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Abstract: This paper presents a new approach to the assessment of the uncertainty of using
geostatistical Gaussian simulation in soil magnetometry. In the study area, numerous measurements
of soil magnetic susceptibility were made, and spatial distributions of soil magnetic susceptibility
were simulated. The parameters of variograms of soil magnetic susceptibility measured in the study
area were determined and compared with those of simulated soil magnetic susceptibility. Regardless
of the measurement scheme used, reproducibility of the original semivariograms of soil magnetic
susceptibility was satisfactorily achieved when applying simulated values. A nugget effect, a sill,
and a range of correlations of variograms of simulated values of soil magnetic susceptibility were
similar to those of measured values. When the input data for the geostatistical simulation were
averaged, the measured values of soil magnetic susceptibility and simulated spatial distributions
were characterized by slightly lower standard deviations in comparison with the result of simulations
based on the non-averaged, measured ones. At the same time, however, local variability of soil
magnetic susceptibility was reproduced less. The accuracy of the calculations of point parameters
and spatial distributions—based on the averaged values of soil magnetic susceptibility—were
satisfactory, but when using geostatistical methods, it is recommended to use non-averaged magnetic
susceptibility measurements.

Keywords: industrial areas; soil magnetometry; soil pollution; uncertainty; spatial variability;
geostatistical Gaussian simulation; environment

1. Introduction

Soil magnetometry has frequently been used to detect and determine the potential soil pollution
with Potentially Toxic Elements (PTE) emitted by industry, transportation, agriculture, households,
and other types of anthropogenic sources. Due to the presence of magnetic particles in anthropogenic
pollutants, soil magnetometry has been proposed as a fast and cheap alternative to expensive and
time-consuming geochemical laboratory analyses. Numerous studies confirmed statistically significant
correlation between industrial pollution and soil magnetic susceptibility [1–4].

Soil magnetometry is considered as one of the most innovative and promising methods in
environmental research [5,6]. Recently, soil magnetometry was a subject of intense development as a
method for the screening of soil polluted with toxic elements. Numerous studies were conducted [7–10]
where the methodology of field and laboratory measurements was described and analyzed in detail.
However, in addition to the measurement stage, the appropriate analysis of the measured values of
magnetic susceptibility—leading to the accurate delineation of spatial distributions and the size of the
potentially contaminated area—is an essential procedural requirement. When assessing the degree
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of soil contamination using soil magnetometry, various types of errors may occur. The first group
of measurement errors is related to the apparatus used, the method of soil sampling, and the field
measurements technique. These aspects were studied extensively, and numerous scientific papers have
been published on this topic [11,12]. However, the biggest challenge is still the determination of the
level of soil pollution in places where measurements were not taken, with the simultaneous assessment
of the errors of these estimates. These errors may result from difficulties in proper assessment of
the spatial variability of soil magnetic susceptibility as well as from other specific properties of the
interpolation method [13,14]. Even the most advanced interpolation methods are characterized by the
possibility of underestimating or overestimating the interpolated value. Therefore, it is important to
estimate the uncertainty of estimated spatial distributions, as it may have a very significant impact on
subsequent decisions regarding the classification of certain areas as contaminated or clean.

Simple interpolation methods do not allow the determination of the uncertainty of interpolated
values. In the case of geostatistical methods, such as different types of kriging, it is possible to determine
a spatial distribution of errors using kriging variance calculations [15]. Such distribution already allows
for some estimation of the uncertainty of the interpolated values of magnetic susceptibility of soil and
related phenomena. The kriging variance, however, has some limitations arising from problems with
assessing the proper model of spatial correlations of phenomena under study.

In this aspect, geostatistical simulations offer an advantage over estimations based on kriging.
Geostatistical simulations are better at representing local variability because the small-scale variability
is added back into the calculated spatial distributions [16–20]. The averaging of simulated values
from geostatistical simulations results in the kriging prediction because the variability added to the
predicted value has a mean of zero. After calculating the number of realizations using Sequential
Gaussian Simulations (SGS), it is possible to calculate numerous statistics of simulated values at each
location within a study area or even calculate histograms or box-and-whisker plots.

