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Abstract: This paper developed a land use regression (LUR) model to study the spatial-temporal
variability of O3 concentrations in Taiwan, which has typical Asian cultural characteristics with diverse
local emission sources. The Environmental Protection Agency’s (EPA) data of O3 concentrations
from 2000 and 2013 were used to develop this model, while observations from 2014 were used as
the external data verification to assess model reliability. The distribution of temples, cemeteries,
and crematoriums was included for a potential predictor as an Asian culturally specific source for
incense and joss money burning. We used stepwise regression for the LUR model development, and
applied 10-fold cross-validation and external data for the verification of model reliability. With the
overall model R2 of 0.74 and a 10-fold cross-validated R2 of 0.70, this model presented a mid-high
prediction performance level. Moreover, during the stepwise selection procedures, the number of
temples, cemeteries, and crematoriums was selected as an important predictor. By using the long-term
monitoring data to establish an LUR model with culture specific predictors, this model can better
depict O3 concentration variation in Asian areas.

Keywords: land use regression (LUR); ozone; Asian culturally specific source; temple;
spatial-temporal variability

1. Introduction

A secondary pollutant means something not directly emitted from any source, but formed when
primary pollutants react with each other in the atmosphere. Ozone, for example, is a secondary
pollutant from the combination of hydrocarbons (e.g., volatile organic compounds (VOCs)) and
nitrogen oxides (NOx; NO and NO2) in the presence of sunlight. Elevated O3 concentrations impact
air quality and have become a serious environmental concern in Taiwan. In particular, Taiwan’s O3
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concentration can easily reach 100 µg/m3, an upper limit in the Air Quality Guidelines set by the
World Health Organization (WHO) in 2005. A previous study [1] and data from the Environmental
Protection Agency (EPA) (https://taqm.epa.gov.tw/taqm/tw/default.aspx) also showed that ambient O3

concentrations are still increasing in Taiwan. As a strong oxidant, O3 causes materials to age rapidly and
is toxic to plants [2]; in addition, O3 irritates human respiratory systems. Epidemiological studies have
confirmed associations between O3 and hospital admissions or emergency visits for diminished lung
function, respiratory conditions, and other various health outcomes [3,4]. Controlled human exposure
studies also showed significant changes in Forced Expiratory Volume (FEV1), respiratory symptoms,
and airway inflammation [5–8]. That said, it is still relatively unknown how long-term ozone exposure
may impact human health [9]. Thus more epidemiological studies on ozone exposure are needed.
When it comes to the study of health impacts by pollution exposure, the spatial variability of pollution
concentration is essential. Some modeling has been used to simulate pollution concentrations, such as
the inversion of satellite remote sensing images, interpolation (e.g., inverse distance weighing and
kriging), chemical transport models, and Bayesian maximum entropy methods [10–16]. However,
these methods are designed to simulate large geographical areas and thus do not provide a fine-scale
variability which is fundamental for understanding ozone exposure [9]. On the other hand, land use
regression (LUR) models can better estimate the fine spatial variability of outdoor air pollution and
have been widely used in the past decade [17–20]. However, few have been developed for ozone
exposure [21–24].

This study aimed to develop an LUR model for O3 concentration based on 15 years of O3

concentration data at 73 EPA automatic monitoring stations across Taiwan. In addition, we also
used the Normalized Difference Vegetation Index (NDVI) and the number of temples as variables
in developing the LUR model, which are rarely used but important variables in Taiwan. This study
provides particularly useful information when developing LUR models in other Asian cities. In terms
of local residents’ health outcome or health effect indicators, this study offers much-needed support for
air epidemiological studies of O3 in the future.

2. Materials and Methods

2.1. Study Area

Taiwan is an island country in Southeast Asia with China to the west, Japan to the northeast, and
the Philippines to the south. Taiwan has 14 counties and 368 townships, covering a geographical area
of 36,193 km2. With a population of 23,476,640, the average population density is 649 people/km2 [25],
making it the 17th most heavily populated country in the world. Notably, there are 22 million registered
motor vehicles (including motorbikes, cars, and other vehicles) on this small island, or 91.5 vehicles
per hundred people [26]. As a result, traffic emissions are a significant factor in urban air pollution [27].
Moreover, on average there are 2.31 factories per square kilometer and many of them are located near
commercial districts and residential areas [28]. Local culture also plays a role in this study since there
are unique emission sources of O3 precursors in Taiwan, such as the frequent burning of joss paper and
incense in thousands of temples [29,30]. These two main emission sources not only elevate the level of
pollutants but also increase the difficulty in predicting the spatial-temporal variability of O3 in Taiwan.

2.2. Air Pollutant Database

Taiwan’s EPA has established 73 air quality stations island-wide to systematically monitor daily
O3 concentrations, including 56 general stations, five traffic stations, four industrial stations, two
national park stations, four background stations, and two “other” type stations. General stations
monitor the ambient air condition for general residential areas, while the other types of stations take
measurements in their respective areas. The two “other” type stations are used to study air pollutants
under terrain effects near the Central Mountain Range, which runs north–south along the island. EPA
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data from 2000 and 2013 were used to develop the model, while observations from 2014 were used as
the external data verification to assess model reliability.

