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Abstract: There is evidence of a strong correlation between inequality in health care access and
disparities in chronic health conditions. Equal access to health care is an important indicator for
overall population health, and the urban road network has a significant influence on the spatial
distribution of urban service facilities. In this study, the network kernel density estimation was
applied to detect the hot spots of health care service along the road network of Shenzhen, and we
further explored the influences of population and road density on the aggregate intensity distributions
at the community level, using spatial stratified heterogeneity analyses. Then, we measured the
spatial clustering patterns of health care facilities in each of the ten districts of Shenzhen using
the network K-function, and the interrelationships between health care facilities and hypertension
patients. The results can be used to examine the reasonability of the existing health care system,
which would be valuable for developing more effective prevention, control, and treatment of chronic
health conditions. Further research should consider the influence of nonspatial factors on health care
service access.

Keywords: health care facilities; hypertensive inpatient; health care accessibility; network-constrained
urban system

1. Introduction

China has experienced a dramatic demographic change and epidemiologic transition in the past
three decades [1]. Although the urbanization rate reached 53.73% in 2013, a large number of migrants,
who do not have local household registration due to China’s ‘Hukou’ policy, are not entitled to social
welfare from the local government, including access to labour employment and health care insurance
schemes [2]. This has caused their health care, housing, and education needs to go unmet, inevitably
leading to a variety of social conflicts and inequitable problems [3]. Therefore, it is essential to consider
quality improvements and the implementation of a high-efficiency health care system when developing
the sustainability of health care reform in China.

In modern cities, health care facilities are part of the public infrastructure, providing beneficial
functions for urban residents, including pre-hospital emergency medical care, primary care services,
and community health care services. Based on China’s hierarchical administrative structure, the health
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care system is a service network composed of clinics, community health centers (CHCs), and hospitals,
including primary hospitals, secondary hospitals and tertiary hospitals [4]. This multi-level system
provides daily health care services to the vast majority of urban residents. However, a highly
bureaucratic and centralized health care delivery system, with resources consolidated in large hospitals,
was formulated due to the planned economy before the 1980s. Public hospitals provide a large
proportion of all outpatient and inpatient services. Therefore, residents tend to seek health care
services at large public hospitals, even for mild health problems, rather than local primary health
care facilities [5], which could lead to a low quality of health care services received by the residents
and a waste of medical resources [6]. Furthermore, due to competition or collaboration, there may
be significant interrelationships among different types of health care facilities, such as hospitals and
clinics [7], which needs to be examined. Improvements in the overall efficiency of the health care
system are essential for equity in health and health care in China. Within the concept of health equity,
equal access to health care is a critical indicator for overall population health. Therefore, exploring the
spatial distribution patterns of health care facilities is essential to optimize the spatial allocation of
health care resources, and mitigate disparities in health care service.

There is evidence of a strong correlation between inequality in health care access and disparities
in various health outcomes, including low birth weight, maternal mortality, circulatory disease,
cardiovascular events, late-stage cancer diagnosis, and others. Hypertensive disease is regarded as
the most common non-communicable disease (NCD) in China, affecting over 200 million patients [8],
but hypertension awareness, treatment, and control rates are low [9]. Moreover, high blood pressure is a
significant risk factor for cardiovascular disease (CVD) and other vascular diseases [10]. The treatment
of hypertensive disease and its coexisting conditions requires a massive consumption of health care
resources [11]. A lack of accessibility to health care facilities could result in an increasing lack of early
diagnosis, control, and management of high blood pressure.

Health care accessibility refers to the ease or difficulty of reaching services from a given
location [12,13], which can be considered an interface between potential users and health care
resources [14]. Potential access focuses on the spatial distribution of health care services, while realized
access refers to the actual use of services [12,15]. Many barriers impede the progression from potential
to realized access, and spatial accessibility emphasizes the importance of spatial separation between
supply and demand, and how they are connected in geographical space [13,16], which is generally
accepted as a basis for optimizing the allocation of health care resources in urban areas [12,17]. Factors
affecting health care spatial accessibility include the location of health care services, and how services
will be reached [15]. When the spatial allocation of health care facilities and services can meet the
residents’ needs, the supply can be considered adequate and accessibility as convenient. Due to the
increasing availability of detailed geo-referenced data and improved analysis methods, geographic
information system (GIS) technologies provide a unified framework for allowing inferences about the
relationships among multi-source data in a geographical context [18,19].