Moreover, kriging is based on a local average of measured values and tends to produce smoothed
spatial distributions where high-value areas are typically underestimated, while low-value areas are
usually overestimated. Geostatistical simulations are better when reproducing high and low values.
In soil magnetometry, it can be very important, especially in areas that are classified as hotspots where
high values of soil magnetic susceptibility were measured.

This paper presents the analysis of a new approach to the assessment of uncertainty in soil
magnetometry using geostatistical Gaussian simulation. More specifically, two of the most common
schemes of field measurement of soil magnetic susceptibility were compared in terms of their magnitude
of errors of the estimated spatial distributions. It is important to notice that the intention of this paper
was not to introduce any new geostatistical modeling methods or updates to an existing one. The goal
of this paper was to propose the use of a well-known method of geostatistical Gaussian simulation to
be widely used in soil magnetometry studies of soil pollution. The goal was to show the benefits and
advantages of using geostatistical simulation, specifically in the soil magnetometry method. This was
dictated by the fact that, despite the significant development of soil magnetometry, most of the work
focused on the advance in measurement and analytical methods. A very important part of the analysis
of the results of field measurements has been neglected to some extent.

In the selected study area, a large number of measurements of soil magnetic susceptibility was
made, and several tens of spatial distributions of soil, κ, were simulated and later used to calculate
the mean, median, minimum, and maximum of these realizations. As a measure of uncertainty of
the simulated values of soil magnetic susceptibility, we have presented spatial distributions of the
coefficient of variation of simulated κ, calculated as the standard deviation of simulated values of soil
magnetic susceptibility divided by means of simulated values of κ.

Next, simulated and measured values of κ were compared using classic statistics as well as
analysis of spatial correlations. The parameters of spatial correlations of κ measured in the study area
were determined and compared with those calculated using simulated maps of average κ. The goal of
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this part of the analysis was to determine which of the data sets allows results that are characterized by
parameters of spatial correlation as close as possible to those characterizing the measured κ values.

2. Materials and Methods

2.1. Study Area

The study area of about 4 km2 was located in a forest in Upper Silesian Industrial Area, in southern
Poland (Figure 1), WGS84 coordinates 50.323N, 19.450E. The majority of the natural forest where
measurements were made was overgrown by coniferous trees. The major types of geological substrata
in the study area were sands and gravels, eolian sands, and partially loess, mostly in the south-western
part of the area [21].
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Figure 1. Location of the study area and location of sample points (marked by white dots).

The surroundings of the analyzed area were characterized by rather complex land management:
eastern and north-eastern parts were mostly covered with forests, while the southern and western part
were mostly occupied by open, sparsely built-up area. In the past, the surroundings of the study area
were intensively used for Pb and Zn ore exploration. At present, only one mining and metallurgical
complex is still active and is located about 5 km to the south-east.

2.2. Measurements of Soil Magnetic Susceptibility

Magnetic susceptibility was measured on the soil surface using the Bartington MS2D sensor [22].
During field measurements, volume magnetic susceptibility κ was measured and expressed in [10−5 SI]
units. At the selected location, 10 to 15 single readings were made on the soil surface in a circle with a
radius of 2 m. These values of soil magnetic susceptibility measured at every single reading will be
furthermore labeled as κnon-avg. The total number of κnon-avg values was equal to 460. Within each
of the measuring points, values of κnon-avg were averaged, and the calculated average value of soil
magnetic susceptibility was furthermore labeled as κavg. The total number of κavg values was equal to
46. Each of these MS2D readings was assigned with a geographical coordinate.
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Firstly, distributions of 10 readings of κnon-avg were analyzed individually at each of 46 sample
points in order to determine outlier values, which were defined as lower than Q25% − 1.5 × IQR or
higher than Q75% + 1.5 × IQR. After the outlier values of soil magnetic susceptibility were removed,
the average magnetic susceptibility was calculated for each of 46 sample points. These averages will
be referred to below as κavg. In the final results, two data sets were obtained:

1. the set of 450 κnon-avg, non-averaged readings of the MS2D meter performed in each of the 46
measured points,

2. the set of 46 κavg susceptibility values created after averaging the readings of the MS2D meter
which were performed in each of the 46 measured points.

