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Abstract: Driven by the pull of gravity, mass-wasting comprises all of the sedimentary processes
related to remobilization of sediments deposited on slopes, including creep, sliding, slumping, flow,
and fall. It is vital to conduct mass-wasting susceptibility mapping, with the aim of providing
decision makers with management advice. The current study presents two individual data
mining methods—the frequency ratio (FR) and information value model (IVM) methods—to map
mass-wasting susceptibility in four catchments in Miyun County, Beijing, China. To achieve this
goal, nine influence factors and a mass-wasting inventory map were used and produced, respectively.
In this study, 71 mass-wasting locations were investigated in the field. Of these hazard locations, 70%
of them were randomly selected to build the model, and the remaining 30% of the hazard locations
were used for validation. Finally, a receiver operating characteristic (ROC) curve was used to assess
the mass-wasting susceptibility maps produced by the above-mentioned models. Results show that
the FR had a higher concordance and spatial differentiation, with respective values of 0.902 (area
under the success rate) and 0.883 (area under the prediction rate), while the IVM had lower values
of 0.865 (area under the success rate) and 0.855 (area under the prediction rate). Both proposed
methodologies are useful for general planning and evaluation purposes, and they are shown to be
reasonable models. Slopes of 6–21◦ were the most common thresholds that controlled occurrence
of mass-wasting. Farmland terraces were mainly composed of gravel, mud, and clay, which are
more prone to mass-wasting. Mass-wasting susceptibility mapping is feasible and potentially highly
valuable. It could provide useful information in support of environmental health policies.

Keywords: mass-wasting susceptibility; catchment management; frequency ratio; information value;
farmland terraces

1. Introduction

Mass-wasting is a common occurrence throughout anthropogenic development [1]. Mass-wasting
is a natural phenomenon by which rock, soil, or debris move downwards due to the action of gravity.
It describes all of the processes that act continuously with varied intensity on all types of slopes to lower
the ground surface. The mass-wasting process is controlled by the interaction of geological agents and
processes with the geo-materials. The degree and type of movements depend upon a few aspects of
geology, environment, geomorphology, hydrology, and some additional environmental stress factors,
including biotic factors. Thus, the extent of mass-wasting damage is extensive. Mass-wasting is related
to hazards caused by gravity, such as landslides, collapses, and debris flow. Mass-wasting maps are a
very important component of catchment management.
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Anthropogenic activities, including farmland expansion and timber harvesting, change natural
conditions, which increases the risk of mass-wasting occurrence. Although mass-wasting hazards are
inevitable, it is important to identify areas in which mass-wasting events are likely to occur [2]. Thus,
land use managers should be able to identify all aspects of landscape vulnerability [3]. Mass-wasting
susceptibility mapping has been recognized as the first necessary step in hazard prevention and its
management [4].

Remote sensing (RS), geographic information systems (GIS), and Global Positioning Systems
(GPS) are now widely applied as so-called “3S technology”. RS and GIS techniques have been
applied for different mass-wasting hazard susceptibility models [5,6], and appropriate assessment
methods should be similarly applied for mass-wasting susceptibility mapping [7–9]. The use of GIS
has greatly progressed in the field of environmental science in applications such as landslide and
groundwater susceptibility mapping and flash flood hazard susceptibility mapping. These technologies
can provide a good perspective for mass-wasting assessment research. Various landslide susceptibility
maps, debris flow susceptibility maps, and rockfall susceptibility maps have been created in different
countries [10,11]. The use of RS and GIS has increased significantly in response to the need for rapid
data collection and improved mass-wasting bitmaps for commercial satellite products. Further, GIS is
a useful tool for studying events with multidimensional behavior; for example, mass-wasting hazards
are investigated using a variety of spatial–temporal models. In order to obtain accurate results from
these models, it is vital that the input factors retain their spatial associations [4].

Various technologies involving GIS and RS have been developed by researchers in the field of
environmental science. Among the different approaches, natural hazard zoning has been applied to the
most popular and widely used models, including weights of evidence [12–14], Shannon’s entropy [15],
random forest [16–18], logistic regression [19–22], statistical index [23,24], and analytical hierarchy
process [25,26]. Nowadays, machine learning algorithms, including artificial neural networks [27–30],
support vector machines [31], and decision trees [32], are also widely used. Frequency ratio (FR)
and information value (IV) models have already been frequently used for landslide susceptibility
mapping [33,34]. Similar models have been used in gully erosion [35], landslide susceptibility
mapping [36,37], and forest fire susceptibility [38,39]. The FR method has been proven to be effective,
and it has been successfully applied to flash flood hazard susceptibility mapping and landslide
susceptibility mapping [24,40,41]. In view of the effectiveness of the FR method, it was selected as a
statistical method in the present study to better explore the effect of different mapping units on the
susceptibility mapping of debris flow. Furthermore, the information value model, which has been
proven to be a very useful method for measuring the degree of influence of each causative factor, is a
simple probabilistic bivariate statistical method whose accuracy is acceptable [42,43].

