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Abstract: In China, upper-level healthcare (ULHC) and lower-level healthcare (LLHC) provide
different public medical and health services. Only when these two levels of healthcare resources
are distributed equally and synergistically can the public’s demands for healthcare be met fairly.
Despite a number of previous studies having analysed the spatial distribution of healthcare and its
determinants, few have evaluated the differences in spatial equity between ULHC and LLHC and
investigated their institutional, geographical and socioeconomic influences and spillover effects. This
study aims to bridge this gap by analysing panel data on the two levels of healthcare resources in
31 Chinese provinces covering the period 2003–2015 using Moran’s I models and dynamic spatial
Durbin panel models (DSDMs). The results indicate that, over the study period, although both levels
of healthcare resources improved considerably in all regions, spatial disparities were large. The
spatio-temporal characteristics of ULHC and LLHC differed, although both levels were relatively
low to the north-west of the Hu Huanyong Line. DSDM analysis revealed direct and indirect effects
at both short-and long-term scales for both levels of healthcare resources. Meanwhile, the influencing
factors had different impacts on the different levels of healthcare resources. In general, long-term
effects were greater for ULHC and short-term effects were greater for LLHC. The spillover effects
of ULHC were more significant than those of LLHC. More specifically, industrial structure, traffic
accessibility, government expenditure and family healthcare expenditure were the main determinants
of ULHC, while industrial structure, urbanisation, topography, traffic accessibility, government
expenditure and family healthcare expenditure were the main determinants of LLHC. These findings
have important implications for policymakers seeking to optimize the availability of the two levels of
healthcare resources.
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1. Introduction

Healthcare policymakers optimise the location and organisation of public healthcare resources
according to a trade-off between spatial equity and cost-effectiveness. China has achieved remarkable
success in the medical and health service sectors during the last three decades [1]. However, in the
current healthcare system in China, patient access to healthcare services is not organised according
to a gatekeeping system and two-directional referral network. Therefore, due to the unordered
pattern of medical treatment, upper-level hospitals are always overcrowded, while lower-level health
centres have fewer patients. This situation increases medical costs, wastes healthcare resources and
lowers healthcare efficiency. To solve this problem, to develop hierarchical diagnosis and treatment
(HDT) system initiated in 2015 has become a main objective of the Chinese healthcare reform [2]. It
emphasises that residents’ different medical service demands should correspond to the different levels
of medical institutions, and the main functions of different levels of healthcare resources should be
unambiguously divided. The upper-level healthcare (ULHC) should concentrate on illness and disease
treatment, public health services, and scientific research. The lower-level healthcare (LLHC) perform
first diagnoses, rehabilitation therapy and basic public health services [3,4]. Only when these two
levels of healthcare resources are distributed equally and synergistically can investment in public
health be utilised efficiently and people’s demands for healthcare met fairly. With this background, it
is important to understand the spatial equity of the two levels of healthcare resources across China.

The spatial equity (or inequity) of healthcare resources, ranging from healthcare professionals
to healthcare institutions, has been analysed. The analysing methods have been developed from
simple economic index to complex spatial data models. For example, the spatial disparity between
physicians in hospitals and clinics and the population in Japan was estimated by Lorenz curves and
Gini coefficients [5]. Disparity in the spatial distribution of clinics within the city of Daejeon was
analysed by hot-spot analysis [6]. Geographic distribution of healthcare resources in China was
estimated by dynamic convergence model [7]. Spatial disparities of access to primary healthcare across
rural Australia have been revealed by a modified two-step floating catchment area method [8]. While
previous studies have contributed to understanding healthcare spatial disparity, few have evaluated
the differences in spatial equity in different levels of healthcare resources.

It is argued that the distribution of healthcare resources is influenced by a combination of
natural and socioeconomic factors [9–11]. Socioeconomic factors such as the economy [7], healthcare
investment [12], education [13], government policies [1,14], urbanisation [15] and demographic
characteristics [16] are considered important determinants of healthcare resource distribution. For
example, Lee pointed out that the population proportion aged over 65 years, the number of businesses
and employees contribute to heterogeneity in the spatial distribution of clinics [6]. Qin and Hsieh
found that GDP per capita has a significant and non-linear impact on the convergence rate of healthcare
resources [7]. Coleman found that access to healthcare in the United States is limited by financial,
organisational, social and cultural barriers [17]. Bhattacharjee et al. argued that the spatial structure of
socioeconomic characteristics and health behaviours, and the utilisation and quality of healthcare, are
particularly relevant in the efficient allocation of healthcare resources [18]. While recent studies have
considered the contribution of natural factors, research has concentrated on environmental variables
including wastewater and air pollution emissions [13,19]. However, few quantitative studies have
explored how topographical factors influence the spatial distribution of healthcare resources.

