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Abstract: Because both pollution emissions and production policies often are international in scope,
it is necessary to find optimal coordination strategies for international production planning and
pollution abating. Differential game models are developed for multiple neighboring countries to reach
optimal decisions on their production planning and pollution abating under cap-and-trade regulations.
Non-cooperative and cooperative differential games are presented to depict the optimal tradeoffs
between production planning and pollution abating. Hamilton-Jacobi-Bellman (HJB) equations are
then employed to analyze the asymmetric and symmetric feedback solutions. Numerical simulations
are used to illustrate the results. Five different dividends are also discussed. With the proposed
strategies, more improvement will be directed toward production supplies and environmental issues
than ever before.

Keywords: optimal coordination strategy; carbon emission; production plan; pollution abatement;
differential game

1. Introduction

Since the middle of the 20th century, the rapid population growth and economic development
have led to serious environmental pollution that has critical impacts on crop yields, climate change,
biodiversity, and ecosystems, amongst others. As a result, these impacts have significant social and
economic consequences affecting values, customs, human health, economic development as well as
social welfare [1]. In recent years, the growing concerns about industrial pollution, the strict regulations
of international conventions on sustainability and environmental protection, and an increase in
the number of pro-environmental consumers have led industries to dedicate significant efforts to
developing green practices [2–5]. However, as of 2017, almost all advanced industrialized countries
have had falling their emission rates, but still have not met their pledged emission reduction targets
that they made in Paris [6]. Therefore, it is entirely necessary to conduct studies in pollution abatement.

The Paris climate agreement, a new global agreement to combat climate change within the United
Nations Framework Convention on Climate Change (UNFCCC), was signed in 2016. The agreement
aims at holding global warming to well below 2 ◦C and to “pursue efforts” to limit it to 1.5 ◦C [7].
As of March 2019, 195 countries have signed the agreement, and 186 of which have submitted emission
abatement pledges as nationally determined contributions. To meet the pledges, some instruments
are needed to regulate and ultimately reduce the amount of pollution emitted into the atmosphere.
One such instrument is the cap-and-trade mechanism. In recent years, several countries, including

Int. J. Environ. Res. Public Health 2019, 16, 3490; doi:10.3390/ijerph16183490 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0002-7739-4808
https://orcid.org/0000-0002-1238-6604
https://orcid.org/0000-0001-8503-9761
http://www.mdpi.com/1660-4601/16/18/3490?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph16183490
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2019, 16, 3490 2 of 21

China, have implemented cap-and-trade programs to set a national limit on carbon emissions by the
heavy-polluting industries such as power generation, iron and steel, and chemicals, amongst others [8].
Firms must have enough permits to cover their emissions if they exceed the cap. Generally, firms
can invest in clean technologies to become more efficient, switch to lower carbon fuels or purchase
additional permits. Indeed, they may sell some permits if they do not use up the cap. By comparison
with pollution tax, the cap-and-trade mechanism creates a commodity out of the right to emit pollutants
and allows the commodity to be traded on the free market. However, there exist several dilemmas,
such as a firm’s higher income depends on more output which may lead to more pollution emissions,
and fewer permit purchases or more permit sales depend on greater abatement efforts which may lead
to profit losses [9]. Thus this study deals with real demand for production planning and pollution
abating under cap-and-trade regulations.

Pollution emissions often show the feature of being international, that is, there exists transboundary
pollution which is a typical example of a negative externality and is also an essential instance of global
environmental agreement failure [10]. When a negative externality occurs in neighboring countries,
a country does not take responsibility for external costs but passes them on to others. Thus the
producing country has lower marginal costs than it would otherwise have and may choose to produce
more of the product than it would when it was required to pay all associated pollution costs. Hence,
some governance mechanisms could be designed to “internalize” an externality. One such mechanism
is to employ a differential game to optimize their production planning and pollution abating under
cap-and-trade regulations.

Given the concerns mentioned above, the key contribution of this study is on developing
differential game models for multiple neighboring countries to reach optimal decisions by optimizing
their production planning and pollution abating under cap-and-trade regulations. By using
Hamilton-Jacobi-Bellman (HJB) equations, the impacts of the production efficiency and the initial
allocations of emission permits on the optimal production plans and the pollution abating decisions
can be determined by analyzing the feedback equilibria of the proposed models.

The remainder of this paper is organized as follows. The relevant literature is reviewed in Section 2.
In Section 3, differential game models are proposed for multiple neighboring countries. Utilizing the
HJB equations, the non-cooperative differential games are studied in Section 4, and the cooperative
differential games are discussed in Section 5. In Section 6, numerical simulations are performed to verify
the results. In Section 7, the cooperative and symmetric dividends are defined, and the evolutions are
analyzed by using numerical methods. In Section 8, the potential policies and managerial implications
are discussed. Finally, a summary and future research directions are presented in Section 9.

2. Literature Review

As a powerful analytical tool, the differential game has been widely used in many scientific fields.
You, Jiang and Li [11] employed the differential game to design optimal coordination strategies of
regional emission abatement collaboration. Feng and Liu [12] used the differential game to consider
a single supply chain structure concerning the online word-of-mouth effect. Schüller, Staňková
and Thuijsman [13] put forward a differential game of pollution control while there are transboundary
environmental effects of national policies. Di Liddo [14] set up a differential game to coordinate a
pharmaceutical company controlling the drug price and a social planner determining the number of people
to treat.

Many researchers have made significant efforts in searching for optimal strategies of pollution
control, as shown in Table 1. Ploeg and Zeeuw [15] proposed a model of international pollution
control. Yeung [16] employed a cooperative differential game to set up a model of transboundary
industrial pollution control. He and Hua [17] studied transboundary pollution control strategies about
production quantity, pollution taxes and abatement investment. Bertinelli, Camacho and Zou [18]
proposed strategies to motivate business efforts to reduce CO2 emissions through a capture and storage
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mechanism. This study employs differential games to balance optimally business production planning
and pollution abating to optimize income.