Farmland terraces are abundant in catchments, and their structural strengths are very low. Small
landslides often form, and large numbers of terraces have a high risk of being damaged. Thus, it is very
important to highlight protection and adaptation approaches for agricultural areas to minimize the
consequences of mass-wasting due to different human activities and climate change conditions. On the
other hand, technical measures, such as farmland terraces, can be used for soil and water conservation.
To a certain extent, these terraces could be an approach to intercepting an oncoming hazardous
event; in turn, the terraces would sustain damages. Terrace stone walls have been reconstructed
by local residents when erosions or landslides have occurred in the past. Thus, field surveys have
found that most farmland terraces have been well maintained. Studies have been conducted in
middle and low farmland areas to establish relationships between farmland maintenance and rainfall
on a sub-catchment scale. Because forests can guarantee less soil erosion and keep the slope more
stable [44], protecting forestland is imperative. Farmland terraces, which can retain water in catchments,
also contribute to the alleviation of mass-wasting. Since farmland terraces also suffer damages from
different conditions, local residents should pay more attention to them. Considering that there are
many farmland terraces in mountainous areas in Beijing, especially the intermediate- and low-elevation
areas, appropriate mass-wasting management plans for these areas are vital.
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This study aims to determine the spatial probability of mass-wasting occurrence in four catchments.
The correlation between influencing factors and mass-wasting inventory is identified, and the accuracy
is evaluated. Furthermore, the present work also conducts a comparative assessment of two statistical
models used for mass-wasting susceptibility mapping: the frequency ratio (FR) model and information
value model (IVM). The FR and IVM methods were selected for their mathematical simplicity, their
ability to extract data in a limited time period, and their effectiveness. The prediction accuracy and
performance of each method were assessed using four catchments in a mountainous area. Nine
mass-wasting susceptibility factors were used in the two models using GIS software. The results were
validated using the area under the receiver operating characteristic curve (ROC) method.

2. Study area and Inventory Maps

The study area is situated in the west of Miyun County, northeast of Beijing. This area contains
four catchments (Figure 1), namely, Dawa (DW), Lanmadonggou (LD), Lamanangou (LN), and Duitaizi
(DT). The area is located from 116◦46’21” to 116◦50’04” E longitude and from 40◦41’17” to 40◦43’14”
N latitude, covering an area of 10.19 km2. The areas of the four catchments are 2.239, 1.484, 2.587,
and 3.88 km2, respectively. The study area is dominated by hills and the elevation ranges from about
610 to 1280 m above sea level. The average annual temperature is 10.8 ◦C, and the annual rainfall is
approximately 661.3 mm. The lithology of this area is dominated by gneiss (Arsu

1), quartzite (Arsa
3),

diorite (δ5
2), acid rock (γ5

2), and granite (γ5
3). The terrain of Miyun County is primarily mountains

and hills, and plains are only distributed in the southwest of the area. Mountains account for 46.7% of
the total area, hills account for 36.6%, plains account for about 8.3%, and in the middle of the area, the
Miyun reservoir accounts for about 8.4%.
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Figure 1. Geographical position of the study area. Note: DT = Duitaizi catchment; LN = Lamazhazi
Nan catchment; LD = Lamazhazi Dong catchment; DW = Dawa catchment.

2.1. Identifying Locations of Mass-Wasting Inventory

The future mass-wasting can be estimated by analyzing past records. An inventory map can
show the distribution and characteristics of mass-wasting in the study area [19]. Mass-wasting events
come in many shapes, sizes, and speeds. Typically, the steeper the angle of a slope, the faster the
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down-slope movement of rock and sediment. Also, water can play a significant role in mass-wasting,
sometimes acting as the key component to a mass-wasting event, or serving as a lubricant within a
mass of sediment and rock, enabling it to travel faster and further than it would otherwise. Types of
mass-wasting mainly contain rock fall and rock avalanche, rock slide and slump, debris flow, earth
flow, and creep.