The values of κavg and κnon-avg were later used as input data in the geostatistical analyses of
spatial correlations and simulations.

2.3. Spatial Simulations

Spatial distributions of soil magnetic susceptibility were simulated using conditional SGS [16–20].
This type of simulation was selected in order to achieve the best possible replication of the mean,
variance, and semivariogram of the measured values of κnon-avg and κavg.

The first step in SGS was to create a grid with a cell size equal to 10 m. Next, following a
pre-defined random path, the normal distribution—from where the value of κ was sampled—was
centered in the kriging estimates of κ, which were calculated using a covariance model of measured
values of κnon-avg or κavg. The average values of all realizations of SGS at sample point locations were
approximately equal to measured values of κnon-avg or κavg depending on which data were used as
an input for SGS. The small differences between measured and simulated values could be observed
because values were simulated at a grid cell that might not be located exactly in the same place as
the sample points. Only one value of κ per location was used in the SGE. In case of the κavg set, ten
values of κ measured per sample point, as well as the XY coordinates of these measurements, were
averaged. Then, the average values of κ and XY coordinates were used in simulations. In the case
of the simulations based on the κnon-avg set, all 10 values of κ measured per sample point (and their
coordinates) were used separately. As a consequence, when ten κnon-avg set was used, many more pairs
of κ values existed for each variogram lag. (The number of pairs between measurements is proportional
to the square of the number of measurements). A hundred simulations were made separately for two
cases when the input data were κnon-avg and κavg values. These SGS realizations were later used to
calculate spatial distributions of:

1. κsim-avg—the average of all simulated realizations,
2. κsim-min—the minimum of all simulated realizations,
3. κsim-max—the maximum of all simulated realizations,
4. κsim-std—the standard deviations of all simulated realizations.

Before running SGS, all input data were tested for normality of their distributions. A Shapiro–Wilk
test was selected to check the normality of the input data. The null hypothesis in this test assumes
that the analyzed sample comes from a normal distribution. This test was selected because it is the
preferred test for normality of the distribution due to its power compared to other alternative tests.

2.4. Analyses of Spatial Correlations

Experimental variograms were calculated accordingly to a common formula [15]:

γ(h) =
1

2N

N∑
i=1

[Z(xi) −Z(xi + h)]2 (1)
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where: xi is a location, h is a lag vector, Z(xi) is the measured value at location xi, and N is the number
of pairs spaced by h vector.

In this work, experimental variograms were calculated based on two different types of data.
Firstly, variograms were calculated using values of κnon-avg and κavg measured at the sample points.
Next, variograms were also calculated using simulated values of κsim-avg separately for two simulation
cases where the input was κnon-avg or κavg values. These simulated values were available not at
the measuring points, but in each cell of the simulated grid. The cell size of this grid was equal to
10 m. All experimental variograms were later modeled using the spherical model with a nugget effect.
Nugget effect describes the variability between values for distances shorter than a sampling distance
and is also related to the variability resulting from measurement and instrumental errors.

3. Results and Discussion

Before running the SGS, both data sets of measured values, κnon-avg and κavg, were tested for
normality of their distributions. A Shapiro–Wilk test was performed with a significance level of 0.05.
The results of this test suggested that for both sets of κnon-avg and κavg, it can be assumed that their
distributions are close to normal distribution. On the basis of these results, it was concluded that the
κnon-avg and κavg values could be used in further analyses, variogram calculation, and SGS simulation
without data transformation.

As can be noticed in Table 1, the data set that included all, non-averaged values, κnon-avg, was
much more frequent than the set of κavg. The average susceptibility values were similar for both
sets of data and approximately equal to 65 × 10−5 SI. More pronounced differences were observed
in the case of quartiles and standard deviation values, where the averaging data resulted in a visible
reduction in the spread of susceptibility values. For the κavg, the minimum and maximum susceptibility
values were 31 × 10−5 SI and 108 × 10−5 SI, respectively, and for the set of κnon-avg, 14 × 10−5 SI and
149 × 10−5 SI, respectively.

Table 1. Descriptive statistics of measured values of κnon-avg and κavg.