Transboundary/international pollution emission and abatement are now becoming one of
the hottest topics in scientific research. A differential game is one of the powerful tools for
studying transboundary pollution emission and abatement. Long [19] employed a differential
game to depict the transnational pollution between two sovereigns, and analyzed its symmetric
open-loop Nash equilibrium and Stackelberg leadership. Breton, Zaccour and Zaha [20] proposed a
finite-horizon differential game model to analyze the joint implementation of environmental projects.
List and Mason [21] developed an asymmetric differential game and determined the cooperative
and non-cooperative equilibria. Yu and Xin [22] proposed a stochastic differential game to describe
greenhouse gas (GHG) emission decision making of developed and developing countries. Yeung [16]
presented a cooperative differential game of transboundary industrial pollution with industries and
governments being separate entities and designed a payment distribution mechanism. Jørgensen [23]
studied a differential game of waste management (disposal) between neighboring regions with strategic
and stock externalities. Masoudi and Zaccour [24] considered a two-player differential game of
international emissions to represent the interactions between developed and developing countries, and
showed their cooperative and non-cooperative solutions. Wrzaczek, Shevkoplyas and Kostyunin [25]
applied a differential game to formulate an overlapping generation model on optimal emissions with a
continuous age structure. Bertinelli, Camacho and Zou [18] proposed a finite-horizon differential game
to depict CO2 capture and storage and transboundary pollution and provided its explicit short-run
dynamics with symmetric open-loop and a specific Markovian Nash strategy. Li [26] extended
the model of Yeung [16] by taking into account emission permits trading, and found the optimal
emission paths for the two regions. Gromova and Plekhanova [27] considered a differential game of
transboundary pollution with developed and developing countries with a duration that is assumed
to be exponentially distributed. Benchekroun and Martín-Herrán [28] studied a differential game of
transboundary pollution between countries with myopic or non-myopic foresight. Huang, He and
Hua [17] studied a cooperative differential game of transboundary industrial pollution between two
asymmetric regions. Moreaux and Withagen [29] studied a differential game of carbon capture and
storage from point sources with CO2 pollution and fossil fuel exhaustibility. Li [30] studied the behavior
of the government about how to invest in emission abatement, how to regulate emission caps, and
how to sell emission permits in a region divided into two economic sectors. Chang, Qin and Wang [31]
involve the learning by doing in abatement in a transboundary pollution game. From a mathematical
point of view, a transboundary pollution emission model can be used to approximately describe the
transboundary GHG and other kinds of transboundary pollution emissions.

Although at first glance there are many similarities in the literature mentioned above, there are
always some subtle differences from an economic point of view, mainly reflected in their objective
functions and stock dynamics equations of carbon or pollution. In this study, to depict the complex
scenarios of coordination strategies for international production planning and pollution abating
under cap-and-trade regulations, we try to integrate the pollutant stock level, the abatement effort,
the production quantity, the initial allocation of pollution emission permit and the emission permit
trading price into the objective function and stock dynamics equation.
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Table 1. Some game models of transboundary emissions of CO2/pollution.

Study Objective Function Stock Dynamics Game Type

Long (1992)
∫
∞

0 e−rt(Ri(ei(t)) −Di(s(t)))dt ds(t)
dt =

2∑
i=1

ei − εs(t) Noncooperative

List and Mason (2001)
∫
∞

0 e−rt(Ri(ei(t)) −Di(s(t)))dt ds(t)
dt =

2∑
i=1

ei − εs(t)
Cooperative,

Noncooperative

Yeung (2007)
∫ T

0 e−rt(Ri(qi(t)) −Gi(ui(t)) −Di(qi(t), s(t)))dt

ds(t)
dt =

2∑
i=1

µiqi(t) −
2∑

j=1
γ ju j(t)

√
s(t) − εs(t)

Cooperative

Masoudi and Zaccour (2013)
∫
∞

0 e−rt(Ri(ei(t)) −Di(s(t)))dt ds(t)
dt = µ

2∑
i=1

ei − εs(t)
Cooperative,

Noncooperative

Bertinelli, Camacho and Zou (2014)
∫ T

0 e−rt(−Gi(si(t), ui(t)) −Di(s(t)))dt + e−rTS(s(T))
ds(t)

dt =
2∑

i=1
ei + µ

2∑
i=1

ui − εs(t) Non-cooperative

Li (2014)
∫
∞

0 e−rt(Ri(ei(t)) + Mi(ei(t)) −Di(s(t)))dt ds(t)
dt =

2∑
i=1

ei − εs(t)
Cooperative,

Noncooperative

Gromova and Plekhanova (2015)
∫
∞

0 e−rt(Ri(ei(t)) −Di(s(t)))dt ds(t)
dt = µ

2∑
i=1

ei − εs(t)
Cooperative,

Noncooperative

Benchekroun and Martín-Herrán (2015)
∫
∞

0 e−rt(Ri(ei(t)) −Di(s(t)))dt ds(t)
dt =

2∑
i=1

ei − εs(t) Non-cooperative

Huang, He and Hua (2015)
∫ T

0 e−rt(Ri(qi(t)) −Gi(ui(t)) −Di(s(t)))dt−
e−rTS(s(T))

ds(t)
dt =

2∑
i=1

qi(t) −
2∑

j=1
γ ju j(t)

√
s(t) − εs(t) Cooperative,

Noncooperative

This study
∫
∞

0 e−rt(Ri(qi(t), s(t), ui(t)) −Gi(ui(t)) −Di(s(t)))dt
ds(t)

dt = µ
n∑

i=1
qi(t) − δ

n∑
i=1

ui(t) − εs(t) Cooperative,
Noncooperative

Note that notations in Table 1 are defined in Section 3.
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3. Modelling

All notations used through the paper are summarized in Table 2.