A number of researchers have suggested that policymakers should take spatial independence
into consideration when aiming to mitigate public service inequality [13,20,21]. Existing studies have
focused on the spatial spillover effects of public infrastructure on regional productivity, of fiscal
investment on public provision [22,23], and of health investment on regional healthcare costs [24].
Spatial spillover analysis techniques have included the use of cross-sectional and spatial panel
data [25–27], and static and dynamic models [28–31]. New approaches have been implemented
following empirical studies of public services. For example, Zafra-Gómez and Chica-Olmo analysed
spatial panel data on waste collection services in small and medium-sized municipalities in Spain
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using the spatial autoregressive regression model (SAR) and the spatial Durbin model (SDM) [32].
Mourao and Vilela analysed the multiplier effects of pensions in Portuguese municipalities using the
dynamic spatial Durbin model (DSDM) [33]. Empirical evidence on healthcare spatial interdependence
strongly suggests that there are spatial spillover effects across regions [13,22,24,34,35]. Quadrado et
al. analysed the spatial spillover of health facilities by Theil’s second measure [36]. Mobley et al.
used SAR to explain the neighbourhood peer effect in preventive care utilization [37]. Costa-Font and
Moscone estimated interdependence in the health spending decisions of neighbouring regions by the
spatial lag model (SLM) and spatial error model (SEM) methods [38]. Turi and Grigsby-Toussaint used
SDM to estimate the direct and indirect effects of socio-ecological determinants on diabetes-related
mortality [39]. Tabb et al. assessed the spillover effects of health factors on health outcomes across the
United States by applying SDM [40]. These studies highlight how useful these methods are in exploring
healthcare determinants and their spatial spillover effects. Given its externality, the intervention of
hierarchical healthcare allocation is much more complicated. However, the spillover effects of natural
and socioeconomic characteristics on healthcare resources have not received much scholarly attention.
In particular, research on the impacts of such determinants on different levels of healthcare resources
is rare and, to our knowledge, dynamic spatial analysis methods have not been applied in healthcare
resource distribution research. Thus, these studies may have limited implications for the development
of spatial equity and the optimisation of different levels of healthcare resources.

The purposes of this paper are to: (1) analyse the spatio-temporal distribution of ULHC and
LLHC and; (2) understand the institutional, geographical and socioeconomic factors influencing ULHC
and LLHC distributions and their short-term, long-term, direct and spillover effects in China. It is
expected that the findings from this study will help design policy interventions and allocate resources
to enhance spatial equity.

2. Methods

2.1. Defining the Variables of Interest

2.1.1. Defining the Two-Level Healthcare Index

The Planning Outline of the National Medical and Health Service System (2015–2020) was issued by
the General Office of the State Council of China. According to this document, the public healthcare
system is composed of public hospitals (above the county level), professional public health institutions
(above the county level) and primary healthcare centres (below the county level). The main functions
are defined as medical treatment (for public hospitals) and public healthcare services (for professional
public health institutions). These two functions are combined for primary healthcare centres. According
to the Planning Outline and publicly-available data and for the purposes of this study, public hospitals
include general hospitals, traditional Chinese medicine (TCM) hospitals and specialized hospitals.
Public professional healthcare service institutions include control disease centres (CDCs), specialised
disease prevention centres (SDPs) and maternal and child health stations (MCHSs). Primary healthcare
centres consist of urban community health institutions (UCHIs) and town health centres (THCs)
(community level) and village clinics (village level). Most village clinics are operated by private rural
doctors and the focus of this study is on public healthcare resources. Therefore, in this study, ULHC
refers to the healthcare resources of public hospitals and professional public health institutions, while
LLHC refers to the healthcare resources of UCHIs and THCs (Figure 1).

Health professionals, beds and institutions are the most significant criteria for evaluating
healthcare resources [13]. Based on the healthcare systems in China as well as relevant research [41],
evaluation index system of the two levels of public healthcare resources was established. (Table 1).
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Table 1. Evaluation index of two levels of public healthcare resources.
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CDCs: control disease centres; SDPs: specialised disease prevention centres; MCHSs: maternal and child health
stations; UCHIs: urban community health institutions; THCs: town health centres.

2.1.2. Choosing the Factors Influencing Healthcare Resource Distribution

Selection of the factors that may influence healthcare resource distributions was based on relevant
literature reviews and data availability. In terms of socioeconomic factors, the non-agricultural industry
rate was selected as a proxy indicator of the state of the regional economy, which could have positive
impacts on the healthcare resources of a local region [7]. The urbanisation rate was an indicator
which could have positive impacts on local and neighbouring regions [42]. Geographical factors
primarily included traffic accessibility and the proportion of mountainous area. Traffic accessibility
reflects economic mobility and connectivity between regions, which could have positive impacts on
healthcare resources in a province and its surrounding provinces [43]. The proportion of mountainous
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area reflects topography, which was assumed to have negative impacts on local healthcare resources,
because there is undeveloped social and economic potential in the mountainous regions of China [4,44].
Government investment includes government healthcare investment and education investment. The
former could have positive impacts on healthcare resources in local and surrounding regions due to
the competitive and mimetic effects of government fiscal spillover [22,23,45], while the latter could
have negative impacts on healthcare resources due to crowding-out effects between different types
of public investment [13]. Family healthcare expenditure included urban and rural family healthcare
expenditure per capita, which could have positive impacts on local and surrounding healthcare
resources. The above 15 independent variables are shown in Table 2.

Table 2. Factors influencing healthcare resource distribution.

Factor Type Proxy Variable Factor Description Computing Method

Socioeconomic factors
XNAR Non-agricultural

industry rate
ratio of secondary and tertiary industry
to GDP (%)

XUR Urbanization rate ratio of urban population to total
population (%)

Geographical factors XPMA Proportion of
mountainous areas

obtained from the Digital Mountain Map
of China (%)

XTA Traffic accessibility traffic network density (assign weights
to railways, highways, first-class roads,
second-class roads and other roads, and
divide the weighted summary by the
number of administrative areas)

Government investment
XHI Healthcare investment ratio of healthcare, social security and

welfare investment to total fixed-asset
investment (%)

XEI Education investment ratio of education investment to total
fixed-asset investment (%)

Family healthcare
expenditure

XUFHE Urban family
healthcare expenditure

urban household healthcare expenditure
per capita (Yuan)

XRFHE Rural family
healthcare expenditure

rural household healthcare expenditure
per capita (Yuan)

