors generated R =
0.666, R2 = 0.443, and F = 184.246 (Sig. F Change < 0.001). The R value which represents the simple
correlation between predictions and reality indicated an acceptable degree of correlation. The R2 value
indicates that 44.3% of total variations in the log (STIR) can be explained by the predictors. The F-test
was significant showing the developed LR model as a whole has statistically significant predictive
capability. Durbin–Watson test was close to 2 which verifies independency of errors assumption
(Durbin–Watson statistic = 2.04) (Table 3).

Table 3. Results of linear regression (LR) model for modeling log (STIR), continental US.

R
R

Square
Adjusted R

Square

Change Statistics

Durbin–WatsonR Square
Change F df1 df2 Sig.

LR 0.666 a 0.443 0.440 0.443 184.246 8 1854 0.000 2.041

a. Predictors: (Constant), POP73, LFE330, IPE110, POP778, Min Temp, SPR440, HIS305, RHI820. Dependent Variable:
log (STIR).

The t-test showed that all selected variables are statistically significant at a 99% confidence interval.
Based on the standardized coefficients, among the variables, in order of strength, “RHI820”, “LFE330”,
“HIS305”, “SPR440”, and “POP730” have negative impacts on the log (STIR) while the variables
“POP778”, “Min Temp”, and “IPE110” have positive impacts on the dependent variable, respectively.
Tolerance and the variance inflation factor (VIF) were used as two collinearity diagnostic tests to assess
multicollinearity level for all variables. As the values of VIF didn’t exceed 3 and tolerance statistic
were above 0.1, it seems that there is no cause for concern about collinearity (Table 4).

Table 4. Effects of environment and socio-economic factors on the log (STIR) using LR model.

Unstandardized
Coefficients

Standardized
Coefficients t Sig. 95.0% Confidence

Interval for B
Collinearity

Statistics

Variables B Beta Lower
Bound

Upper
Bound Tolerance VIF

(Constant) 0.001 0.009 0.993 −0.198 0.200
RHI820 −0.007 −0.294 −11.117 0.000 −0.009 −0.006 0.429 2.328
LFE330 −0.023 −0.166 −7.929 0.000 −0.029 −0.017 0.683 1.463

Min Temp 0.013 0.210 9.809 0.000 0.010 0.016 0.653 1.532
POP778 0.083 0.282 12.621 0.000 0.070 0.095 0.602 1.661
IPE110 0.012 0.140 6.662 0.000 0.008 0.015 0.677 1.477
SPR440 −0.009 −0.097 −4.703 0.000 −0.013 −0.005 0.701 1.426
HIS305 −0.019 −0.145 −5.976 0.000 −0.026 −0.013 0.508 1.968
POP730 −0.015 −0.080 −4.489 0.000 −0.021 −0.008 0.950 1.053

VIF: Variance inflation Factor.
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The normal probability-probability plot (P-P Plot) of LR residuals showed that data points were
closely aligned with the diagonal line suggesting the distribution of the residuals was almost normal.
This indicated that the assumption of normality of errors was almost met. Nevertheless, there were a
few samples which departed from the diagonal line (Figure 5).
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Table 5 presents the performance of MLP (1-hidden layer), MLP (2-hidden layer), and LR
models, in terms of MAE, RMSE, and R, for training, cross-validation and test datasets, respectively.
The correlation coefficient for a single hidden layer MLP, with 20 nodes in the hidden layer, was larger
than double hidden layers MLP, and LR (Table 5), which showed a better agreement between the
predicted and the ground-truth. In addition, RMSE in MLP (single layer) was lower than the other
models. However, MAE in MLP with a two-hidden layer (20 nodes in first and 10 nodes in second
hidden layers) had the same test errors as single layer MLP. Results suggest that the single layer MLP
model outperformed the rest of models with higher generalizability for predicting the log (STIR) in the
continental US. Similarly, double hidden layer MLP outperformed the LR model.

Table 5. Comparison of multi-layer perceptron (MLP; one and two hidden layers), and LR model’
performance for predicting log (STIR) in the continental US.