κavg κnon-avg

(10−5 SI)

Average 65.2 65.7

Q25% 47 46

Q75% 82 87

Minimum 31 14

Maximum 108 149

Standard deviation 20 27

Number 46 450

As can be observed in the Figure 2, spatial distributions of κsim-avg simulated on the basis of
two sets of data, κnon-avg and κavg, did not differ significantly. Subareas with high and low values of
κsim-avg were located in similar parts of the study area; in the Western and Eastern parts, respectively.
Further analysis of the differences between these distributions, using differential map (Figure 3)
between κsim-avg simulated using κnon-avg and κsim-avg simulated using κavg showed that maximum
variation between these distributions was in the range of 10 × 10−5 SI. This was rather low values in
comparison to the range of measured κnon-avg and κavg values, which was over 100 × 10−5 SI. Based
on this observation, it might be assumed that the differences between simulated distributions of
κsim-avg, which were simulated using data sets κnon-avg and κavg, could be attributed to the specific
sampling methodology.
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Application of SGS made it possible to calculate, at each grid point, numerous realizations of κ
values that have similar histograms and variograms as the input data, i.e., κnon-avg and κavg data sets.
Using these realizations, it was possible to assess the variability of the simulated values by calculating
κsim-avg, κsim-min, κsim-max, and κsim-std. Firstly, standard deviations of simulated values κsim-std were
calculated, and subsequently, the coefficients of variations, i.e., κsim-std divided by κsim-avg. As can
be observed in Figures 4 and 5, values of the coefficient of variation of κ were under 20% for the
majority of the study area. It was also observed that slightly lower values of the coefficient of variation
were observed for values simulated on the basis of the κavg data set. Such observations were due
to the fact that the κavg data set was characterized by lower variability, which was reduced during
the averaging of κnon-avg values. As it was analyzed, distributions of measured susceptibility values,
κnon-avg, at sample points were characterized, in average, by standard deviation, and coefficient of
variation equal to 18 × 10−5 SI and 27%, respectively. Therefore, it was evident that the variability of
simulated values of soil magnetic susceptibility at individual points was at a similar level to that of
measured values.

In the next step, the characteristics of spatial correlations of κ were analyzed using measured κavg

and κnon-avg data sets, as well as simulated values of κsim-avg, κsim-min, κsim-max, and κsim-std. For this
purpose, experimental variograms (Figure 6) were calculated with 12 lags, and a lag distance equal
to 200 m. Before the calculation of experimental variograms, input data were transformed using the
normal-score transformation. After the experimental variograms of measured and simulated soil
magnetic susceptibility were calculated, they were modeled using a spherical model with the nugget
effect. The goal of this part of analysis was to investigate if the parameters of spatial correlations of
simulated κsim-avg, κsim-min, κsim-max, and κsim-std were similar to those of measured κnon-avg values.
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As can be observed in Figure 6, experimental variograms of simulated κsim-avg had a similar shape
to the variograms of measured κnon-avg and κavg values, especially where they achieved sill. In order
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to investigate the similarities between spatial correlations of κsim-avg, κnon-avg, and κavg more precisely,
all variograms were modeled, and the parameters of these models were placed in Table 2.

Comparison of the parameters of spherical models of measured and simulated values of soil
magnetic susceptibility showed that the correlation range of κavg variogram was noticeable but not
much longer than the correlation range of κnon-avg variogram. As for the modeled nugget effect, it was
lower for κavg variograms in comparison with κnon-avg ones. Such observation could be explained by
the fact that during the averaging of values of soil magnetic susceptibility, the impact of outliers was
reduced. As can be observed in Table 2, the sill of the spherical model of κavg was slightly higher as
the sill of κnon-avg. Referring these observed differences to the calculated experimental variograms, it
can be noted that the differences in the sill values of spherical models of κnon-avg and κavg concerned
practically only distances above 1700 m. This distance was longer than the ranges of correlation of both
κnon-avg and κavg values. Differences in sill values could result mainly from a very large difference in
the number of values of κnon-avg and κavg, which were equal to 450 and 46, respectively. As a result,
according to the Formula (1), on the basis of which the semivariance values were calculated, in the case
of a variogram of κnon-avg values, it was possible to find many more pairs of sample points. Due to
the fact that the semivariance values of κnon-avg were calculated on the basis of a much larger number
of pairs of points than in the case κavg, the sill value of the spherical model of κnon-avg was lower.
However, it should be stated that the spatial characteristics of measured κnon-avg and κavg values were
rather similar, and the observed differences resulted from the sampling method.