2.1.3. Data Sources

This study considered 31 provinces, independent municipalities and autonomous regions as
spatial units and 2003–2015 as temporal units of analysis. Three types of data were used in this article.
(1) Healthcare data. This data included the number of healthcare institutions, hospital beds and
healthcare professionals of public hospitals, CDCs, MCHSs, SDPs, UCHIs and THCs. All the data
were extracted from the China Health Statistics Yearbooks (CHSY) 2004–2016 provided by the National
Health Commission. It should be noted that databases that provide healthcare resource estimates
for Chinese provinces are not abundant. For example, the numbers of public hospitals of traditional
Chinese and western medicine and public ethnic hospitals were not publicly available. An index
system (Table 1) was established according to the availability of public data. (2) Socioeconomic data.
These indicators include the non-agricultural industry rate, urbanisation rate, healthcare and education
investment, urban and rural family healthcare expenditure per capita and traffic data, such as the
lengths of first- and second-class roads, other roads and railways. The resident population at year-end
and the numbers of administrative areas were also collected to calculate healthcare resource indices. All
the socioeconomic data were extracted from the China Statistical Yearbooks (CSY) (2004–2016) provided
by the National Bureau of Statistics of China (http://data.stats.gov.cn/). (3) Geographical spatial data.
The proportions of mountainous area in each province were obtained from the Digital Mountain Map
of China (DMMC) [46]. This digital map was designed by the Institute of Mountain Hazards and
Environment, Chinese Academy of Sciences. It was compiled using digital geomorphology methods

http://data.stats.gov.cn/
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and remote sensing data and is used as a reference map for research in mountainous areas. Table 3
lists the descriptive statistics and sources of these variables.

Table 3. Descriptive statistics and sources of the data.

Variable Source Obs Mean Std.Dev. Min Max

ULHC (CHSY) (2004–2016) 248 0.205 0.144 0.020 0.780
LLHC (CHSY) (2004–2016) 248 0.200 0.126 0.030 0.860
XNAR (CSY) (2004–2016) 248 88.162 6.044 65.780 99.560
XUR (CSY) (2004–2016) 248 49.681 15.157 19.700 89.610

XPMA DMMC 248 63.303 27.986 0.800 98.100
XTA (CSY) (2004–2016) 248 0.264 0.143 0.030 0.620
XHI (CSY) (2004–2016) 248 0.804 0.262 0.270 2.220
XEI (CSY) (2004–2016) 248 1.959 0.908 0.660 6.290

XUFHE (CSY) (2004–2016) 248 847.108 370.643 221.700 2464.500
XRFHE (CSY) (2004–2016) 248 382.179 283.715 21.300 1395.200

Obs: observations; Std.Dev.: standard deviation.

2.2. Methods

There were four steps of analysis used in this study. Firstly, the values of ULHC and LLHC were
calculated using the entropy method; secondly, the spatio-temporal distribution of ULHC and LLHC
were estimated by Moran’s I model; thirdly, the stages of the study period were divided by applying
mathematical derivative models; finally, the influencing factors and spillover effects were analysed by
dynamic spatial panel models.

2.2.1. Calculation of ULHC and LLHC and the entropy method

The numbers of institutions, beds and healthcare professionals for each type of healthcare
institution (A) are presented in Figure 1. These were summarized respectively to obtain the total
number of each index at the criterion layer. The PONMHSS (2015–2020) proposes that healthcare
institutions should be allocated according to administrative areas and service radii, while hospital
beds and health professionals should be allocated according to the population. Thus, values of
the criterion layer (B) were calculated according to the number of healthcare institutions per 100
km2, and the numbers of hospital beds and health professionals calculated per 1000 people. Then,
values of Y were calculated by the entropy weighted summarization of dimensionless values of B.
The entropy method has been widely used in multiple objective comprehensive evaluation research,
as it is objective in weighting indexes according to information contained in the data [47]. In this
study, there were n provinces and m indicators. The entropy of the lth indicator is expressed as
Hl = −k ∑n

i=1( fil ln fil), i = 1, 2, . . . , n; l = 1, 2, . . . , m, where fil is the frequency of the ith evaluating
object in the lth indicator, fil = ril/ ∑n

i=1 ril , ril is the normalized values of B, and k = 1/lnn; if fil = 0,
fil ln fil = 0. Then, w of the lth indicator can be expressed as wl =

1−Hl
m−∑m

l=1 Hl
, where 0 ≤ wl ≤ 1 and

∑m
l=1 wl = 1. The value of Y (ULHC and LLHC) at the goal layer was then calculated by the formula

Yi = ∑m
l=0 wlBil .

2.2.2. Moran’s I model

Spatial autocorrelation correlates variables with spatial locations and reflects the degree of spatial
dependence between values of random variables in geographic terms. The global Moran’s I method
has been widely used to reflect the degree of spatial autocorrelation of variables and estimate the spatial
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agglomeration and divergence distribution. It was used to measure the spatio-temporal distributions
of the ULHC and LLHC based on Equation (1):

I =
n ∑n

i=1 ∑n
j=1 Wij

(
Yi −Y

)(
Yj −Y

)
∑n

i=1 ∑n
j=1 Wij

(
Yi −Y

)2 (1)

where, Yi, Yj are the values of the healthcare resource indices of the ith and jth provincial units, Y is the
mean of the variable, and Wij is a matrix of spatial weights. The global Moran’s I value range is [–1,1].
The positive value indicates the spatial agglomeration distribution, and the negative value indicates the
spatial divergence distribution. Higher Moran’s I values indicate stronger spatial structure, and lower
Moran’s I values indicate weaker spatial structure. Zeroes represent random spatial distributions, i.e.,
no spatial correlation.

2.2.3. Mathematical Derivative Models

Based on the results of the spatial autocorrelation analysis of ULHC and LLHC, mathematical
derivative models were applied to divide the stages of the study period. The first-order backward
difference quotient was used for the previous year using the formula : f ′(It) =

f ′(It)− f ′(It−1)
It−It−1

, where I
is the Moran index, t is the time period (years 2003–2015, thus: t = 1, 2, . . . , 13). The first-order forward
difference quotient was applied for the other 12 years using the formula: f ′(It) =

f ′(It+1)− f ′(It)
It+1−It

.