Model
Training Cross-Validation Test

MAE RMSE R MAE RMSE R MAE RMSE R

LR 0.27 0.35 0.66 0.27 0.36 0.65 0.28 0.36 0.61
MLP (1 hidden layer) 0.25 0.33 0.70 0.26 0.35 0.67 0.27 0.35 0.63
MLP (2 hidden layers) 0.26 0.34 0.69 0.26 0.35 0.65 0.27 0.36 0.62

The scatter plot between the output of the MLP model and the corresponding observed log (STIR)
(i.e., ground-truth values) for test data (Figure 6) showed that the model was able to predict the average
variations of log (STIR), while it was unable to predict some counties with exceptional rates.
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The best model accuracy was achieved by the single layer MLP compared with the other models.
We examined the contribution/relative importance of each input feature on the log (STIR) using
sensitivity analysis. The results revealed that the highest RMSE occurred when “resident population
of American Indian and Alaska native” was removed from the model, which implies that this factor
has the maximum contribution, among the selected factors, in predicting log (STIR) at the county
level in the continental US. The most influential factors in order of contributions were: “RHI820:
resident population: not Hispanic, White alone (July 1-estimate) (proportion)”, “LFE330: employed
persons by industry (NAICS)-agriculture, forestry, fishing and hunting, and mining (proportion)”,
“Minimum Temperature”, “POP778: year of entry by citizenship status in the United States entered
2000 or later-foreign-born (proportion)”, “IPE110: people of all ages in poverty (proportion)”, “SPR440:
supplemental security income-average monthly payments per recipient”, “HIS305: Hispanic or Latino
persons, educational attainment, 25 years and over, male (proportion)” and “POP730: population one
year and over by residence-moved from different county within same state 2005-2009 (proportion)”.
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4. Discussion

According to the Institute of Medicine (2000), eliminating TB will require the development of
new tools to identify risk factors and high-risk areas [71]. As expressed by Feske et al., effective
TB elimination in the US would require geographic elucidation of high-risk areas and systematic
surveillance of location-based risk factors [42]. In this study, we combined more advanced tools
to examine the relationship between environmental and socio-economic factors, and the log (STIR)
across the continental US. Integration of GIS, spatial statistics, and ANNs resulted in an efficient
multi-disciplinary approach, which can provide helpful guidelines for health decision makers.
The benefits obtained from this approach can enhance mitigation efforts such as budget allocation,
educating people who live in high-risk areas and drug distribution. Due to limited research on the
spatial modeling of TB at the national level, our study can be regarded as a basis for future nationwide
TB program researches.

In this study, we examined the spatial pattern and hotspots of the STIR in the continental US.
Moran’s I and General G statistic were used to investigate the presence of spatial autocorrelation of
local STIR. Our results showed that the distribution of STIR at the county levels is clustered at the
county level (p < 0.05). We then conducted the hotspot analysis to identify the counties with statistically
significant STIR using the hotspot analysis (Getis–Ord Gi*) approach. Our findings showed that STIR
hotspots were concentrated in the southern and western states (Figure 4); however, the South, Southeast,
and Southwest counties of the country were more severely affected. The concentration of hotspots
suggests that there were more cases observed in these areas that would be expected if everyone were
equally at risk. Visual comparison of the location of identified hotspots in some states which had a very
high proportion of counties falling into hotspots (such as Georgia and Florida) with recent surveillance
reports of Georgia [72] and Florida [73] showed pieces of evidence of similarities with some differences.
This suggests the stability of location of counties falling into hotspots which require close attention.
Since after detecting the statistically significant hotspots of STIR in the region, associated risk factors
were not known, we used ANN to model the relationship between environmental and socio-economic
factors and the log (STIR).