The mapping of mass-wasting in the four catchments is necessary to depict the relationship
between susceptibility ranges and influencing factors. Extensive field investigation and observations
were conducted to produce a comprehensive and reliable inventory map. The mass-wasting inventory
map shows the spatial distribution of mass-wasting in the study area. This was used as a base map
to generate the mass-wasting susceptibility map. We analyzed records of mass-wasting to identify
susceptible areas that were prone to occurrence of new mass-wasting (Figure 2). The inventory map
was first created by locating mass-wasting in the four catchments using documents and detailed field
surveys. A good source of information includes interviews with local residents, which were conducted
to identify destroyed houses and public facilities damaged by mass-wasting that occurred before.
The storm and flash flood on 21 July 2012, left local residents with significant impressions, giving
this event special attention. Field surveys confirmed landslides, collapses, and erosion, which were
regarded as mass-wasting. The farmland terraces are mainly located at the bottom of the catchment
and partly on the hillside (Figure 3), so they are highly vulnerable to flash flooding or debris flow and
are easily damaged. Identifying the locations of mass-wasting is fairly straightforward.
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Figure 2. Mass-wasting in the field: (a) broken retaining wall; (b) erosion gully; (c) broken farmland
terraces; and (d) erosion pit.

From an inventory map, a mass-wasting susceptibility map can be produced. A mass-wasting
susceptibility map was generated using a previous inventory map and remote sensing images.
Seventy-one mass-wasting locations were surveyed in the four catchments and were used in further
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2.2. Influence Factors

Various factors, such as a heavy storm, geographic and geomorphic conditions, and human
activities, were deemed to be the main conditions causing mass-wasting. Various thematic data layers,
including elevation, slope angle, plan curvature, stream power index (SPI), topographic wetness index
(TWI), lithology, land use, soil type, and flow accumulation, were prepared. In the development of a
model for evaluation of mass-wasting-susceptible areas, it is crucial to identify practical, reasonable,
and easily obtained influencing factors. The above-mentioned factors were selected because they have
been successfully used in previous work. The original data used in this study are shown in Table 1.

Table 1. A list of data sources of each influencing factor.

Influence Factors Data Sources

Elevation

Generated using GIS from a digital elevation model with a
resolution of 5 m

Slope angle
Curvature

Stream power index
Topographic wetness index

Flow accumulation

Lithology Obtained from a geological map with a scale of 1:10,000

Land use Google Earth image on May 3, 2014, and field survey

Soil type Distribution of soil type map in Miyun County with a scale of 1:10,000

A topographic map with a scale of 1:10,000 was used to produce a digital elevation model (DEM)
with a resolution of 5 m. The maps for four factors—slope angle, plan curvature, SPI, and TWI—were
produced from the DEM using GIS software. Of the nine factors, elevation, slope angle, SPI, and TWI
were categorized using the natural break method. Cao et al. [24] proved that using the natural break
method [45–47] is more appropriate than using manual classification to categorize factors. In the study
area, the elevation varies between 610 and 1280 m. Figure 4a shows the elevation map of the study area.

Elevation was divided into ten classifications using the natural break method: (1) 610–691 m,
(2) 691–749 m, (3) 749–799 m, (4) 799–846 m, (5) 846–891 m, (6) 891–935m, (7) 935–980 m, (8) 980–1030 m,
(9) 1030–1103 m, and (10) 1103–1280 m. The slope angle is an important factor because it is easier for
water to infiltrate the soil in flat areas [48], and the surface runoff and water velocity are controlled by
the slope angle. The slope angle map was taken from the digital elevation model with 5 × 5 m raster
cells. The slope angle was divided into ten classifications using the natural break method (Figure 4b):
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(1) 0–6◦, (2) 6–14◦, (3) 14–21◦, (4) 21–27◦, (5) 27–31◦, (6) 31–35◦, (7) 35–39◦, (8) 39–44◦, (9) 44–50◦, and
(10) 50–73◦. Negative plan curvature describes concavity, zero plan curvature indicates flatness, and
positive plan curvature defines convexity (Figure 4c). The stream power index (SPI) is the power of the
water flow in cases of erosion [49]. The SPI map is shown in Figure 4d. The topographic wetness index
(TWI) defines the amount of water flow accumulated at any point in a catchment and the ability of the
water to flow downward under gravity [50]. The TWI map (Figure 4e) was prepared and divided into
ten subclasses using the natural break method. The SPI and TWI are defined as

SPI = As tan β (1)

TWI = ln(As/ tan β) (2)

where As is the specific catchment area (m2/m) and β (radians) is the slope (in degrees) [51].
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The types of lithology were taken from a geological map with a scale of 1:10,000 (Figure 4f).
Five lithology subclasses were used: acid rock (γ5

2), gneiss (Arsu
1), quartzite (Arsa

3), diorite (δ5
2),

and granite (γ5
3). The land use data were acquired using a Google Earth image from 3 May 2014.