2.2.4. Dynamic Spatial Panel Models

To eliminate the heteroscedasticity of the regression model, the logarithms of the variables were
used. Stepwise linear regression was applied to avoid the effect of multicollinearity between the
explanatory variables. Following the strategy described in LeSage and Pace [48] and Elhorst [49], this
study started with the spatial Durbin model (SDM) as a general specification and test for the exclusion
of the spatial autoregression model (SAR) and spatial error model (SEM) using likelihood ratio (LR)
tests. In this study, we wanted to estimate the long-term and short-term, and direct and indirect effects
of changes in geographical, socioeconomic and healthcare expenditure characteristics on ULHC and
LLHC. This led to Equation (2), which is empirically associated with a DSDM [28]:

Yit = τYi,t−1+δWYi,t + ηWYi,t−1 + βXi,t + θWXi,t + µ + εi,t (2)

where Yi,t denotes an N × 1 vector consisting of one observation of the healthcare resource for every
province i in the sample at time t; Xi,t, and WXi,t are matrices of exogenous dimensions; β and θ are the
response parameters to these exogenous dimensions;, τ and δ is the response parameter of the lagged
local healthcare resources in time and in space, η is the space-time parameter; µ represents spatial fixed
effects; and εi,t represents an error term uncorrelated with the explanatory variables across provinces
and over time.

To make the models more robust, Lagrange multiplier (LM) tests were used to select the most
appropriate spatial econometric model out of SAR, SEM and SDM. Then, Hausman’s specification
test was performed to decide whether fixed effects (FE) or random effects (RE) models would be
more appropriate. Following Elhorst, the bias-corrected quasi-maximum likelihood (QML) approach
described by Yu, de Jong and Lee was applied to select the appropriate model out of time-lagged,
spatio-temporal-lagged, and both time and spatio-temporal-lagged options. The final specification
of the dynamic spatial panel data model was used to probe the relationship between a province’s
healthcare resources and its explanatory variables, both within the province as well as in neighbouring
provinces. All computations are performed by STATA software (Stata Corporation, College Station,
TX, USA, 2015).
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3. Results

3.1. Spatio-Temporal Distributions of the Two Levels of Healthcare Resources

3.1.1. Distribution of the Two Levels of Healthcare Resources

The average of 13 years of data was ranked to understand the spatial distribution of ULHC
and LLHC (Figure 2). The results indicate, in terms of overall healthcare resources, that Shanghai,
Beijing, Tianjin, Zhejiang and Jiangsu were the five highest-ranked provinces, while Xizang, Yunnan,
Qinghai, Gansu and Ningxia were the lowest five. In terms of LLHC, the five highest-ranked provinces
were Shanghai, Zhejiang, Beijing, Jiangsu and Tianjin, while Ningxia, Heilongjiang, Qinghai, Yunnan
and Xizang were the lowest. In terms of ULHC, the five highest-ranked provinces were Shanghai,
Beijing, Tianjin, Liaoning and Shandong, while Xizang, Guangxi, Gansu, Yunnan and Guizhou were
the lowest five. In summary, these results show that distribution of the LLHC tended to be higher in
the eastern, central and southern regions, while that of ULHC were higher in the eastern regions. Both
levels of healthcare resources were relatively low north-west of the Hu Huanyong Line, except for
Xinjiang province.

Int. J. Environ. Res. Public Health 2019, 16, x  8 of 19 

The average of 13 years of data was ranked to understand the spatial distribution of ULHC and 
LLHC (Figure 2). The results indicate, in terms of overall healthcare resources, that Shanghai, Beijing, 
Tianjin, Zhejiang and Jiangsu were the five highest-ranked provinces, while Xizang, Yunnan, 
Qinghai, Gansu and Ningxia were the lowest five. In terms of LLHC, the five highest-ranked 
provinces were Shanghai, Zhejiang, Beijing, Jiangsu and Tianjin, while Ningxia, Heilongjiang, 
Qinghai, Yunnan and Xizang were the lowest. In terms of ULHC, the five highest-ranked provinces 
were Shanghai, Beijing, Tianjin, Liaoning and Shandong, while Xizang, Guangxi, Gansu, Yunnan and 
Guizhou were the lowest five. In summary, these results show that distribution of the LLHC tended 
to be higher in the eastern, central and southern regions, while that of ULHC were higher in the 
eastern regions. Both levels of healthcare resources were relatively low north-west of the Hu 
Huanyong Line, except for Xinjiang province. 

  
(a) (b) 

Figure 2. Spatial distribution of the mean values of LLHC (lower-level healthcare) and ULHC (upper-
level healthcare) (2003–2015), (a) LLHC, (b) ULHC. 

3.1.2. Spatio-Temporal Disparity of the Two Levels of Healthcare Resources 

High spatial autocorrelations were found to exist for both levels of healthcare. The spatial 
disparity of ULHC (Moran’s I: Max = 0.5559, Min = 0.2884, p ≤ 0.01) was more significant than that of 
LLHC (Moran’s I: Max = 0.3212, Min = 0.2134, p ≤ 0.01) and the spatial distribution of both levels 
together tended to be more equal. Based on the derivative value of the Moran’s I of both levels of 
healthcare, the study period was divided into three stages (Figure 3). In the first stage (2003–2005), 
the spatial disparities increased simultaneously. The two levels of healthcare resources clustered 
rapidly and both reached the peaks of aggregation in 2005. In the second stage (2006–2009), the spatial 
disparity of ULHC decreased quickly and the gap in spatial equity between ULHC and LLHC 
narrowed. In the third stage (2010–2015), both levels of healthcare resources gradually became 
distributed more equally. The disparity of ULHC decreased slower than that of LLHC. Thus, the gap 
in spatial equity between the two levels stabilized. 