Table 2. Notations.

Symbols Descriptions

qi(t) the quantity of goods produced by country i in time t
ei(t) the amount of pollutant emitted by country i in time t

µ
a pollution emission coefficient which represents the current technology level of clean

production, µ > 0

R′i (t)
the net revenue function of country i in time t, which is strictly concave and quadratic, and

depends on its pollution emission amount (List and Mason, 2001; Breton et al., 2005;
Yeung, 2007; Li, 2014)

αi a positive constant for country i
Di(s(t)) the environmental damage cost to country i in time t
βi a positive scaling parameter for country i

s(t) a pollutant stock level in time t contributed by the emissions of the n countries
ui(t) the abatement effort of country i in time t

Gi(ui(t)) the pollution abatement cost function of country i in time t
σ a positive scaling parameter
δ a positive scaling parameter, δ > 0

Bi(ui(t), s(t)) the egoistic part of pollution abatement amount of country i in time t
γi a positive constant.
Fi the initial allocation of pollution emission permit of country i

k(t) the emission permit trading price in time t
R′′i (·) the trading revenue of country i
ε a natural absorption rate of pollutants, ε > 0

Although usually only two countries are involved in transboundary pollution emissions, a more
general case is considered in this study. Assume n countries, labelled by i = 1, 2, · · · , n, compete
as pollution emission oligopolies with production activities creating pollutant as an undesirable
by-product, and share the same pollution state. They also optimize tradeoffs between production
planning and pollution abating under cap-and-trade regulations. The pollutant emitted by the n
countries is assumed to be identical. Furthermore, ei(t) is assumed to be proportional to qi(t), i.e.,

ei(qi(t)) = µqi(t). (1)

The production quantity qi(t) can bring country i a certain level of net revenue, so that R′i (t) can
be written as

R′i (qi(t)) = αiei(t) −
1
2

ei(t)
2 = αiµqi(t) −

1
2
µ2qi(t)

2. (2)

The production activity of each country generates not only net revenue but also a level of pollution
with negative effects on its welfare. The environmental damage cost Di(s(t)) is supposed to satisfy

Di(s(t)) =
1
2
βis2(t). (3)

As we know, the higher the pollutant concentration is, the more costly the damage is to the country.
The welfare of one country depends not only on its own policies but also on those of other countries [32].
However their excessive production activities can cause increasing environmental pollution, and even
have negative impacts on their welfare levels. While one country bears the pollution abatement costs,
all countries can share the benefits from any reduction in emissions. It is reasonable for each country to
do its best to opt for a free ride. Hence, one of the critical things for country i is to decide how much
effort it should make on pollution abatement. Suppose the pollution abatement cost function Gi(ui(t))
of country i is quadratic and depends on the effort on pollution abatement of the country
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Gi(ui(t)) =
1
2
σui

2(t), (4)

which means that the more pollution abatement effort the country makes, the more costly the pollution
abatement is to the country.

Analogous to human beings, a country’s abatement action also has egoistic and altruistic sides, i.e.,
the former acts for the country’s self-interest and directly benefits the country’s revenue, and the latter is
helpful for the others. The total pollution abatement amount of country i, also divided into egoistic and
altruistic parts, is supposed to be proportional to its abatement effort, denoted by δui(t). The egoistic
part of pollution abatement amount Bi(ui(t), s(t)) of country i is simultaneously determined by its
abatement effort and the pollutant stock level, as shown in (5)

Bi(ui(t), s(t)) = γiui(t)s(t). (5)

The trading revenue R′′i (·) of country i is written as

R′′i (qi(t), s(t), ui(t)) = k(Fi + Bi(ui(t), s(t)) − ei(qi(t))) = k(Fi + γui(t)s(t) − µqi(t)). (6)

Apparently, the following three cases holds: R′′i (·) > 0 if country i has permit surplus, and R′′i (·) = 0
if the permit of country i is just the right amount, and R′′i (·) < 0 if country i has permit shortage.

From (2)–(6), the instantaneous revenue of country i is given by (7) in the following

πi(t) = R′i (qi(t)) + R′′i (qi(t), s(t), ui(t)) −Gi(ui(t)) −Di(s(t))
= µαiqi(t)+ k(Fi + γui(t)s(t) − µqi(t)) − 1

2

(
µ2qi(t)

2+ βis2(t)+ σui
2(t)

) (7)

The more goods the n countries produce, the more pollutants are emitted and, eventually,
the higher the pollutant stock level is. However, each country can make its effort to decrease the
pollutant stock level, and natural absorption or decomposition also reduces some pollutants. Suppose
the decay function of pollutant stock is linear given by εs(t). Then the evolvement dynamics of the
pollutant stock level is given by (8) in the following

.
s(t) = µ

n∑
i=1

qi(t) − δ
n∑

i=1
ui(t) − εs(t), s(0) = s0, s(t) ≥ 0 , (8)

In a non-cooperative differential game, each country independently chooses its production plan
and pollution abatement to maximize its own discounted infinite-horizon utility as stated in (9) in
the following

max
qi(t),ui(t)

Ji =
∫
∞

0 e−rtπi(t)dt, i = 1, 2, · · · , n , (9)

subject to (8).
In a cooperative differential game, n countries make joint decisions of the production plan and

pollution abatement controlled by a central authority, such as the European Union, to maximize the
sum of the discounted infinite-horizon utilities of all countries as stated in (10) in the following

max
qi(t),ui(t)

J =
∫
∞

0
e−rt

n∑
i=1

πi(t)dt, (10)

subject to (8).
In the following, NCA, NCS, CA and CS in the superscripts indicate the asymmetric non-cooperative,

symmetric non-cooperative, asymmetric cooperative and symmetric cooperative differential games,
respectively. For expositional convenience, time-dependence and superscripts will be omitted from the
notations if no confusion is caused.
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4. Non-Cooperative Differential Games