Table 2. Parameters of variogram spherical models measured and simulated κ values.

Nugget Effect Sill Range of Correlation

(10−10 SI) (m)

Measured Values

κnon-avg 0.636 1.133 1580

κavg 0.520 1.320 1700

Values Simulated Using κnon-avg

κsim-avg 0 1.220 1100

Values Simulated Using κavg

κsim-avg 0 1.190 1150

In the next stage, the parameters of the variograms of measured κnon-avg, κavg, and simulated
κsim-avg values were compared. In each case, the variogram determined from the measured κnon-avg or
κavg values was used as the reference point. As can be noticed in Table 2, the comparison was made
separately for values simulated when the input data for SGS was set κnon-avg and κavg.

As it was observed, values of nugget effect of variograms of simulated values κsim-avg

were significantly lower than that of variograms of measured κnon-avg and κavg. Simultaneously,
the comparison of the parameters of spherical models showed that variograms of simulated values,
κsim-avg, were characterized by lower values of nugget effect than variograms of measured values of
κnon-avg and κavg data. Such observations might suggest that SGS was quite effective in recreating
the local variability of soil magnetic susceptibility, especially for distances shorter than a distance
between sample points. Measured values of soil magnetic susceptibility were not available for such
small distances, though they were available for simulated data sets, κsim-avg values were simulated for
each simulation grid cell with a size of 10 m.

Sill values of variogram models of κsim-avg simulated using κnon-avg and κavg data sets were
comparable. It is important to underline here that a ratio of nugget effect to sill, which ranges from 0 to
1, is often recognized as a critical measure to define the spatial dependence of soil properties [23,24].
The closer this ratio is to zero, the stronger spatial correlations are observed. Precise assessment of this
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ratio is crucial to the quality of the results of geostatistical analyses in soil magnetometry. Usually,
nugget effect is much more difficult to determine than sill. As it was observed, spherical models of
simulated κsim-avg were characterized by a shorter range of correlation in comparison with variograms
of measured κnon-avg or κavg. As can be noticed in Table 2, this difference was equal to about a few
hundred meters. The explanation of such observations is related to the fact that values of simulated
κsim-avg might be characterized by greater spatial variability at shorter distances. It is related to the fact
that simulated data were much more numerous than the measured data and were available at all 60
thousand grid cells, so small-scale spatial variability of magnetic susceptibility was well reproduced.

4. Conclusions

The most pronounced differences between spatial distributions of the average soil magnetic
susceptibility, simulated using non-averaged and averaged measurements, were found in places with a
high and low level of magnetic susceptibility. In the parts of the study area where the lowest magnetic
susceptibility was observed, values of soil magnetic susceptibility simulated using non-averaged data
were higher than those simulated using averaged data. In the parts of the study area where soil
magnetic susceptibility was the highest, the opposite situation was observed.

The spatial variation of soil magnetic susceptibility was distinctly higher in the case of simulations
made on the basis of non-averaged measured data due to the considerable loss of information about
the small-scale variability of soil magnetic susceptibility during data averaging. This resulted in the
underestimation of the values of a nugget effect when using averaged data which, as a consequence,
may lead to incorrect assessment of the level and extent of soil magnetic susceptibility distributions.

For longer distances, regardless of the measurement scheme used, reasonable reproducibility
of the original semivariograms of soil magnetic susceptibility was achieved by simulated values.
Variograms of the average of simulated values of soil magnetic susceptibility had similar sills and
ranges of correlation to those of the variogram calculated from values measured in the study area.
However, as before, the local variability of soil magnetic susceptibility was better reproduced when
using non-averaged values than averaged ones, regardless of the fact whether the data is measured or
simulated. This result confirms that it is favorable not to average magnetometric measurements for
geostatistical analyses.

Thus, our study showed that the geostatistical Gaussian simulation provides deep insight into the
variability and precision of soil magnetometry measurements at different distances, allowing for more
efficient planning of soil field measurements.
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