Figure 2. Spatial distribution of the mean values of LLHC (lower-level healthcare) and ULHC
(upper-level healthcare) (2003–2015), (a) LLHC, (b) ULHC.

3.1.2. Spatio-Temporal Disparity of the Two Levels of Healthcare Resources

High spatial autocorrelations were found to exist for both levels of healthcare. The spatial disparity
of ULHC (Moran’s I: Max = 0.5559, Min = 0.2884, p ≤ 0.01) was more significant than that of LLHC
(Moran’s I: Max = 0.3212, Min = 0.2134, p ≤ 0.01) and the spatial distribution of both levels together
tended to be more equal. Based on the derivative value of the Moran’s I of both levels of healthcare,
the study period was divided into three stages (Figure 3). In the first stage (2003–2005), the spatial
disparities increased simultaneously. The two levels of healthcare resources clustered rapidly and
both reached the peaks of aggregation in 2005. In the second stage (2006–2009), the spatial disparity of
ULHC decreased quickly and the gap in spatial equity between ULHC and LLHC narrowed. In the
third stage (2010–2015), both levels of healthcare resources gradually became distributed more equally.
The disparity of ULHC decreased slower than that of LLHC. Thus, the gap in spatial equity between
the two levels stabilized.

Figure 4 compares the spatial distribution between LLHC and ULHC in each period. Although
the two levels of healthcare had been improved greatly during these 13 years, the spatial disparity
was still significant. Since 2009, the growth rate of LLHC in western regions had been much higher
than those in the eastern coastal regions. But the opposite was true for ULHC; the growth rate in the
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developed eastern regions had been extremely high. These results indicate that LLHC tended to be
distributed more equally than ULHC.
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3.2. Spillover Effects of the Two Levels of Healthcare Resources and their Determinants

According to the results of stepwise linear regression, the variance inflation factors (VIF) were
all less than 10, which suggests that there was no effect of multicollinearity between the explanatory
variables. Table 4 presents the constraint statistic for the selection of the spatial econometric models.

Table 4. The constraint statistics of the spatial econometric models.

ULHC LLHC

Test Statistic p-Value Test Statistic p-Value

Moran’s I 3.219 0.0010 Moran’s I 2.852 0.0340
LM-error 174.562 0.0000 LM-error 37.877 0.0050

Robust LM-error 84.394 0.0000 Robust LM-error 11.582 0.0010
LM-lag 156.862 0.0000 LM-lag 21.410 0.0350

Robust LM-lag 66.694 0.0000 Robust LM-lag 5.115 0.0240
LR-error 51.295 0.0000 LR-error 65.366 0.0000
LR-lag 40.773 0.0000 LR-lag 43.012 0.0000

LM: Lagrange multiplier; LR: likelihood ratio.
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The results of LM tests indicate that both LM-Lag and LM-Error, and their robust counterparts,
were significant for both ULHC and LLHC. Therefore, the DSDM was selected as the most
suitable spatial econometric model. Furthermore, in terms of ULHC, LR-spatial-lag was 40.773
and LR-spatial-error was 51.295. In terms of LLHC, LR-spatial-lag was 43.012 and LR-spatial-error was
65.366. These four constraint statistics all passed 1% significance tests, which indicates that the DSDM
cannot be simplified as a spatial lag model or spatial error model. Moreover, this panel data contained
data from all provinces in China, rather than being a random sample and, thus, the FE models were
generally more appropriate than the RE models [28]. In addition, the results of the Hausman test show
that the coefficients of ULHC and LLHC were 108.99 and 22.33, respectively. Both were significant at
the 0.01 level, which further confirms that FE models should be used for the final models. The results
of QML tests indicate that of the three types of DSDM models, the spatio-temporal lagged models are
the best for both levels of healthcare. Therefore, we selected the spatio-temporal-lagged DSDM with
FE to test the factors that influence healthcare resources and analyse their spillover effects. Table 5
illustrates the estimates of spatio-temporal-lagged DSDM regression results.

Table 5. Estimates of the DSDM (dynamic spatial Durbin panel models) model.

Variables
ULHC LLHC

Main Wx Main Wx

L.WlnY 0.081 (1.12) −0.086 (−0.68)
lnXNAR 1.504 *** (3.34) 1.545 * (1.76) 2.134 *** (2.65) 1.305 (0.78)
lnXUR −0.085 (0.93) 0.131 (0.62) 1.177 *** (2.95) 0.056 (0.32)

lnXPMA 0.000 (0.000) 0.000 (0.000) −0.009 (1.07) −0.002 (0.69)
lnXTA 1.252 *** (9.35) 1.213 ** (2.42) 0.219 * (1.89) 0.228 (0.86)
lnXHI 0.042 ** (2.50) 0.108 ** (2.86) 0.161 * (1.74) 0.029 (0.76)
lnXEI −0.043 * (−1.92) −0.183 *** (−3.89) −0.176 *** (−4.26) −0.199 ** (−2.18)

lnXUFHE −0.400 *** (−6.07) 0.393 * (2.45) 0.228 * (1.86) −0.464 * (−1.68)
lnXRFHE −0.011 (−0.45) −0.102 ** (−2.47) 0.044 (0.99) −0.123 (−1.63)

ρ 0.527 *** (9.67) 0.033 ** (0.38)
σ2 0.083 *** (14.40) 0.028 *** (14.77)

Adj. R2 TL: 0.177 ST: 0.636 BT: 0.332 TL: 0.817 ST: 0.841 BT: 0.393
LogL TL: −2.687 ST:169.689 BT: 117.584 TL: 178.673 ST: 188.295 BT: 106.589

*, **, *** mean correlation is significant at the 0.10, 0.05, and 0.01 level, respectively, t-values in parenthesis. TL, ST,
BT mean time-lagged, spatio-temporal lagged and both time and spatio-temporal lagged DSDM. Line 3–13 report
the estimated parameters of the spatio-temporal lagged models.