4.1. Asymmetric Case (NCA)

4.1.1. Solutions of the Model

From (8) and (9), the HJB equation for country i is given in (11) in the following

rVNCA
i = max

qi,ui

πi +
∂VNCA

i
∂s

ds(t)
dt

, (11)

where VNCA
i = VNCA

i (s) is the value function of country i.
The following optimal feedback production and abatement strategies of country i are obtained by

taking first-order conditions of the HJB equation in (11) w.r.t. qi and ui, respectively

qNCA
i =

1
µ

αi − k +
∂VNCA

i
∂s

, (12)

uNCA
i =

1
σ

γiks− δ
∂VNCA

i
∂s

. (13)

Although the coefficients of the value functions in the following propositions can be explicitly
characterized, for simplicity and regularity, they are characterized implicitly for all, including the
symmetric, asymmetric, cooperative and non-cooperative, scenarios.

Proposition 1. In the asymmetric non-cooperative differential game, the Nash equilibrium solutions of
the value functions and instantaneous levels of production and abatement, represented by VNCA

i (s),
qNCA

i (t) and uNCA
i (t), respectively, are

VNCA
i (s) = ηi0 + ηi1s + ηi2s2, (14)

qNCA
i =

1
µ
(αi − k + ηi1+2ηi2s), (15)

uNCA
i =

1
σ
(ksγi − δ(ηi1+2ηi2s)), (16)

where

ηi0 =
1
r

ηi1

 n∑
j=1

α j − kn +
σ+ δ2

σ

 n∑
j=1

η j1 −
ηi1

2


+ kFi +

1
2
(k− αi)

2

, (17)

ηi1 =
1
rσ


2ηi2

(σ+ δ2
) n∑

j=1
η j1 − ηi1

+ σ

 n∑
j=1

α j − kn


−ηi1

εσ+ kδ
n∑

j=1
γ j − 2

(
δ2 + σ

) n∑
j=1

η j2


, (18)

ηi2 =
1

2σr

k2γ2
i − σβi − 4ηi2

kδ
n∑

j=1

γ j + εσ+
(
δ2 + σ

)ηi2 − 2
n∑

j=1

η j2



. (19)

Proof of Proposition 1. Substituting the optimal solutions from (12) and (13) into the HJB equation
in (11) and simplifying yield
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rVNCA
i (s) = 1

2

(
(k− αi)

2
− βis2

)
+ kFi +

k2γ2
i s2

2σ −
σ+δ2

2σ

(
∂VNCA

i
∂s

)2

+
∂VNCA

i
∂s

 n∑
j=1

α j +
n∑

j=1

∂VNCA
j
∂s − εs− kn− δ

σ

ks
n∑

j=1
γ j − δ

n∑
j=1

∂VNCA
j
∂s

 (20)

Differentiating (14) w.r.t. s, the following is obtained

VNCA
i (s)

∂s
= ηi1s+2ηi2s. (21)

Substituting (14) and (21) into (20), then equating the coefficients of ηi0 + ηi1s + ηi2s2 in (20),
the results in (15) and (16) are obtained. �

4.1.2. Optimal Trajectory of the Pollutant Stock

The ordinary differential equation in (22) in the following is obtained by directly substituting (15)
and (16) into (8)

.
sNCA

(t) = CNCA
1 + θNCAsNCA(t), (22)

where CNCA
1 = σ+δ2

σ

n∑
j=1

η j1 +
n∑

j=1
α j − kn and θNCA =

2(σ+δ2)
σ

n∑
j=1

η j2 −
kδ
σ

n∑
j=1

γ j − ε.

The optimal trajectory of the pollutant stock in (23) in the following is obtained by solving (22)

sNCA(t) = −
CNCA

1

θNCA + CNCA
2 etθNCA

, (23)

where CNCA
2 = s0 +

CNCA
1
θNCA , and θNCA < 0 ensures the stability of the steady state of the pollutant stock.

4.2. Symmetric Case (NCS)

4.2.1. Solutions of the Model

Remark 1. For the symmetric case, let αi = α, βi = β, qi = q, ui = u, γi = γ and Fi = F for i = 1, 2, · · · , n.

From (8) and (10), the HJB equation for any country can be written as

rVNCS = max
q,u

{
π+

∂VNCS

∂s
ds(t)

dt

}
, (24)

where VNCS = VNCS(s) is the value function of the country.
The following optimal feedback production and abatement strategies of the country are obtained

by taking the first-order conditions of the HJB equation in (24) w.r.t. q and u, respectively

qNCS =
1
µ

(
α− k + n

∂VNCS

∂s

)
, (25)

uNCS =
1
σ

(
kγs− nδ

∂VNCS

∂s

)
. (26)

Proposition 2. In the symmetric non-cooperative differential game, the Nash equilibrium solutions of
the value functions and instantaneous levels of production and abatement, represented by VNCS(s),
qNCS(t) and uNCS(t), respectively, are
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VNCS(s) = η0 + η1s + η2s2, (27)

qNCS =
1
µ
(α− k + nη1+2nη2s), (28)

uNCS =
1
σ
(kγs− nδ(η1+2η2s)), (29)

where

η0 =
1
r

kF +
1
2
(α− k)2 + nη1(α− k) +

n2η2
1

2σ

(
σ+ δ2

), (30)

η1 =
1
r

(
2nη2

(
(α− k) +

nη1

σ

(
σ+ δ2

))
− η1

(
nkγδ
σ

+ ε

))
, (31)

η2 =
1

2σr

(
k2γ2 + 4n2η2

2

(
σ+ δ2

)
− 4η2(εσ+ nkγδ) − βσ

)
. (32)

Proof of Proposition 2. Substituting the optimal solutions from (25) and (26) into the HJB equation
in (24) and simplifying yield

rVNCS(s) = kF + 1
2

(
(α− k)2

− βs2
)
+

k2γ2s2

2σ

+
(
nα− εs− kn− nkγδs

σ +
n2(σ+δ2)