The land use data were verified by field investigation and remote sensing interpretation, and the land
uses were defined as farmland, construction areas, and forest (Figure 4g). The land use type influences
infiltration, water convergence, and the relationship between the surface water and groundwater.
Different vegetation types have different capacities of rainfall interception and water storage. The type
of vegetation also affects the time and size of water confluence. Figure 4h presents the soil types,
which are cinnamon soil (40.88%) and brown soil (59.12%) in this study area. The soil type determines
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the water infiltration, and it controls surface runoff and submergence processes. This study applied
flow accumulation as an influence factor. The basic idea is that the DEM represented by regular
grids has a unit of water at each point. Natural water flows from a high point to a low point, and
the amount of water that flows through each point depends on the flow direction. The convergence
of each grid shows the flow accumulation and reflects the amount of water in each grid in the area.
The flow accumulation map is shown in Figure 4i. Flow accumulation was categorized into nine
subclasses: (1) 0–2442, (2) 2442–4884, (3) 4884–9768, (4) 9768–14,652, (5) 14,652–26,862, (6) 26,862–46,398,
(7) 46,398–117,217, (8) 117,217–351,651, and (9) 351,651–622,719.

3. Methodology

3.1. Frequency Ratio

The FR method is an accurate and effective technique that is based on the observed relationships
between the distribution of debris flows and related factors. In this study, the FR method was used
to perform mass-wasting susceptibility mapping. The FR is defined as the ratio of the probability of
the occurrence of a mass-wasting to the probability of a nonoccurrence for a given attribute [52,53].
The larger the FR, the stronger the effect of the given factor on the debris flow [54]. This approach
reveals the correlation between mass-wasting susceptibility areas and the influence factors in the
catchment. First, the FR for each factor type or range was calculated using Equation (3):

FR =
C/D
M/N

(3)

where C is the number of cells with mass-wasting in each influencing factor subclass; D is the total
number of cells with mass-wasting in the four catchments; M is the cell number of each influencing
factor subclass; N is the total cell number of the four catchments. FR values greater than 1 indicate
higher densities of mass-wasting in the category compared with the density of hazards in the four
catchments, and these translate to a higher correlation between the category and the occurrence of
mass-wasting. FR values less than 1 indicate a lower correlation [55]. The mass-wasting susceptibility
index (MWSI) was calculated using Equation (4):

MWSI =
N∑

i=1

FR (4)

where FR is the weight of the FR model, and N is the number of influencing factors. The greater the
MWSI, the higher the possibility that mass-wasting will occur.

3.2. Information Value Model

The information value model (IVM) is a quantitative analysis method developed from information
theory. The information value method is a bivariate statistical approach to deriving data for
mass-wasting areas, as well as the unaffected areas. With this method, the probability of mass-wasting
occurrence in the study area can be quantified in the mass-wasting classes. Yin and Yan [56] proposed
this method, and Van Westen [57] modified it. It involves the computation of (1) the cell number of total
mass-wasting for each influence factor subclass and (2) the cell number of total pixels of mass-wasting
in the study area. Recently, this method has become increasingly favored by scholars and has been
applied to geological hazard assessment and environmental evaluation [58–60].

The information value I (xi, H) of each influencing factor xi is

I(xi, H) = ln
Ni/N
Si/S

(5)
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where Ni is the number of cells with mass-wasting in each influencing factor subclass xi, N is the total
number of mass-wasting in the study area, Si is the area of each influencing factor subclass xi, and S
is the total number of cells in the four catchments. The information value of each influencing factor
subclass is calculated as

Ii =
n∑

i=1

I(xi, H) =
n∑

i=1

ln
Ni/N
Si/S

(6)

where Ii is the total information value of each influencing factor subclass, and n is the number of
influencing factor subclasses.

Figures 5 and 6 summarize the distribution of the nine influence factors.
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Figure 5. Boxplots showing the distribution of six influence factors in the study area: elevation, slope
angle, curvature, SPI, TWI, and flow accumulation.
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Figure 6. Subclass ratios of three influence factors: (a) lithology; (b) land use; (c) soil type.