In a GIS environment, health care facilities, just like many other geographical phenomena such as
car crashes on a road, residential locations, crimes and disease outbreak sites, can be abstracted as
points for spatial analysis. Point pattern analysis (PPA) has been widely applied to investigate the
global or local spatial distribution patterns of point events [20,21]. In traditional analysis methods,
it is generally assumed that spatial events can be located stochastically on a plane, and the spatial
association between event locations is analysed using the Euclidean (or planar) distance [22–24].
However, this assumption is not appropriate when a spatial phenomenon is apparently constrained
to a subset of geographical space, such as a road network. Urban road network plays a vital role
in influencing the formation of human activities. There are many events, such as car crashes on
roads, health care services alongside streets, and street crimes, which are strongly restricted by the
road network and which can therefore be termed network-constrained events [25–27]. These events
can be categorized into alongside network and on-network events. A large proportion of urban
service facilities can be considered alongside-network events. Therefore, Euclidean-based methods,



Int. J. Environ. Res. Public Health 2019, 16, 3204 3 of 22

which are designed for events occurring on a continuous plane, may not be suitable for characterizing
network-constrained point events [25,28,29]. Furthermore, the distance to a health care provider
along the road network was recognized as a significant factor affecting the equality of health care
accessibility [16,30]. In recent years, many researchers have made significant progress by extending
planar spatial analysis methods to network-contrained point events, such as by using the network
Kernel density estimation [28,31,32] and network K-function [26,33,34].

Distance-related inequality in health care service use is potentially a significant public health
issue, and the interrelation between spatial accessibility to health care services and the disparities in
chronic diseases is particularly interesting in China. Therefore, this paper aims to fulfill two research
objectives in a highly urbanized area of China: Shenzhen. The first objective is to measure the spatial
distribution characteristics of health care facilities using network-based analysis methods. The second
objective is to explore the interrelationship between health care facilities and hypertension patients in
the road network space. The next section of this paper describes the materials and methods. Section 3
presents the analysis results and discusses the findings. Section 4 concludes the study.

2. Materials and Methods

2.1. Study Area

Shenzhen is located in the south of Guangdong province, bordering Dongguan in the north,
Huizhou in the north and northeast, Hong Kong across the Shenzhen River in the south, Lingdingyang
and the Pearl River in the west, and Mirs Bay in the east (Figure 1). The study area is comprised of 10
districts, 57 sub-districts, and 648 communities (average 28,520 inhabitants, area 3.04 km2). Shenzhen
has become a modern metropolis with well-developed secondary and tertiary industries, and is one
of the fastest-growing cities in the world. By the end of 2014, after the reclamation of some coastal
wetlands, Shenzhen had a total population of approximately 20 million and the municipality covered
an area of 1991.64 km2, including urban and rural areas [35]. The total annual expenditure for medical
and health care in 2017 was 24.4 billion RMB, with a yearly increase of 32% from 2013. The per
capita consumption expenditure of permanent households for health care and medical services in
2017 was 1154 RMB [35]. Shenzhen has a unique population structure, as a large proportion of its
total population is recognized as part of migrant or floating populations, which leads to obstacles in
implementing policies to improve the public health care system [2,36].

Figure 1. The location of Shenzhen and its administrative division.
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2.2. Data Sources

Data on hypertension inpatients were provided by Shenzhen Center for Health Information,
with 10,395 cases recorded in 2013. We obtained data for primary hypertension (ICD-10 codes I10,
the 10th revision of the International Statistical Classification of Diseases and Related Health Problems),
hypertension heart disease (ICD-10 I11), hypertension renal disease (ICD-10 I12), hypertension heart
and renal disease (ICD-10 I13), and secondary hypertension (ICD-10 I15). The hypertension patients
were mapped to point events using geocoding tools [37] based on their home addresses, recording
the structural hierarchy of China’s administrative divisions based on street number, street name,
sub-district name, and district name. Figure 2 shows the spatial distribution of hypertension cases (as
solid red circles) in the study area.

Figure 2. Point map of hypertension patients and the road network in the study area.