2σ
∂VNCS

∂s

)
∂VNCS

∂s

(33)

Differentiating (27) w.r.t. s, the following is obtained

∂VNCS

∂s
= η1+2η2s. (34)

Substituting (27) and (34) into (33) and equating the coefficients of η0 + η1s+ η2s2 in (33), the results
in (28) and (29) are obtained. �

4.2.2. Optimal Trajectory of the Pollutant Stock

The ordinary differential equation in (35) in the following is obtained by substituting (28) and (29)
into (8)

∂VNCS

∂s
= η1 + 2η2s, (35)

where CNCS
1 = n(α− k) + n2η1

(
1 + δ2

σ

)
and θNCS = 1

σ

(
2n2δ2η2 − knγδ

)
+ 2n2η2 − ε.

The optimal trajectory of the pollutant stock in (36) in the following can be obtained by solving (35)

sNCS(t)= −
CNCS

1

θNCS + CNCS
2 etθNCS

, (36)

where CNCS
2 = s0 +

CNCS
1
θNCS , and θNCS < 0 ensures the stability of the steady state of the pollutant stock.

5. Cooperative Differential Games

5.1. Asymmetric Case (CA)

5.1.1. Solutions of the Model

The following HJB equation for country i is obtained from (8) and (10),
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rVCA = max
qi,ui

 n∑
i=1

πi +
∂VCA

∂s
ds(t)

dt

, (37)

where VCA = VCA(s) is the value function of country i.
The following optimal feedback production and abatement strategies for country i are obtained

by taking the first-order conditions of the HJB equation in (37) w.r.t. qi and ui, respectively

qCA
i =

1
µ

(
αi − k +

∂VCA

∂s

)
, (38)

uCA
i =

1
σ

(
ksγi − δ

∂VCA

∂s

)
. (39)

Proposition 3. In the asymmetric cooperative differential game, the optimal solutions of the value
functions and instantaneous levels of production and abatement, represented by VCA(s), qCA

i (t) and
uCA

i (t), respectively, are
VCA(s) = η0 + η1s + η2s2, (40)

qCA
i =

1
µ
(αi − k + η1 + η2s), (41)

uCA
i =

1
σ
(ksγi − δ(η1 + η2s)), (42)

where

η0 =
1
r


k

n∑
j=1

F j − (k− 1)
n∑

j=1
α j +

1
2

n∑
j=1

α2
j + kn(k− 2)

−

(
1 + δ2

) n∑
j=1

η2
j1 +

(
1 + δ2

σ

) n∑
j=1

η j1

, (43)

η1 =
1
r


2
σ

(
σ+ δ2

) n∑
j=1

η j2 − 2
(
1 + δ2

) n∑
j=1

η j1η j2 − ε

−
kδ
σ

 n∑
j=1

γ j + (1− σ)
n∑

j=1
γ jη j1


, (44)

η2 =
1

2σr


4kδ(σ− 1)

n∑
j=1

γ jη j2 − k2(σ− 2)
n∑

j=1
γ2

j

−σ

 n∑
j=1

β j + 4
(
1 + δ2

) n∑
j=1

η2
j2


. (45)

Proof of Proposition 3. Substituting the optimal solutions in (41) and (42) into the HJB equation in (37)
and simplifying yield

rVCA(s) =
n∑

j=1
α2

j + k

 n∑
j=1

F j −
n∑

j=1
α j +

kn
2

− s2

2

n∑
j=1

β j −
k2s2

2σ (σ− 2)
n∑

j=1
γ2

j

+

 n∑
j=1

α j − kn− εs + kδs
(
1− 2

σ

) n∑
j=1

γ j +
n
2

(
1− δ2

σ (σ− 2)
)
∂VCA

∂s

∂VCA

∂s

(46)

Differentiating (40) w.r.t. s, the following is obtained

∂VCA

∂s
= η1 + 2η2s. (47)
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Substituting (40) and (47) into (46) and equating the coefficients of η0 + η1s + η2s2 in (46), the results
in (41) and (42) are obtained. �

5.1.2. Optimal Trajectory of the Pollutant Stock

The ordinary differential equation in (48) in the following is obtained by substituting (41) and (42)
into (8)

.
sCA

(t) = CCA
1 + θCAs(t), (48)

where CCA
1 =

n∑
j=1

α j − kn + nη1
(
1 + δ2

σ

)
and θCA = 2nη2

(
1 + δ2

σ

)
−

kδ
σ

n∑
j=1

γ j − ε.

The optimal trajectory of the pollutant stock in (49) in the following is obtained by solving (48)

sCA(t) = −
CCA

1

θCA + CCA
2 etθCA

, (49)

where CCA
2 = s0 +

CCA
1
θCA , and θCA < 0 ensures the stability of the steady state of the pollutant stock.

5.2. Symmetric Case (CS)

5.2.1. Solutions of the Model

The HJB equation for the countries in (50) in the following is from (8) and (9) together with
Remark 1

rVCS = max
q,u

{
nπ+

∂VCS

∂s
ds(t)

dt

}
, (50)

where VCS = VCS(s) is the value function of the countries.
The following optimal feedback strategies of production and abatement of the countries are

obtained by taking the first-order conditions of the HJB equation in (50) w.r.t. q and u, respectively

qCS =
1
µ

(
α− k +

∂VCS

∂s

)
, (51)

uCS =
1
σ

(
kγs− δ

∂VCS

∂s

)
. (52)

Proposition 4. In the symmetric cooperative differential game, the optimal solutions of the value
functions and instantaneous levels of production and abatement, represented by VCS(s), qCS(t) and
uCS(t), respectively, are