4. Results

4.1. Mass-Wasting Susceptibility Mapping Using the FR Model

Table 2 shows the results for the spatial relationship of the mass-wasting susceptibility area and
accommodation factors from the frequency ratio model. The results using the FR method show that
mass-wasting is mostly located at elevations of 691–846 m. The elevation subclass 691–749 m has
the highest FR value of 2.152. In the high-elevation region, the occurrence of hazards is very low.
Botzen [61] proved that mass-wasting does not easily occur in high-elevation regions. The slope
angle subclass 0–21◦ has a high FR value, while a slope angle higher than 50◦ has a low likelihood of
mass-wasting occurrence. The highest FR value is 2.622 in the 14–21◦ subclass, followed by subclasses
6–14◦ and 0–6◦, which have FR values of 1.66 and 1.57, respectively. Analysis of the frequency ratio
between mass-wasting and plan curvature shows that the flat subclass has the highest FR value of
1.731, and the concave subclass has a value of 1.356. From the SPI results, the highest frequency ratio is
related to the subclass 8.99–11.12 (2.989), followed by the subclass 15.19–17.97 (2.482). The FR values
for the TWI show that the subclass 3.03–3.43 has the highest value of 2.561. The highest FR value for
lithology is 1.619 in gneiss. The FR values for the remaining lithology elements, including quartzite,
diorite, and acid rock, are 1.064, 0.892, and 0.278, respectively. The FR value of farmland is 1.846.
Farmland is prone to occurrence of hazards. The FR value for forest areas is 0.962. In terms of soil
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type, the FR values of cinnamon soil and brown soil were 1.125 and 0.914, respectively. Higher flow
accumulation was correlated with higher FR values, i.e., 3.382 (351,651–622,719 subclass) and 1.458
(117,217–351,651 subclass).

Figure 7 shows the FR mass-wasting susceptibility mapping results. The five hazard susceptibility
classes are very low (3.3–6.9), low (6.9–8.87), moderate (8.87–11.23), high (11.23–13.92), and very high
(13.92–20.02). The areas corresponding to the five classes are 2.5, 3.34, 2.24, 1.41, and 0.7 km2 (Table 3).
Thus, the FR model shows that 20.71% of the study area is highly susceptible to mass-wasting hazards.

Table 2. Distribution of the training pixels.

Parameter Subclass
Mass-Wasting did

not Occur
Mass-Wasting

Occurred Total
Count

FR IVM

Count Ratio (%) Count Ratio (%)

Elevation (m)

610–691 36,676 9.00 3 6 36,679 0.667 −0.405
691–749 60,610 14.87 16 32 60,626 2.152 0.766
749–799 69,605 17.08 11 22 69,616 1.288 0.253
799–846 69,408 17.03 11 22 69,419 1.292 0.256
846–891 56,444 13.85 5 10 56,449 0.722 −0.325
891–935 45,554 11.17 3 6 45,557 0.537 −0.622
935–980 34,307 8.41 0 0 34,307 0.000 −1.000

980–1030 20,916 5.13 0 0 20,916 0.000 −1.000
1030–1103 10,049 2.47 1 2 10,050 0.811 −0.209
1103–1280 4070 1.00 0 0 4070 0.000 −1.000

Slope angle
(◦)

0–6 192,418 7.64 6 12 31,160 1.570 0.451
6–14 28,252 8.43 7 14 34,386 1.660 0.507

14–21 186,969 9.16 12 24 37,324 2.622 0.964
21–27 192,418 12.55 7 14 51,185 1.115 0.109
27–31 28,252 16.58 9 18 67,590 1.086 0.082
31–35 186,969 17.15 4 8 69,915 0.467 −0.763
35–39 192,418 14.19 3 6 57,838 0.423 −0.861
39–44 28,252 9.16 1 2 37,329 0.218 −1.521
44–50 186,969 4.19 1 2 17,075 0.478 −0.739
50–73 192,418 0.95 0 0 3887 0.000 −1.000

Curvature
Concave 192,418 47.21 32 64 192,450 1.356 0.304

Flat 28,252 6.93 6 12 28,258 1.731 0.549
Convex 186,969 45.86 12 24 186,981 0.523 −0.648

SPI

0–2.57 65,867 16.16 3 6 65,870 0.371 −0.991
2.57–6.21 169,540 41.59 12 24 169,552 0.577 −0.550
6.21–8.99 90,167 22.12 15 30 90,182 1.356 0.305
8.99–11.12 35,453 8.70 13 26 35,466 2.989 1.095