Data on the health care facilities were obtained from the Urban Planning, Land and Resources
Commission of Shenzhen Municipality, including 344 hospitals, 751 CHCs, 2035 clinics, and 5519
pharmacy stores that were abstracted as point locations for spatial analysis. We also included the bed
numbers of the hospitals to represent their capacity to accommodate patients. Figure 3 shows the spatial
distribution of health care facilities and pharmacy stores, along with 7885 km of the road network.

Figure 3. Cont.
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Figure 3. Distribution of health care facilities including: (a) clinics; (b) community health centers
(CHCs); (c) hospitals; and (d) pharmacy stores.

2.3. Network Kernel Density Estimation

Network kernel density estimation (NetKDE) is a nonparametric method that aims to examine
the first-order properties of spatial data [32], which estimates the intensity of point events in a network
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space using a kernel function. NetKDE applies a bandwidth that is represented by the shortest-path
distance along the network, rather than a planar Euclidean distance measure:

λ(s) =
n∑

i=1

1
r

k(
dis
r
) (1)

where λ(s) denotes the KDE density at location s; i represents the point event, where i = 1, . . . , n; r is
the bandwidth of the NetKDE and only point events within r are calculated; dis is the distance between
the estimation point s and the observation point i; and k() is a kernel function of the ratio between dis
and r. Previous studies have indicated that the choice of the kernel function is less important than
the choice of search bandwidth [28,38]. Thus, we apply the most commonly used kernel function,
the Gaussian function:

k(
dis
r
) =

 1
√

2π
× exp(−

d2
is

2r2 ) ×wi, 0 < dis ≤ r

0, dis > r
(2)

where wi is the non-spatial factor of the point event i. In this study, the bed numbers of health care
facilities are used to model the importance of the point event i.

2.4. Network K-Function

The network K-function method uses the shortest-path distance to test the complete spatial
randomness (CSR) hypothesis that points are independently and identically distributed according to
the uniform distribution over the network, or points follow the homogeneous binomial point process
on the bounded network [33]. We applied the network auto K-function and network cross K-function
method in this study [39]. The former deals with a single type of point events and the latter focus on
two sets of points of different types (e.g., residential locations and schools), to uncover the spatial
interrelationships between two-point sets.

For a set of points, P =
{
p1, . . . , pn

}
located over a network, the network K-function at point pi is

formulated with the number of points within distance t from a specific point pi to the other points in P,
which is defined as follows:

K(t|pi) =
1
ρ

n(t|pi) (3)

where n(t
∣∣∣pi) is the number of points that are within the shortest-path distance t from point pi;

ρ = (n− 1)/
∣∣∣∣S̃∣∣∣∣ is the density of points on the network, and

∣∣∣∣S̃∣∣∣∣ is the total segment length of the
network. To test the CSR hypothesis, the Monte Carlo simulation is widely used to quantify the
distribution pattern of network-constrained point events [27,33,40]. The differences between the
observed K-function values and the CSR point pattern test could indicate that whether the network
events are uniformly and independently distributed. If the observed K-function values K(t) exceed the
upper CSR bound, the distribution of the point set P is a clustering pattern; if the observed K-function
values K(t) are below the lower CSR bound, the point set P shows a dispersion distribution; if the
values of K(t) are in the range of the envelope curve, the point set P is in a random distribution.
The cross K-function explores the spatial interrelationship of two types of points.

2.5. Spatial Stratified Heterogeneity Analyses

The geographical detector method [41] is a spatial analysis method for measuring spatial stratified
heterogeneity [42,43]. It was applied in this study to examine whether multiple variables (i.e., population
density and road density) independently or dependently affect the aggregate intensity of the health
care facilities along the road network at the community level. The two variables, namely population
densities and road lengths, were divided into five ordinal categories using Jenk’s optimization data
classification, which reduces the within-group variance while maximizing the between-group variance.
The effects of the two variables on the intensity of the health care facilities may be stronger or weaker
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after the interaction (Table 1). Formally, a study area is composed of N units and is stratified into
h = 1, 2, . . . , L stratum; stratum h is composed of Nh units; Yi and Yhi indicate the value of unit i in the
population and in stratum h, respectively; Yh and Y denote the mean value of the stratum and the
population, respectively; and σ2

h and σ2 denotes the stratum variance and the population variance,
respectively. The q-statistic, the measure of spatial stratified heterogeneity, is calculated as follows:

q = 1−

∑L
h=1

∑Nh
i=1

(
Yhi −Yh

)2

∑N
i=1

(
Yi −Y

)2 = 1−

∑L
h=1 Nhσ

2
h

Nσ2 (4)

Table 1. Interaction between population densities and road densities in contributing to aggregate
network kernel density estimation (NetKDE) values at the community level.