Table 6 reports the results of the DSDMs of ULHC and LLHC. The results of the ULHC model
show that the non-agricultural industry rate had a positive direct impact and a negative indirect impact,
both in the short- and long-term. Traffic accessibility had a positive direct impact in the short- and
long-term, and a positive indirect impact in the long-term but an insignificant indirect impact in the
short-term. Government healthcare investment had a substantial positive direct and indirect impacts
in both short- and long-terms. On the contrary, the impacts of government education investment were
all significantly negative. Urban family healthcare expenditure had a negative direct impact, while
rural family healthcare expenditure had positive indirect impacts.

For the LLHC model, the spillover effects were smaller than those for ULHC. The non-agricultural
industry rate had a positive direct impact in both the long- and short-term. The direct long- and
short-term impacts of urbanization rate turned out to be positive. The proportion of mountainous
areas had a negative direct impact in the short-term. Traffic accessibility had significant positive direct
impacts with insignificant spillover effects. Government healthcare investment had a positive spillover
effect, while the influence was lower than that for ULHC. Similar to ULHC, the negative impacts of
government education investment on LLHC were all significant. Urban family healthcare expenditure
had positive direct and negative indirect impacts, but the impacts of rural family healthcare expenditure
were all insignificant.
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Table 6. Results of DSDM.

Variables

ULHC LLHC

Short Term Long Term Short Term Long Term

Direct Indirect Total Direct Indirect Total Direct Indirect Total Direct Indirect Total

lnXNAR 1.876 *** −4.451 ** −2.575 ** 2.006 *** −5.665 ** −3.66 ** 2.143 *** 1.506 3.649 2.117 *** 1.229 3.345
(3.39) (−2.06) (−2.44) (3.35) (−2.10) (−2.40) (2.69) (0.83) (1.64) (2.69) (0.74) (1.64)

lnXUR −0.071 0.154 0.082 −0.069 0.169 0.100 1.196 *** 0.064 1.260 *** 1.114 *** 0.041 1.155 ***
(−0.71) (0.36) (0.17) (−0.64) (0.33) (0.17) (2.85)) (0.38) (2.78) (2.85) (0.24) (2.79)

lnXPMA 0.000 0.000 0.000 0.000 0.000 0.000 −0.012 * −0.003 −0.015 −0.001 −0.002 −0.003
(0.000) (0.000) (0.000) (0.000) (0.000) (0.08) (−1.73) (−1.09) (−0.89) (−0.64) (−0.69) (−0.69)

lnXTA 1.315 *** 0.833 2.148 *** 1.356 *** 1.251 * 2.607 *** 1.264 ** 0.242 1.506 *** 1.163 ** 0.218 1.380 ***
(9.34) (1.56) (3.59) (9.11) (1.86) (3.45) (2.44) (1.00) (2.82) (2.38) (0.89) (2.83)

lnXHI 0.063 ** 0.259 ** 0.323 *** 0.070 *** 0.321 * 0.392 *** 0.170 * 0.029 0.200 * 0.157 * 0.026 0.183 *
(2.72) (2.49) (2.74) (2.80) (2.47) (2.67) (1.72) (0.77) (1.86) (1.70) (0.69) (1.87)

lnXEI −0.075 ** −0.405 *** −0.480 *** −0.085 *** −0.497 *** −0.583 *** −0.174 *** −0.214 ** −0.387 *** −0.170 *** −0.185 ** −0.355 ***
(−3.09) (−4.06) (−4.23) (-3.29) −(3.87) (−4.02) (−4.37) (−2.12) (-3.53) (−4.27) (−1.99) (−3.56)

lnXUFHE −0.371 *** 0.337 −0.034 −0.370 *** 0.330 −0.041 0.226 * −0.496 * −0.270 0.216 * −0.483 * −0.247
(−5.13) (1.16) (−0.11) (−4.90) (0.94) (−0.10) (1.75) (−1.76) (−1.72) (1.80) (−1.81) (−1.72)

lnXRFHE 0.004 0.188 ** 0.193 ** 0.008 0.225 ** 0.234 ** 0.043 −0.125 −0.081 0.045 −0.120 −0.074
(0.19) (2.44) (2.29) (0.35) (2.39) (2.26) (0.96) (−1.57) (−1.11) (0.99) (−1.59) (−1.11)

*, **, *** mean correlation is significant at the 0.10, 0.05, and 0.01 level, respectively, t-values in parenthesis.
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Taken together, these results suggest that geographical and socioeconomic factors and healthcare
expenditure affect the two levels of healthcare resources differently. Long-term effects are greater for
ULHC and short-term effects are greater for LLHC. Moreover, in general, the spillover effects of ULHC
are more significant than those of LLHC. This may be explained in terms of different service radii and
residents’ spatial behaviours in relation to the different levels of healthcare [50]. LLHC mainly serves
community residents, while ULHC usually also services residents living in surrounding jurisdictions.
Many patients travel long distances to obtain the best medical treatment for rare or serious illnesses. It
should be noted that consumers usually go with their registered providers for planned immunization
and maternal and child health care if they want to enjoy governmental subsidies but spillover effects
also exist given the large interprovincial mobility of the population in China.