11.12–13.05 17,690 4.34 2 4 17,692 0.922 −0.082
13.05–15.19 6509 1.60 1 2 6510 1.253 0.225
15.19–17.97 3284 0.81 1 2 3285 2.482 0.909
17.97–22.04 1300 0.32 0 0 1300 0.000 −1.000
22.04–29.52 265 0.07 0 0 265 0.000 −1.000
29.52–54.55 17,564 4.31 3 6 17,567 1.393 0.331

TWI

0–3.03 43,441 10.66 7 14 43,448 1.314 0.273
3.03–3.43 57,290 14.06 18 36 57,308 2.561 0.940
3.43–3.97 78,098 19.16 10 20 78,108 1.044 0.043
3.97–4.58 89,843 22.04 9 18 89,852 0.817 −0.203
4.56–5.32 68,776 16.87 3 6 68,779 0.356 −1.034
5.32–6.33 41,754 10.24 2 4 41,756 0.391 −0.940
6.37–7.56 19,873 4.87 0 0 19,873 0.000 −1.000
7.56–9.38 6523 1.60 1 2 6524 1.250 0.223
9.38–14.44 1768 0.43 0 0 1768 0.000 −1.000

14.44–18.83 273 0.07 0 0 273 0.000 −1.000
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Table 2. Cont.

Parameter Subclass
Mass-Wasting did

not Occur
Mass-Wasting

Occurred Total
Count

FR IVM

Count Ratio (%) Count Ratio (%)

Lithology

Gneiss 65,480 16.06 7 14 65,493 1.619 0.482
Quartzite 199,298 48.89 18 36 199,324 1.064 0.062

Diorite 91,377 22.42 10 20 91,387 0.892 −0.114
Acid rock 29,299 7.19 9 18 29,300 0.278 −1.279
Granite 22,143 5.43 3 6 22,143 0.000 −1.000

Land use
Construction 8367 2.05 0 0 8373 0.000 −1.000

Farmland 26,505 6.50 6 12 26,505 1.846 0.613
Forest 372,768 91.45 44 88 372,812 0.962 −0.038

Soil type Cinnamon soil 166,659 40.88 23 46 166,682 1.125 0.118
Brown soil 240,979 59.12 27 54 241,006 0.914 −0.091

Flow
accumulation

0–2442 57,465 14.10 5 10 57,470 0.709 −0.343
2442–4884 46,594 11.43 3 6 46,597 0.525 −0.644
4884–9768 71,240 17.48 7 14 71,247 0.801 −0.222

9768–14,652 51,253 12.57 6 12 51,259 0.954 −0.047
14,652–26,862 51,073 12.53 3 6 51,076 0.479 −0.736
26,862–46,398 38,437 9.43 6 12 38,443 1.273 0.241

46,398–117,217 34,695 8.51 3 6 34,698 0.705 −0.350
117,217–351,651 27,961 6.86 5 10 27,966 1.458 0.377
351,651–622,719 28,921 7.10 12 24 28,933 3.382 1.218

Note: FR: frequency ratio; IVM: information value model; SPI: the stream power index; TWI: the topographic
wetness index.
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Table 3. Mass-wasting susceptibility mapping results in the study area.

Class
FR IVM

Number of Grids Area (km2) Ratio (%) Number of Grids Area (km2) Ratio (%)

Very Low 99,911 2.50 24.55 70,450 1.76 17.31
Low 133,203 3.34 32.74 111,088 2.78 27.30

Moderate 89,531 2.24 22.00 95,677 2.40 23.51
High 56,350 1.41 13.85 80,126 2.01 19.69

Very high 27,918 0.70 6.86 49,572 1.24 12.18

Note: FR: frequency ratio; IVM: information value model.