Types Interaction Detector C = A ∩ B 1 Linear Combination A + B Interpretation

Hospital population ∩ road = 0.086 < 0.101 = population (0.037) + road (0.064) ↑
1

CHC population ∩ road = 0.046 > 0.018 = population (0.009) + road(0.009) ⇑
2

Clinic population ∩ road = 0.086 > 0.056 = population (0.034) + road (0.022) ⇑

Pharmacy population ∩ road = 0.098 > 0.043 = population (0.020) + road(0.023) ⇑

Aggregate value population ∩ road = 0.087 > 0.046 = population (0.022) + road (0.024) ⇑

1 A and B indicate two different predictors; 2 A ⇑ B denotes nonlinear enhancement of A and B when C > A + B; 3

A ↑ B means A and B enhance each other when C > A, B.

The value of the q-statistic is between [0, 1] (0 if there is no stratified heterogeneity, and 1 if the
population is fully stratified), and it increases as the strength of the stratified heterogeneity increases.

3. Results and Discussion

3.1. NetKDE Analysis of Health Care Facilities

We considered the influence of non-spatial factors of health care facilities in the analysis. Here,
the intensity of hospitals was weighted by the bed numbers of each health care facility, representing
the importance of the point event. According to the service capacity standards of CHCs and Shenzhen
health statistics, CHCs, clinics, and pharmacy stores were assigned with weights of 20, 10, and 1,
respectively. The computation of NetKDE was implemented in the ESRI ArcGIS 10.5 environment,
using Microsoft Visual C# 2016. The choice of search bandwidth is an essential issue in KDE; a larger
bandwidth may lead to unexpected generalizations, and a smaller bandwidth could over-emphasize
local variation. Previous studies suggested that a 300 m bandwidth was suitable for the study of
activities of urban residents [31,44], which is not applicable in our case. The reason for is that our study
region has a larger spatial extent, with 7885 km of the road network, and those small bandwidths could
cause a “spiky” pattern phenomenon. After several rounds of experiments, a 1000 m bandwidth was
chosen to calculate the NetKDE of the hospital facilities. Because local clinics and CHCs serve a smaller
area than hospitals, a 500 m bandwidth was therefore used. The cell size for the output NetKDE raster
dataset was set as 100 m.

In the visualization of density surface, we applied Jenks classification based on the statistical
characteristics of the NetKDE values. We further extracted the isolines of different classification
numbers and then calculated those weight means of the isolines. After several rounds of experiments
with different numbers of classification, we set the number of classes to five because there is no
significant variation in the weight means of different numbers of classification.
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Figure 4a denotes the weighted NetKDE values of the hospital facilities based on their capacity to
accommodate patients. We also computed the unweighted NetKDE values of hospitals, as shown in
Figure 4b. The NetKDE method detects hot spots by calculating the density values of hospital facilities
along the road network. By comparing Figure 4a,b, we can see that the bed numbers of the hospitals
have a significant influence on the density values of hospital facilities. There are 14 tertiary hospitals
(over 1000 bed numbers) located in Futian and Luohu district. Thus, the higher NetKDE values of
hospital facilities are mainly concentrated in southern Shenzhen, and there is a significant difference in
density values between the downtown and suburban area. Because there are many smaller hospitals
with fewer bed numbers than large hospitals, the density values in the southwest may be overestimated
using the unweighted NetKDE method that depends on the density of point events along the road
network. Figures 5–7 show the weighted NetKDE values of CHCs, clinics, and pharmacy stores,
respectively. The intensity values of CHCs, clinics, and pharmacy stores along networks exhibit a
significant distribution pattern of spatial heterogeneity. The higher NetKDE values of CHCs and clinics
are mainly located in areas with high road density. Because pharmacy stores usually have a close
connection with the health care needs of urban residents, the intensity distribution of pharmacy stores
is highly correlated with the population distribution characteristic.