VCS(s) = η0 + η1s + η2s2, (53)

qCS =
1
µ

(
α− k + η0 + η1s + η2s2

)
, (54)

uCS =
1
σ

(
kγs− δ

(
η0 + η1s+ η2s2

))
, (55)

where

η0 =
n
r

kF +
1
2
(k− α)2

− η1(k− α) +
η2

1

2

(
1 +

δ2

σ

), (56)

η1 =
1
σr

(
2nη2

(
η1

(
σ+ δ2

)
− σ(k− α)

)
− η1(knγδ+ εσ)

)
, (57)

η2 =
n

2σr

(
k2γ2

− βσ
)
−

2η2

σr

(
knγδ+ εσ+ nη2

(
σ+ δ2

))
. (58)
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Proof of Proposition 4. Substituting the optimal solutions of (51) and (52) into the HJB equation in (50)
and simplifying yield

rVCS(s) = 1
2σnk2γ2s2 + n

2

(
2kF + (k− α)2

− s2β
)

+
(
nα− εs− kn

σ (γδs + σ) + n
2σ

(
σ+ δ2

)
∂VCS

∂s

)
∂VCS

∂s
(59)

Differentiating (53) w.r.t. s, the following is obtained

∂VCS

∂s
= η1+2η2s. (60)

Substituting (53) and (60) into (59) and equating the coefficients of η0 + η1s + η2s2 in (59), the results in
(54) and (55) are obtained. �

5.2.2. Optimal Trajectory of the Pollutant Stock

The ordinary differential equation in (61) in the following is obtained by substituting (54) and (55)
into (8)

.
sCS

(t) = CCS
1 + θCSsCS(t), (61)

where CCS
1 = 2µ

(
α− k + nη1

(
1 + δ2

σ

))
and θCS = 1

σknγδ+ ε− 2n2η2
(
1 + δ2

σ

)
.

The optimal trajectory of the pollutant stock in (62) in the following is obtained by solving (61)

sCS(t) = −
CCS

1

θCS + CCS
2 etθCS

, (62)

where CCS
2 = s0 +

CCS
1
θCS , and θCS < 0 ensures the stability of the steady state of the pollutant stock.

6. Numerical Simulation

In the following, numerical results of the case of a duopoly game, i.e., n= 2, are demonstrated.
The effects of the initial allocations of pollution emission permits F1 and F2 (F) and the pollution
emission coefficient µ on the value functions V1 and V2 (V), on the production levels q∗1 and q∗2,
on the abatement efforts u∗1 and u∗2 (u∗), and on the pollutant stock levels s(t) are studied through
numerical simulation.

The selection of important parameter values in the models is similar to that in List and Mason [21].
The following example comes from global warming and U.S. carbon emissions (List and Mason,
2001). Nordhaus [33] derived that the carbon decay rate in the atmosphere per year is about 1%.
Therefore, ε = 0.01 is used in the numerical study. He also estimated that the discount rate ranges
from 1% to 7%. Hence, r = 0.02 is used in the numerical study. According to the ICE End of Day
Reports (https://www.theice.com/market-data/end-of-day-reports), k = 21 dollars per ton is used.
Based on empirical evidences [21,34–37], β1 = 0.0051, β2 = 0.005, α1 = 27, α2 = 28, γ1 = 0.000001,
γ2 = 0.0000011, δ = 2, σ = 0.1, µ = 0.01, s(0) = 167 (billion tons), F1 = 56 (billion tons) and F2 = 51
(billion tons) are used. In the NCS and CS scenarios, β = 0.0051, α = 27, γ = 0.000001, and F = 56 are
used. In all the plots in the following, t varies from 0 to 200 with an increment of 1.

The optimal solutions of the value functions, instantaneous levels of production and abatement,
and the optimal trajectories of the pollutant stock levels are obtained by substituting the above
parameter values into (14)–(16) and (23) for NCA, (27)–(29) and (36) for NCS, (40)–(42) and (49) for CA
and (53)–(55) and (62) for CS, respectively. After simplification, these optimal solutions are presented
in the following.

https://www.theice.com/market-data/end-of-day-reports
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Case NCA

sNCA(t) = 8.932 + 158.068e−0.522583t, qNCA
1 (t) = 589.56− 0.633s(t),

qNCA
2 (t) = 690.117− 0.615s(t), uNCA

1 (t) = 2.088+0.127s(t),

uNCA
2 (t) = 1.977+0.123s(t), VNCA

1 (s) = 1193.29− 0.104s(t) − 0.00317s2(t),

VNCA
2 (s) = 1094.84− 0.099s(t) − 0.00307s2(t).

Case NCS

sNCS(t) = 8.29039 + 158.71e−0.519944t, qNCS(t) = 589.56− 0.633s(t),
uNCS(t) = 1.876+0.124s(t), VNCS(s) = 1193.42− 0.094s(t) − 0.0031s2(t).

Case CA

sCA(t) = 0.485 + 166.515e−0.900294t, qCA
1 (t) = 584.678− 1.08465s(t),

qCA
2 (t) = 684.678− 1.085s(t), uCA

1 (t) = 2.088+0.127s(t),

uCA
2 (t)= 3.064 + 0.217s(t), VCA(s) = 2288.47− 0.153s(t) − 0.005423s2(t).

Case CS

sCS(t) = 0.451 + 166.549e−0.895778t, qCS(t) = 585.859− 1.079s(t),
uCS(t) = 2.828+0.216s(t), VCS(s) = 2387.12− 0.141s(t) − 0.005396s2(t).