4. Determinants of the Two Levels of Healthcare Resources

4.1. Healthcare Reform Policies

Three healthcare reforms are the main influences on the three stages of spatial disparity in ULHC
and LLHC in China (Figure 3). In 1996, the Chinese central government determined the guidelines
and basic principles of health work, emphasising that disparities in healthcare among regions should
be reduced. However, the subsequent market-oriented redistribution led to an over-clustering of
healthcare resources. Spatial disparities were still large, and they peaked in 2005 due to the lagged
effect of policy implementation. Thus, the first stage of spatial disparity in ULHC and LLHC showed a
typical increasing trend. In the second stage, spatial aggregation of both levels of healthcare fluctuated,
while the spatial disparity of ULHC was reduced obviously since 2007. The main reason for this may
be because institutional healthcare reform was initiated in 2006 by the Chinese State Council. In the
third stage, the healthcare reforms officially launched in 2009 focused on the provision of affordable
and equitable basic healthcare for the masses [2,51,52]. From then on, the spatial equity of LLHC
was enhanced markedly. However, although the spatial disparity of UPHC decreased from a global
perspective, aggregation in local areas was more concentrated (Figure 4).

China is a country with a large population, varied topography, and rapidly changing social
and economic structures. The structural differences between regions remain stark and the mobility
of resources strengthens the dependence of regions. Thus, it is essential to further our analysis to
understand whether geographical and socioeconomic factors affect healthcare resource distribution in
local and neighbouring regions [3].

4.2. Geographical Factors

China is a country of vast territory and complicated topography; 94% of its residents live
south-east of the Hu Huanyong Line, in 43% of the country’s territory [4]. A worthy subject of
investigation is how to promote healthcare equity so that residents of the central and western
mountainous areas can also benefit from a modern healthcare system. Previous studies have found
that the provision of public goods, including healthcare, is comparatively lower in mountainous areas
of China [4,44]. This study confirmed that the proportion of mountainous areas has a negative impact
on LLHC. Combining this result with the spatio-temporal distribution analysis (Figures 2–4), although
LLHC was distributed much more equally than ULHC, there are still structural imbalances. LLHC are
highly concentrated in eastern coastal regions with less mountainous areas. On contrary, the DSDM
results indicate that ULHC distribution wasn’t significantly influenced by topography.

Traffic accessibility is considered a very important factor that promotes the development of
regional economies. Thus, it is no surprise that traffic accessibility had significant positive impacts on
both levels of healthcare within a specific province. Since it is well known that the improvement of
transport systems promotes mobility and connectivity within and between regions, traffic accessibility
was expected to strengthen the interdependence of healthcare resources between regions. It is
somewhat surprising that, in this case, the spillover effect of traffic accessibility was only significant on
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ULHC in the long term. A possible explanation may be that the provinces of China cover very large
areas (average = 305,000 km2); thus, traffic improvement in one province may only have limited and
time-lagged influences on the healthcare resources of neighbouring provinces.

4.3. Socioeconomic Factors

Previous studies have emphasised the impact of economic growth on healthcare resource
inequality from a longitudinal perspective [7]. This study differs from previous studies in providing
evidence from the perspective of spatial externality. As shown in Table 6, the higher the non-agricultural
industry rate, the better the local ULHC and LLHC. It is worth noting that the results also show that
the non-agricultural industry rate had significant negative externalities on the ULHC of surrounding
areas, which indicates that the aggregation effect is greater than the diffusion effect when the industrial
structure is better. On the one hand, industrial structure upgrades attract investment and healthcare
professionals to developed regions [53]; on the other hand, they also elevate local residents’ demands
for healthcare. This reason, combined with the unordered pattern of medical treatment, means that the
over-clustering of ULHC is hard to control.

The urbanisation rate has a positive impact on LLCH. A possible explanation for this might be that
regions with high urbanization levels are generally economically developed and have higher amounts
of LLHC. Another possible explanation for this is that living in more urbanized areas increases the risk
of acquiring chronic diseases, due to the tendency of urban residents to have a worse diet and perform
less physical activity than rural residents, resulting in increased LLHC demands.

4.4. Healthcare Expenditure

Government fiscal health expenditure, household health expenditure and social health
expenditure are the three major sources of medical and healthcare funding. Current studies
have provided empirical evidence that supports the presence of spillover effects from government
expenditure to healthcare resources [34,54]. Political yardstick competitions and mimetic effects
between governments are the major explanations of the government healthcare expenditure spillover
effect [55]. The DSDM results of this study further distinguish the differences between ULHC and
LLHC. They show that government healthcare investment enhances the amount of ULHC, not only
in local regions but also in surrounding provinces. Nevertheless, for LLHC, government healthcare
investment only improves local conditions and has no spatial spillover effects. Moreover, under
constant budget constraints, the larger share of education expenditure crowds out healthcare public
expenditure [13]; thus, government education expenditure has significantly negative direct and indirect
impacts on both levels of healthcare in the short and long terms in this case.

Although government and social health expenditure can meet the basic medical and healthcare
needs of residents, out-of-pocket (OOP) payments still account for a large proportion of total health
expenditure. The results of this study show that family health expenditure had significant impacts on
both levels of healthcare, which indicates that private spending may have exacerbated inequalities in
resource distributions, and government investment may have failed to prevent this happening. LLHC
has become increasingly dependent on government funding over the past few decades. In contrast,
governmental funding support to large hospitals is limited and they often have to survive through a
fees-for-services system. Medical charges are shared by social health insurance programs and OOP
payments, and OOP payments still comprise a large proportion of hospital charges. Meanwhile,
in this case, both rural and urban family healthcare expenditure were correlated with the amount
of healthcare resources in surrounding areas. These results suggest that population mobility also
makes it difficult for government investment in healthcare to achieve a balance between supply and
demand [5]. Increasingly, social health insurance funds reimburse hospital expenses incurred outside
of their jurisdictions due to high population mobility.
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5. Conclusions and Policy Implications

5.1. Key Findings and Policy Implications

This study explored the spatio-temporal distributions of the two levels of public healthcare
resources that exist in China by applying Moran’s I method. The influences on the two levels of
healthcare and their spatial spillover effects were examined using a spatio-temporal-lagged DSDM
model with FE by implementing the ML, LR, Hausman and QML estimation procedures.