Figure 4. The intensity distribution of hospital facilities: (a) weighted NetKDE values using bed
numbers; (b) unweighted NetKDE values.
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Figure 5. The intensity distribution of CHCs using the weighted NetKDE method.

Figure 6. The intensity distribution of clinics using the weighted NetKDE method.

Figure 7. The intensity distribution of pharmacy stores using the weighted NetKDE method.
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The sum of the NetKDE values of the health care facilities was aggregated at the community level.
Spatial stratified heterogeneity analyses were further applied to explore whether population density
and road density simultaneously affect the aggregate intensity of health care facilities, as estimated
by NetKDE methods. The average population density and road density per square kilometer was
29,132.10 and 7350.59 m. Table 1 summarizes the interaction effects between population densities and
road density for different kinds of health care facilities at the community level. The q-statistics of the
population density and road density were 0.022 and 0.024 for aggregate NetKDE values of health care
facilities, respectively, using the geographical detector method [41]. The spatial stratified heterogeneity
analysis indicated significant associations (p < 0.05) between the aggregate NetKDE values and the
population densities and the road densities, respectively, at the community level. The total intensities
were further elevated by interaction effects between the population and road densities.

3.2. Spatial Cluster Pattern Analysis

The Spatial Analysis along Networks (SANET) toolbox [27] was applied to calculate the network
K-function values. We first explore the spatial cluster patterns of hospitals, CHCs, clinics, and pharmacy
stores for each of the 10 districts using the network auto K-function method. The results are shown
in Figures 8–11, and were obtained from the R language window. The parameters “Exp (upper
5.0%)” and “Exp (lower 5.0%)” indicate the upper and the lower envelope curves of the Monte Carlo
simulation with the significance level of 0.05. The parameter “Exp (Mean)” is the expectation of random
distribution, and the parameter “obs” denotes the observed K-function values. The vertical axis
indicates the cumulative number of point events; the horizontal axis is the distance range. For example,
as shown in Figure 8a, the observed blue curve is above the upper envelope of the curves under the
distance of 10,000 m, which indicates that we can reject the CSR hypothesis with a 0.95 confidence level.
Hence, hospitals in Baoan tend to present a cluster pattern in that distance range. Figure 8c shows that
the observed curve of the network K-function nearly coincides with the upper envelope curve under
the CSR hypothesis, which indicates that the distribution of hospitals is even in the Futian district.

The results of the network-auto K-function indicate that hospitals tend to be in a clustered
distribution in Baoan (Figure 8a), Dapeng (Figure 8b), Guangming (Figure 8d), Longgang (Figure 8e),
Longhua (Figure 8f), Luohu (Figure 8g), and Nanshan (Figure 8h). Hospitals in Pingshan and Yantian
show a significantly random pattern, as shown in Figure 8i,j, respectively, which indicates that there is
an apparent imbalance in the health care services of hospital facilities across Shenzhen, in part because
the majority of tertiary and secondary hospitals are mainly located in the downtown area. In terms
of health care inequity, urban planners should strategically pay attention to the planning of large
hospitals to satisfy the future needs of urban residents.