4.2. Mass-Wasting Susceptibility Mapping Using the IV Model

The calculated information value of each class of mass-wasting influencing factor is shown in
Table 2. For elevation, most mass-wasting hazards occur between 691 and 846 m. The maximum
information value (IV) was found in the elevation subclass 691–749 m (0.766). This area has the
highest possibility of occurrence of mass-wasting hazards. In terms of the slope angle, the highest
probability of mass-wasting hazard occurrence is found in the range of 14–21◦ (0.964), followed by
6–14◦ (0.507) and 0–6◦ (0.451). For plan curvature, flat and concave areas have higher IVs of 0.549 and
0.304, respectively. According to the application of the IV model, the SPI subclass 8.99–11.12 has a
higher IV (1.095). The subclass 15.19–17.97 is also prone to hazards. In the case of the TWI, most of
the mass-wasting occurs in the subclasses 3.03–3.43 (0.94), 0–3.03 (0.273), and 7.56–9.38 (0.223). For
the lithology factors, the highest IV value is 0.482 for gneiss. The IVs of the other lithology factors,
including quartzite, diorite, and acid rock, are 0.062, −0.0114, and −1.127, respectively. The IV of
farmland is 0.613, which is the only positive value for the land use influencing factor. Farmland is
prone to hazard exposure. The IV values of forest and construction land are −0.038 and −1, respectively.
In terms of soil type, the IV values of cinnamon soil and brown soil are 0.118 and −0.091, respectively.
Higher flow accumulation is correlated with higher IVs, i.e., 1.218 (351,651–622,719 subclass) and 0.377
(117,217–351,651 subclass).

Figure 8 shows the mass-wasting susceptibility map generated by using the IVM. The map is
divided into five grades: very low (−7.3 to −3.67), low (−3.67 to −1.74), moderate (−1.74 to 0.19),
high (0.19–2.23), and very high (12.23–6.75). The areas of the five classes are 1.76, 2.78, 2.40, 2.01,
and 1.24 km2 (Table 3). Thus, the IV model shows that 31.87% of the study area is highly susceptible to
mass-wasting hazards.

Table 2 summarizes the results of the FR and IV models for each identified class. A lower
elevation region easily accumulates water, agreeing with the results calculated by the FR and IV models.
The results for the slope angle show that the maximum frequency corresponds to subclasses with
lower slope angles; this is because of rainfall water accumulating in these areas. Flat plan curvature
has the highest value according to both the FR and IV models, highlighting the high possibility of
mass-wasting hazards in relatively flat and concave areas.
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4.3. Validation of Mass-Wasting Susceptibility Mapping

Validation of both models was performed using the area under the receiver operating characteristic
(ROC) method, which assesses the predictive power of a model and has been used in many
works [35,62–65]. Validation of the mass-wasting susceptibility results is one of the most important
tasks [66]. In this study, the results of mass-wasting susceptibility mapping were validated by the
receiver operating characteristic (ROC) technique. In the ROC curve, the vertical axis represents the
true positive rate, and the horizontal axis represents a false positive rate. The area under the curve
(AUC) was used to evaluate the validity of the four models. From the training and testing data,
the success and prediction rates of six models were calculated by using the AUC. The value of the
AUC varies from 0.5 to 1, and the accuracy of the model is high if the value of the AUC is close to 1.
Figure 9 shows the accuracy and prediction ability of the two models, which are assessed by comparing
the success and prediction rates. The AUC values for the FR and IV models are measured by their
success rate curves of 0.902 and 0.865, respectively, which reflect accuracies of 0.902 and 0.865 for
the two models. The prediction rate curves show that the AUC values are 0.883 (FR) and 0.855 (IV).
The quantitative relationship between the AUC and the model prediction accuracy is divided into the
following grades: 0.5–0.6 is weak, 0.6–0.7 is moderate, 0.7–0.8 is good, 0.8–0.9 is very good, and 0.9–1 is
excellent [64]. Both methods have a high success rate (0.8–0.9) and prediction rate (0.8–0.9). Therefore,
the two methods perform very well when applied to mass-wasting susceptibility mapping.
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Figure 9. Success and prediction rate curves using the frequency ratio and information value methods:
(a) success rate curve and (b) prediction rate curve.

5. Discussion

The slopes of the main channels are mostly large. The impact of a high intensity rainfall is strong
enough to destroy vegetation, roads, farmland terraces, etc. Runoffs carry a large amount of silt,
resulting in siltation and erosion. However, compared with debris flow, the destructive power of
flash flooding is relatively weaker. The bark near the tree roots has been moderately damaged in the
main channel of the DW catchment. The erosion marks all face the sourcing area and have a length of
0.5–1.2 m. The width of the erosion marks on the bark is uniform. Debris flows initiate in typically
small catchments of a few square kilometers; sediment transport and deposition processes may impact
larger catchments [67–69].