Based on sensitivity analysis, the environmental factors identified the contribution of the selected
variables to the log (STIR) at the county level. We found that the average daily minimum temperature
(with a positive effect) was an important climate factor in the log (STIR). This is probably due to the
adverse effects of minimum air temperature on the respiratory system of patients, and more close
lifestyle of people in cold weather which increases the risk of exposure to infectious agents [74]. Similar
results were reported in other studies. In a time-series analysis study in Fukuoka (Japan), Onozuka
and Hagihara found a positive significant relationship between extreme cold temperature and TB
incident cases [74]. Our results are also consistent with the findings of Mourtzoukou et al. [75] and
Khalid et al. in Pakistan [76].

Sensitivity analysis showed that economic factors are important for log (STIR) in the continental
US. One of the most important economic factors was “proportion of population county of all ages in
poverty” which suggests that underserved segments of the population are at higher-risk of STIR in the
US. Conversely, counties with a higher proportion of the population employed by industry or higher
security income had lower STIR. These factors potentially describe the impact of poverty/deprivation
on lifestyle choice. These findings agree with the individual-level studies of McKenna et al. [77], Ho [78],
and Weis et al. [79]. Unemployment rate has been found to be an important factor in TB transmission
in the studies of Munch et al. who indicated the strongest correlation with TB caseload [80], and the
studies of Dos Santos [81] and Jackubowiak [82]; while Sun et al. [10] did not find it significant in
China. In a cohort study in Georgia, Djibuti et al. [83] showed that TB patients with lower-income
households are at higher risk of poor TB treatment. Bamrah et al. analyzed the genotyping of homeless
persons in the US, 1994–2010. Their results showed that homeless TB patients had an approximately
10-fold increase in TB incidence and had more than twice the odds of not completing treatments [84].
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Results of this study also showed the importance of race distribution and STIR as there was a
strong negative relationship between the proportion of county population who are white and STIR.
Visual comparison of the locations of the hotspots (Figure 4) with the distribution map of race and
ethnicity provided by US Census Bureau [85], confirms that, in general, counties with more than 80%
of the white population didn’t fall into the hotspots. This agrees with the findings of Cantwell et al. [11]
and CDC report [86].

Artificial neural networks and GIS were effective in modeling log (STIR), but several limitations
exist. First, the data used in this study were collected from multiple online sources. It should be
noted that TB reported data are subject to spatial differences in case detection, thus, a standard passive
case-finding approach needs to be considered. In addition, methods of data collection and preparation
are different which may result in biased estimations. In this study, we only included active reported TB
cases. It should be noted that there are many people with latent TB infection who have not developed
TB disease, and therefore, are not detected or counted as cases. This is more prevalent (exists in
greater proportions) among those from other countries. The last limitation stems from the study
design. Our study at the county level should be considered to characterize population rather than
individual-level characteristics of risk (ecological fallacy). Thus, the findings of this study should be
applied to population-level targeting rather than considering individual treatment.

5. Conclusions

This study showed machine learning techniques in spatial modeling can be applied to TB incidence
rate across the continental US. For future works, we recommend conducting researches at multiple
scales, particularly at finer scales such as at the census tracts or block group level for more focal
interventions. However, as most policy decisions on TB control are performed at the state and federal
government levels, this represents a meaningful first step. To optimize the structure of ANNs, choice
of parameters (e.g., learning rate, activation functions) and training the weights in ANN, and heuristic
algorithms such as genetic algorithm may be useful leading to global optima, because it can help
to escape from local optima [87]. Also, hyper-parameter tuning coupled with more recent ANN
approaches in terms of activation function or optimization (e.g., Adam or other adaptive methods)
is highly recommended. We also recommend incorporating genetics data into the model or examine
the genetic characteristics of individual patients in counties with high modeling errors. In this
regard, national TB genotyping surveillance coverage which refers to the proportion of TB cases with
culture-positive with at least one genotyped isolate in the US can be useful. Also, other statistical
techniques such as Poisson model (through including the size of local population at risk as an offset
in the model) or the logistic regression model (through binomial distribution) can be investigated in
modeling TB incidence rate. Coupled with GIS, the ANNs techniques successfully identified some
determinant factors of log (STIR), ranked them, and had better prediction ability than the traditional
linear regression analysis. The findings of this study can provide useful insight to health authorities on
prioritizing resource allocation to risk-prone areas.
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