The spatial distribution of the CHCs exhibits a different pattern. For the analysis of the spatial
cluster pattern of the CHCs, Figure 9 shows that the observed curve of the network K-function is
between the upper and lower envelope curves. Hence, CHCs in Baoan tend to be in a random
distribution in the street network space (Figure 9a), as well as in Dapeng (Figure 9b), Futian (Figure 9c),
Guangming (Figure 9d), Longhua (Figure 9f) and Pingshan (Figure 9i). However, the observed curve
is slightly beyond the upper envelope curve for CHCs in other districts, as shown in Figure 9e,g,h,j.
The results indicate that the spatial distribution of CHCs is relatively balanced between the downtown
area and the central urban districts in Shenzhen. CHCs are an essential part of the primary health care
system and are designed to provide essential public health services, which is valuable for the control
and prevention of chronic diseases. Many measures, such as adequate education and qualification
of the workforce, financial subsidies, and incentives, need to be further addressed to improve the
performance of CHCs. Because there is a close connection between the small clinics, pharmacy stores,
and the daily needs of urban residents, the results of the network K-function show that the spatial
distribution of the clinics has a clustered pattern across Shenzhen, which is similar to that of pharmacy
stores, as shown in Figures 10 and 11.
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The network cross K-function was applied to analyze the relationship between hypertension
patients and health care facilities across 10 districts of Shenzhen. The results were used to investigate
whether the configuration of one type of point could influence the distribution of another kind of
point event. We first examined the interrelationship between hospitals and hypertension patients in
the road network space across the Shenzhen Municipality. Figure 12 shows that the interrelationship
between hospitals and hypertension patients is significantly different across the 20 districts of Shenzhen,
with a significance level of 5%. The observed values of the network cross K-function of hospitals and
hypertension patients are above the upper envelope of the CSR hypothesis in Futian (Figure 12c),
Longgang (Figure 12e), Luohu (Figure 12g) and Nanshan (Figure 12h), which indicates that there is a
significant cluster for a spatial distribution relationship between the hospitals and hypertension patients
along the road network in these areas. However, the observed curve approximates the envelope curves
under the CSR hypothesis in Baoan (Figure 12a), Guangming (Figure 12d) and Longhua (Figure 12f);
the observed curve is below the lower envelope in Pingshan (Figure 12i), and there is a complicated
interrelationship between hospitals and hypertension patients in Dapeng (Figure 12b) and Yantian
(Figure 12j).

We further examined the effects of CHCs, clinics, and pharmacy stores on the spatial distribution
characteristics of hypertension patients in the road network space, as shown in Figures 13–15,
respectively. In Figure 13, the interrelationship between CHCs and hypertension patients exhibits a
pattern which is similar to that of hospitals and hypertension patients in the road network space of
Shenzhen (Figure 12), except in Dapeng and Guangming. Figure 13b shows that the observed value of
the network cross K-function for CHCs and hypertension patients approximates the mean value of the
envelope under the CSR hypothesis with a significance level of 5%. That is, compared with the CHCs,
the distribution of hypertension patients is random in Dapeng. In Figure 13d, the observed curve is
above the upper envelope under the CSR hypothesis, which demonstrates that hypertension patients
tend to cluster around the CHCs in Guangming. We found a similar spatial distribution relationship
between hypertension patients and clinics and pharmacy stores, respectively, based on the results
of the network cross K-function, as shown in Figures 14 and 15. We found a significant clustering
relationship in Futian (Figures 14c and 15c), Guangming (Figures 14d and 15d), Longgang (Figures 14e
and 15e), Luohu (Figures 14g and 15g) and Nanshan (Figures 14h and 15h).The results of the network
cross K-function indicate that the interrelationship between the health care facilities and hypertension
patients shows a significant cluster pattern in Futian, Longgang, Luohu, and Nanshan. Thus, there is
clear evidence of spatial inequality in health care accessibility for hypertension patients in Shenzhen.
Compared with other health care facilities, the observed curve of the network cross K-function for
hospitals and hypertension patients is higher, above the upper envelope under the CSR hypothesis,
in Futian, Longgang, Luohu, and Nanshan. In other words, hypertension patients are located closer
to hospitals along the road network in these areas. Although it may be convenient for hypertension
patients to seek health care services from hospitals in these areas, the high-rank hospitals are usually
overburdened because the public has greater trust in large public hospitals over local health clinics
and CHCs, creating significant systemic inefficiencies. Furthermore, the distribution of hypertension
patients is also correlated with the locations of the CHCs, clinics, and pharmacy stores. Thus, it is
necessary to upgrade infrastructure, information, and communication technology in primary health
care facilities, and expand the essential drug list (EDL) in pharmacy stores and CHCs.
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Figure 8. Network auto K-function analysis of hospitals. (a) Baoan; (b) Dapeng; (c) Futian; (d) Guangming;
(e) Longgang; (f) Longhua; (g) Luohu; (h) Nanshan; (i) Pingshan; (j) Yantian.
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Figure 9. Network auto K-function analysis of CHCs. (a) Baoan; (b) Dapeng; (c) Futian; (d) Guangming;
(e) Longgang; (f) Longhua; (g) Luohu; (h) Nanshan; (i) Pingshan; (j) Yantian.
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Figure 10. Network auto K-function analysis of clinics. (a) Baoan; (b) Dapeng; (c) Futian; (d) Guangming;
(e) Longgang; (f) Longhua; (g) Luohu; (h) Nanshan; (i) Pingshan; (j) Yantian.
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Figure 11. Network auto K-function analysis of pharmacy stores. (a) Baoan; (b) Dapeng; (c) Futian;
(d) Guangming; (e) Longgang; (f) Longhua; (g) Luohu; (h) Nanshan; (i) Pingshan; (j) Yantian.
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Figure 12. Network cross K-function analysis of hospitals and hypertension patients. (a) Baoan;
(b) Dapeng; (c) Futian; (d) Guangming; (e) Longgang; (f) Longhua; (g) Luohu; (h) Nanshan; (i) Pingshan;
(j) Yantian.
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Figure 13. Network cross K-function analysis of CHCs and hypertension patients. (a) Baoan; (b) Dapeng;
(c) Futian; (d) Guangming; (e) Longgang; (f) Longhua; (g) Luohu; (h) Nanshan; (i) Pingshan; (j) Yantian.
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Figure 14. Network cross K-function analysis of clinics and hypertension patients. (a) Baoan; (b) Dapeng;
(c) Futian; (d) Guangming; (e) Longgang; (f) Longhua; (g) Luohu; (h) Nanshan; (i) Pingshan; (j) Yantian.
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Figure 15. Network cross K-function analysis of pharmacy stores and hypertension patients. (a) Baoan;
(b) Dapeng; (c) Futian; (d) Guangming; (e) Longgang; (f) Longhua; (g) Luohu; (h) Nanshan; (i) Pingshan;
(j) Yantian.