6.1. The Optimal Pollutant Stock Levels

Figure 1 shows the optimal evolution trajectories of pollutant stock levels of NCA, NCS, CA and
CS as time t changes. It can be seen from Figure 1 that all pollutant stock levels decrease quickly at the
beginning and finally reach low steady levels sNCA, sNCS, sCA and sCS, respectively, with sNCA = 8.932,
sNCS = 8.29039, sCA = 0.485 and sCS = 0.451.
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Obviously, sNCA > sNCS > sCA > sCS holds, which means that the pollutant stock levels in
symmetric cases are better than those in asymmetric cases, and those in cooperative cases are better
than those in non-cooperative cases. It further shows that both symmetry and cooperation are helpful
in reducing pollutant stock levels.
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6.2. The Optimal Production Levels

Figure 2 shows the evolutionary trajectories of the optimal production levels of NCA, NCS, CA
and CS as time t changes. It can be seen from Figure 2 that all optimal production levels increase
quickly in the beginning and finally reach high steady levels qNCA

1 , qNCA
2 , qNCS qCA

1 , qCA
2 and qCS,

respectively, with qNCA
1 = 583.906, qNCA

2 = 684.624, qNCS = 585.475, qCA
1 = 584.153, qCA

2 = 684.153 and
qCS = 585.372.
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Apparently, qNCA
1 + qNCA

2 > 2qNCS and qCA
1 + qCA

2 > 2qCS mean that both the optimal production
levels and the pollution emission levels in asymmetric games are more significant than those in
symmetric games. Furthermore, qNCA

1 + qNCA
2 > qCA

1 + qCA
2 and qNCS > qCS show that both the optimal

production levels and the pollution emission levels in non-cooperative games are higher than those
in cooperative games. It further shows that both symmetry and cooperation are helpful in reducing
pollution emission levels.

6.3. The Optimal Pollution Abatement Levels

Figure 3 shows the evolutionary trajectories of the optimal pollution abatement levels of NCA,
NCS, CA and CS as time t changes. It can be seen from Figure 3 that all pollution abatement levels
decrease quickly at the beginning and finally reach low steady levels uNCA

1 , uNCA
2 , uNCS, uCA

1 , uCA
2 and

uCS, respectively, with uNCA
1 = 3.2207, uNCA

2 = 3.07729, uNCS = 2.90665, uCA
1 = 3.16955, uCA

2 = 3.16956
and uCS = 2.92573.

Apparently, uNCA
1 + uNCA

2 > 2uNCS and uCA
1 + uCA

2 > 2uCS mean that both the optimal
pollution abatement levels in asymmetric games are more significant than those in symmetric games.
uNCS < uCS and uNCA

1 + uNCA
2 < uCA

1 + uCA
2 show that both the optimal pollution abatement levels in

non-cooperative games are smaller than those in cooperative games. It further shows that symmetry
goes against pollution abatement effort levels and cooperation is helpful to pollution abatement
effort levels.
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6.4. The Optimal Value Functions

Figure 4 shows the evolutionary trajectories of the optimal value functions of NCA, NCS, CA
and CS as time t changes. It can be seen from Figure 4 that all value functions increase quickly in the
beginning and finally reach high steady levels VNCA

1 , VNCA
2 , VNCS VCA

1 , VCA
2 , and VCS, respectively,

with VNCA
1 = 1193.29, VNCA

2 = 1094.84, VNCS = 1193.42, VCA = 2288.47 and VCS = 2387.12.
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Apparently, VNCA
1 + VNCA

2 < 2VNCS and VCA < VCS mean that both the optimal value functions
in asymmetric games are smaller than those in symmetric games. Furthermore, VNCA

1 + VNCA
2 < VCA

and VNCS < VCS show that both the optimal value functions in non-cooperative games are smaller
than those in cooperative games. It further shows that both symmetry and cooperation are helpful to
the value functions.
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7. Dividends Analysis

7.1. Cooperative Dividends

Definition 1. The cooperative dividend is the difference between optimal payoffs of the cooperative
game and the non-cooperative game.

Definition 2. A cooperative agreement is feasible if and only if the total optimal cooperative payoffs
are greater than the sum of the individual non-cooperative payoffs.

The so-called agreement feasibility refers to the collective rational choice of many parties.
Definition 2 shows that a cooperative agreement is feasible if sum of individual payoffs of the
cooperation strategy is more than that of the current non-cooperative strategy.

Figure 5 shows the evolutionary trajectories of the different optimal dividend levels as time t
changes, in which CPsc denotes the cooperative dividend of a symmetric game, CPca denotes the
cooperative dividend of an asymmetric game, CPcs denotes the symmetric dividend of a cooperative
game, CPncs denotes the symmetric dividend of a non-cooperative game, and SCPcs denotes the
cooperative and symmetric dividend of a game.
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7.1.1. The Cooperative Dividend of an Asymmetric Game

Definition 3. The cooperative dividend of an asymmetric game is the difference between optimal
payoffs of its asymmetric cooperative scenario and its asymmetric non-cooperative scenario.

According to Definition 3, the cooperative dividend of an asymmetric game can be written as

CPca = VCA
− (VNCA

1 + VNCA
2 )

= 2.5804− 150.372e−1.80059t + 155.917e−1.04517t
− 26.3881e−0.9200294t + 49.7445e−0.522583t .

Figure 5 also shows that the cooperative dividend of an asymmetric game decreases quickly at
the beginning and finally reaches a low steady level CPca∞ = lim

t→∞
CPca = 2.5804.
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7.1.2. The Cooperative Dividend of a Symmetric Game

Definition 4. The cooperative dividend of a symmetric game is the difference between optimal payoffs
of its symmetric cooperative scenario and its symmetric non-cooperative scenario.

According to Definition 4, the cooperative dividend of a symmetric game can be written as

CPsc = VCS
− 2VNCS

= 2.20858− 149.676e−1.79156t + 156.386e−1.03989t
− 24.3631e−0.895778t + 46.1037e−0.519944t .

Figure 5 also shows that the cooperative dividend of a symmetric game decreases quickly at the
beginning and finally reaches a low steady level CPsc∞ = lim

t→∞
CPca = 2.20858.

7.2. Symmetric Dividends

Definition 5. The symmetric dividend is the difference between optimal payoffs of the symmetric
game and the asymmetric game.