In this area, slopes of 6–21◦ have the highest occurrence of mass-wasting. However, Nery [70]
considers that slopes greater than 30◦ facilitate shallow landslides. The average slope angle among
all areas suggested that a common threshold controlled the occurrence of landslides [71]. Different
areas have different threshold-controlled slope angles that have a relationship with occurrence of
mass-wasting hazards. Surface water can rapidly collect in hollows and depressions. Generally,
it increases soil moisture, which increases erosion and decreases soil strength. In general, both FR and
IV values decrease with the SPI and TW values. The TWI indicates the spatial distribution of humidity
conditions. If the soil moisture is high, the possibility that mass-wasting will occur is also high. In the
study area, the area formed with gneiss is more likely to suffer hazards. Quaternary sediments and
alluvium, flood-plain deposits and terraces, and gravel fans all are made up of immature peddles.
Gravel loses the matrix of mud and clay. Softer, highly sheared rocks and mélange areas are more prone
to mass-wasting, whereas the various volcanic rocks form somewhat more stable slopes [72]. Van
Beek [73] states that agriculture land and steeper slopes show a decrease in temporal activity of land
slips, and consequently a decrease in sediment delivery, silting-up, and flooding on these catchments.
However, the land use results show a high possibility of mass-wasting hazard occurrence on farmland,
which has an impact on local residents in this study, because farmland is mostly located at a low
channel elevation (Figure 4) and in the form of terraces on hillsides. The mass-wasting in farmland is
not related to large-scale or shallow landslides, but broken farmland terrace dams. The strength of
these terraces dams are not very high, which should be paid sufficient attention [74]. It can be seen in
Figures 7 and 8 that the channels of the catchments are divided into areas with very high and high
susceptibility, and these are areas prone to damage.
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The results show that FR performs better than IV. Their AUCs are very close, with the frequency
ratio method being slightly more accurate and more applicable than the information value method for
defining mass-wasting susceptibility classes. Mass-wasting maps developed using FR and IVM methods
may help planners and policy-makers to select appropriate mitigation measures [75]. Researchers have
explained that the FR can be used as a supporting method to determine the importance sequence of
factors in modeling [76]. However, because the AUC values are close, it cannot be definitively concluded
that one model should be selected over the other. The approach to mass-wasting susceptibility mapping
should be applicable for a specific area. There is no consensus on the general guidelines for selecting
mass-wasting susceptibility influencing factors. Therefore, in this study, the selection and the number of
types of mass-wasting susceptibility factors were determined from the characteristics of the geological
environment in the four catchments. The influence factors to include in a study should be characteristic
of the study area and should be easily selected. Thus, it is worth trying different combinations of
influence factors in future works, with the hope that more practical and precise susceptibility maps for
mass-wasting management can be achieved.

6. Conclusions

Mass-wasting susceptibility mapping focuses on the susceptibility of environmental health impacts
and the potential hazards that could affect human health. It may help in providing early warning of
environmental health hazards, as well as encouraging emergency preparedness.

Susceptibility surveying and mapping is a major component of the study of the risk and
management of mass-wasting hazards. The main objective is to provide decision-makers with a
reasonable platform that illustrates the current situation of the study area. The main findings are
as follows: (i) field surveys confirmed landslides, collapses, and erosion, which were regarded as
mass-wasting hazards. Farmland terraces are mainly located at the bottom of catchments and partly on
hillsides. The mass-wasting in farmland mainly relates to broken farmland terrace dams; (ii) according
to the FR and IV models, highly susceptible hazard areas in the study area have an elevation of
691–846 m a.s.l., a 0–21◦ slope angle, flat and convex plan curvatures, an SPI of 8.99–11.12 and
15.1–17.97, a TWI of 3.03–3.43, gneiss rocks, farmland and forest land uses, cinnamon soil, and higher
flow accumulation; (iii) different areas have different threshold-controlled slope angles that have a
relationship with occurrence of mass-wasting hazards. Softer, highly sheared rocks and mélange areas
are more prone to mass-wasting, whereas the various volcanic rocks form stable slopes; (iv) both
the FR and IV methods can be used to simulate mass-wasting susceptibility maps, but the FR model
has better results in this study. However, because the two methods have close AUC values, both
models are useful tools for the estimation of mass-wasting areas to mitigate the devastating impact of
mass-wasting hazards.

As a final conclusion, the mass-wasting susceptibility maps produced in this study can be a useful
means by which local agencies and decision-makers can plan sustainable and appropriate land use
programs and implement development plans. Considering that there are many farmland terraces in
the mountainous area in Beijing, especially intermediate- and low-elevation areas, the maps could be
useful in an appropriate mass-wasting hazard management plan.
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