4. Conclusions

This study analyzed the spatial distribution characteristics of health care facilities in the road
network space and their relationship with hypertension patients of Shenzhen using network-based
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spatial analysis. NetKDE was applied to detect health care service hot spots, and weighting of different
types of health care facilities could be useful to obtain a comprehensive understanding of the intensity
distribution of health care facilities. We further explored the influences of population density and
road density on the aggregate intensity of different types of health care facilities at the community
level, by using spatial stratified heterogeneity analyses. Then, the network K-function method was
applied to measure the spatial clustering patterns in each of the 10 districts of Shenzhen along the road
network. The spatial distribution of health care facilities displays distinct patterns in the 10 districts of
Shenzhen, as well as in the interrelationships between health care providers and hypertension patients.
Although the number of hospitals is relatively small, there is a stronger clustering pattern relationship
between hospitals and hypertension inpatients along the road network. Due to the limitations of the
data, directions of hypertension inpatient’s travel are not considered in this study and road segments
are treated equally without being further distinguished. However, road segments are different in their
traffic flow capacity, directionality, and so on, which may have an impact on the directions of travel of
hypertension inpatients, subsequently affecting the density estimation of health care facilities and their
interrelationships with hypertension inpatients. When the data becomes available, it may be beneficial
to incorporate them into the analyses.

In China, public hospitals dominate health care delivery, and patients can visit hospitals directly for
all health care needs. This may lead to increasingly long lines and waiting times, which in turn, increase
costs and decrease access to health care even though the hospitals are located close to residential areas.
Strengthening primary health care could be a cost-effective way to detect, diagnose, treat, and manage
hypertension patients, to alleviate the burden on higher-level health services and mitigate medical
costs to both individuals and the health systems. However, given the difficulty in collecting data at an
individual level, we cannot confidently assert that strengthened primary health care services would
affect the health-seeking behavior of hypertension individuals. Nevertheless, our findings confirm the
importance of primary health care facilities, which require long-term commitment from the department
of urban planning and public health [8,45].

In this study, we investigated the interrelationship between hypertension patients and health
care facilities in the road network space. However, the use of health care services is also influenced
by nonspatial factors that include many demographic and socioeconomic variables (such as income,
age, sex, and race), and which also interact with spatial accessibility [13]. It is necessary to integrate
nonspatial factors at both the individual and neighborhood levels with spatial accessibility in a unified
measure. Hence, more advanced statistical models such as the Bayesian hierarchical model are needed
to account for the small population problem, spatial autocorrelation, and the multilevel structure of
the data in further research.
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