Definition 6. A symmetric agreement is stable if and only if the total optimal symmetric payoffs are
greater than the total optimal asymmetric payoffs.

7.2.1. The Symmetric Dividend of a Non-Cooperative Game

Definition 7. The symmetric dividend of a non-cooperative game is the difference between optimal
payoffs of its symmetric non-cooperative scenario and its asymmetric non-cooperative scenario.

According to Definition 7, the symmetric dividend of a non-cooperative game can be written as

CPnsc = 2VNCS
− (VNCA

1 + VNCA
2 )

= 99.0347 + 155.917e−1.04517t
− 156.386e−1.03989t + 49.7445e−0.522583t

− 46.1037e−0.519944t .

Figure 5 also shows that the symmetric dividend of a non-cooperative game decreases quickly at
the beginning and finally reaches a low steady level CPnsc∞ = lim

t→∞
CPnsc = 99.0347.

7.2.2. The Symmetric Dividend of a Cooperative Game

Definition 8. The symmetric dividend of a cooperative game is the difference between optimal payoffs
of its symmetric cooperative scenario and its asymmetric cooperative scenario.

According to Definition 8, the symmetric dividend of a cooperative game can be written as

CPcs = VCS
−VCA

= 98.6629 + 150.372e−1.80059t
− 149.676e−1.79156t + 26.3881e−0.900294t

− 24.3631e−0.895778t .

Figure 5 also shows that the symmetric dividend of a cooperative game decreases quickly at the
beginning and finally reaches a low steady level CPcs∞ = lim

t→∞
CPcs = 98.6629.

7.3. The Cooperative Symmetric Dividend of a Game

Definition 9. The cooperative symmetric dividend of a game is the difference between optimal payoffs
of its symmetric non-cooperative scenario and its asymmetric cooperative scenario.

Definition 10. A cooperative symmetric agreement is stable if and only if the sum of the optimal
cooperative symmetric payoffs is greater than the sum of the optimal asymmetric non-cooperative payoffs.
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According to Definition 9, the cooperative symmetric dividend of a game can be written as

SCPcs = VCS
− (VNCA

1 + VNCA
2 )

= 101.243− 149.676e−1.79156t + 155.917e−1.04517t
− 24.3631e−0.895778t + 49.7445e−0.522583t .

Figure 5 also shows that the cooperative symmetric dividend of a game decreases quickly at the
beginning and finally reaches a low steady level SCPcs∞ = lim

t→∞
SCPcs = 101.243.

Obviously, SCPcs∞ > CPnsc∞ > CPcs∞ > CPca∞ > CPsc∞ holds, which means that the cooperative
symmetric dividend of a game is the largest and the cooperative dividend of a symmetric game is
the smallest.

8. Policies and Managerial Implications

Results mentioned above show that symmetry and cooperation are not only helpful in reducing
both pollutant stock levels and pollutant emission levels but also helpful to payoffs of all countries.
These results also prove the Paris agreement’s idea which is that as each country implements its pledge,
others can learn what is feasible, and that collaborative global climate protection will emerge. So,
we can preliminarily reach the following five necessary judgments.

First, the competition between countries is integral and an essential strategic factor. A country
should consciously put competition factors into consideration in its global strategy.

Second, in global competition, a country needs to build its comparative advantage, which is
the basis of cooperation. Only by taking the initiative in the competition can it better carry out
international cooperation.

Third, from the perspective of global governance, the compromise between countries in international
competition does not necessarily mean clandestine collusion against the value of other countries.
On the contrary, it is likely to lead to a more effective allocation of global resources.

Fourth, the formation of regional alliances similar to the European Union will help in improving the
symmetry of participants, and also be more conducive to production efficiency and pollution reduction.

At last, the future global climate agreements following the Kyoto Protocol and the Paris Climate
Agreement should strive to enhance cooperation, symmetry, and transparency in international
production and pollution reduction.

9. Conclusions

In this study, infinite-horizon cooperative and non-cooperative differential games are proposed to
describe strategies of production planning and pollution abating of n countries under cap-and-trade
regulations. Their asymmetric and symmetric feedback solutions are obtained using HJB equations.

These countries in the game simultaneously make two decisions—how much product to produce
and how much pollution to abate under cap-and-trade regulations. In other words, each country
makes decisions about how much pollution to abate or how much pollution emission right to buy
or sell when deciding how much product to produce. Furthermore, the equilibrium solutions of the
value functions, instantaneous levels of production and abatement, and the optimal trajectories of the
pollutant stock levels vary at the beginning and finally reach their steady levels.

Both symmetry and cooperation are shown to have significant impacts on the production planning
and pollution abating decisions. These impacts are:

1. Both symmetry and cooperation are helpful in reducing pollutant stock levels, abating pollution
emission levels, and improving value functions.

2. Dividends increase in the following order: The cooperative dividend of a symmetric game,
the cooperative dividend of an asymmetric game, the symmetric dividend of a cooperative game,
the symmetric dividend of a non-cooperative game, and the cooperative and symmetric dividend
of a game.
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As concluded above, the cooperation of production plan and pollution emission significantly
affect the decisions of the countries. However, how to share their information and how to improve their
production cooperation among the n countries are interesting research topics. Moreover, equilibria
mentioned above may vibrate under uncertain circumstances.

The following extensions are of interest for future research:

1. The deterministic differential games are based on assumptions of specific environmental damages
which make the problem tractable. Further development is to consider uncertain environmental
damages for which a stochastic differential game will be appropriate.

2. The ordinary differential games are based on the assumption that the environmental damage
cost depends on the total pollutant stock level without considering its spatial diffusion. Partial
differential games may be employed to consider the spatial diffusion.

3. The differential games are only constrained by the dynamical pollutant stock levels. If the pollution
emission permits can be traded with dynamical prices, two or more dynamical constraints may
be considered as shown in Xin and Sun [38].
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