There are two key findings obtained by this study. One important finding is that despite
great increases in both levels of healthcare resources, significant spatial disparities remain. The
distribution of ULHC and LLHC exhibited different patterns spatially, with LLHC tending to be
distributed more equally. According to the spatial disparities of the two levels of healthcare resources,
three stages were identified over the study period. Another interesting finding is that the DSDM
analysis revealed significant direct and indirect effects at both short-term and long-term scales for
both levels of healthcare resources, while the influencing factors had different impacts on the different
levels of healthcare resources. In general, long-term effects were greater for ULHC and short-term
effects were greater for LLHC. The spillover effects of ULHC were more significant than those of
LLHC. More specifically, industrial structure, traffic accessibility, government expenditure and family
healthcare expenditure were the main determinants of ULHC, while industrial structure, urbanisation,
topography, traffic accessibility, government expenditure and family healthcare expenditure were the
main determinants of LLHC.

The findings of this study yield the following implications for healthcare policy. First, the analysis
of healthcare at its different levels is of great value to policy-makers seeking to optimize healthcare
allocation in more sophisticated and systematic ways for the purposes of HDT reform. Considering
that ULHCs are highly clustered and their aggregation effects are greater than their diffusion effects,
policy makers should pay more attention to enhancing macro-controllability to prevent the over-scaling
of large general hospitals and the over-clustering of ULHC. Mitigation measures, such as establishing
cross-regional hospital consortia and counterpart support, should be implemented to promote a
trickle-down effect of ULHC from developed areas to surrounding areas. Second, the findings of
direct and indirect effects at the short and long terms provide evidence for policymakers seeking
to mitigate spatial inequity more strategically. Spatial interdependence between regions should be
fully considered for ULHC given its’ much more significant spillover effects; besides, more attention
should be paid to the long-term effects of ULHC and the short-term effects of LLHC. Third, in
countries like China where a large population lives in mountainous areas, the impact of topography
on the spatial equity of healthcare resource should be considered. LLHC to the northeast of the
Hu Huangyong Line, particularly in mountainous areas, needs to be strengthened. Complimentary
assistance from developed regions and targeted healthcare professional policies should be implemented
in northeastern mountainous areas to narrow the gap in LLHC between mountainous and plains
areas. Fourth, the spatial spillover effects of healthcare suggest that the inter-regional connectivity of
public medical insurance should be improved, considering the large interprovincial mobility of the
Chinese population.

5.2. Research Strengths and Limitations

This study has several limitations. First, because it lacks multilevel healthcare data at the city and
county scales, a micro-level analysis of the whole country could not be conducted. Thus, differences in
spatial distributions and spillover effects at different spatial scales could not be compared. Second,
this study focused on spatial effects resulting from the interaction of healthcare resources between
provincial governments. Vertical coordination, which include the interaction of healthcare resources
between different levels of government, have not been discussed.

Despite the limitations of this study, the findings have certain strengths. Firstly, recent research
has applied dynamic spatial econometric models to test the spillover effects of population growth,
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cigarette consumption, waste disposal taxes and pensions [33]. Using the same methodology, this
paper enriches the results of these empirical studies by focusing on healthcare resource distributions.
By using these methods, three-dimensional analyses of public healthcare resource distributions were
conducted to identify upper-level and lower-level effects, direct and indirect effects, and long-term
and short-term effects. Secondly, the findings that government and individual expenditures affected
the two levels of healthcare take this research field a step forward. The findings for ULHC are in line
with those of Jeleskovic and Schwanebeck and Baltagi et al. – that increases in government healthcare
investment in one region encourage policy makers to increase the budgets of neighbouring regions;
however, we also found that these phenomena were not significant for LLHC. Furthermore, these
results reinforce the finding of Zheng et al. that crowding-out effects between different kinds of public
expenditure influence the outcomes of healthcare investment in local and neighbouring regions. In
addition, this study verified the impacts of OOP healthcare expenditure on healthcare resources in
local and surrounding regions. Thirdly, unlike Zheng et al. [13] and Yang and Zhang [19], who used
wastewater and air pollution as natural explanatory variables, we used the proportion of mountainous
area as a proxy variable to explain how topography influences healthcare resources. The findings
verify our hypothesis that steep topography has a negative impact on local LLHC.

5.3. Future Research

Future research efforts could focus on more specific spatial analyses of different kinds of healthcare
resources; for example, private hospitals and rehabilitation institutions, and analyse the spatial
competition or complementary effects between public and private providers of healthcare services.
Spatial characteristics of the multilevel healthcare system, which include community-, county-,
municipal-, provincial- and state-level healthcare resources, could be further estimated. Further
study with a greater focus on coherence and coordination between different levels of healthcare
is, therefore, suggested. More advanced spatial analysis methodologies, such as posterior model
probabilities, geographical simulation and optimization systems, could be applied to space-based
research on healthcare.
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Abbreviations

CDCs control disease centres
DSDM Dynamic Spatial Durbin Model
FE fixed effects
HDT hierarchical diagnosis and treatment
LLHC lower-level healthcare
LM Lagrange multiplier
LR likelihood ratio
MCHSs maternal and child health stations
QML quasi maximum likelihood
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RE random effects
SAR spatial autoregressive regression model
SDM spatial Durbin model
SDPs specialised disease preventions
SEM spatial error model
SLM spatial lag model
TCM traditional Chinese medicine
THCs town health centres
UCHIs urban community health institutions
ULHC upper-level healthcare
VIF variance inflation factors
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