These daily measurements were aggregated into annual and monthly averages for model
development, resulting in a total of 939 and 10,660 valid measurements, respectively. Concentrations
of NOx, the precursor of O3, were obtained from the EPA database as well and used as explanatory
variables since previous studies have confirmed its association with O3 concentration [21,31].

2.3. Geo-Spatial Database

Several Geographic Information Systems (GIS) maps/databases were used to derive land use/land
cover variables for the LUR model development, including purely residential, mixed residential, farm,
forest, park, water, airport, and port areas from the National Land Use Inventory of 2006 and 2012;
industrial parks from the 2010 digital map of industrial parks; road patterns from the digital road
network map; and topographic altitudes of the EPA monitoring sites from the Digital Terrain Model
with 20 m resolution. Taiwan has 11,275 officially registered temples (and many others unregistered).
On average, each county or city in Taiwan has 451 temples. Previous studies suggested that joss
money and incense burning would emit the precursor of ozone (e.g., NOx and VOCs) [32–34]. We thus
also used the number of temples, cemeteries, and crematoriums as well as their locations to collect
data from the landmark databases of 2006 and 2008 for the purpose of this study. This EPA database
includes more than 0.25 million landmark points in Taiwan. This database is also used in Google Earth
to characterize the landmark distribution in Taiwan [19]. The distances to the nearest power plant and
garbage incinerator were also calculated and incorporated in the analysis. Moreover, surrounding
greenness (e.g., trees and vegetation) from 2006 to 2011 was characterized by NASA’s (National
Aeronautics and Space Administration) MODIS (Moderate Resolution Imaging Spectroradiometer)
Normalized Difference Vegetation Index (NDVI) database with a 250 m × 250 m spatial resolution.
MODIS provides two NDVI measures for each cell every month. In this study, NDVI maps used the
acquisition date from mid-month (the fifteenth). All of these geo-spatial variables are abstracted from
25 m to 5000 m circular buffer ranges surrounding each air quality monitoring site, and measured
every 25 m, to represent the neighborhood land use/land cover allocations. Figure 1 shows the spatial
distribution of air quality monitoring stations in Taiwan, and Table 1 lists potential predictor variables
and data sources used in this study.
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Table 1. Potential predictor variables.

Data Source Variable Data Description Unit Buffer Size (m)

Institute of Transportation digital map data Road a
Major road

m 25–5000Local road

All types of road (major road +
local road)

The second national land use survey Residential Areas

Purely residential area

m2 25–5000

Residential area mixed with
industrial area

Residential mixed with
commercial area

Mixed residential area
(residential area mixed with

industrial and commercial area)

All types of residential area
(pure and mixed residential area)

The second national land use survey Greenness

Paddy rice

Non-irrigated crops

Fruit orchard

Mixed crops
(rice + non-irrigated crops + fruit

orchard)

Forest

Park

The second national land use survey Industrial area

The second national land use survey Water

Vegetation indices from remote sensing NDVI - 250–5000

Point of interest (POI) landmark database Asian culture-specific
emission sources

Temple
count 25–5000Chinese restaurant

Temple + Chinese restaurant

Cemetery and crematorium

m a NA
The second national land use survey Port

The second national land use survey Airport

Taiwan Environmental Protection Agency
(EPA) environmental database Incinerator stack

Taiwan EPA environmental database Thermal power plant

Taiwan EPA environmental database Garbage incinerator

Taiwan EPA environmental database Industrial park

Institute of Transportation digital map data Main road

Central Weather Bureau database Altitude m b NA

Taiwan EPA environmental database Pollutants
CO ppm NA

NOx

Central Weather Bureau database Meteorological factor
Temperature °C NA

Relative humidity % NA

UV nm NA
a distance to the nearest landmark; b elevation above sea level of the monitoring site.

2.4. LUR Model Development and Validation

We built the land use regression model following a methodology developed in our previously
published paper [19]. Basically, a supervised stepwise procedure was used to maximize the percentage
of explained variability (R2). For all potential predictor variables, we chose an a priori direction of
effect on O3 concentration (e.g., negative for road length and residential area, and positive for NDVI
and green spaces) [21,22]. The model started with the variable having not only the highest explained
variance in a univariate analysis but also a regression slope with the expected direction. Then all other
variables were added to this model separately by assessing if the p-value was <0.1 and the variance
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inflation factor (VIF) was <3. This procedure continued until none of the variables could fit the criteria
mentioned above. Finally, we used R2, adjusted R2, and Root Mean Square Error (RMSE) to assess the
model’s performance.

To validate the reliability and robustness of the developed LUR models, two methodologies were
used in this study. We first implemented a 10-fold cross-validation methodology to assess the model’s
performance [21]. We used 90% of the measurement data from the air quality monitoring sites and the
corresponding data of collected variables to develop the LUR model. When the model was developed,
we then estimated the annual O3 concentration by setting the annual data of each variable. Then, we
compared the estimated O3 concentrations to the remaining 10% of the measurement data from the air
quality monitoring sites. After repeating the same procedure 10 times, each monitoring site served as a
validation benchmark at least once. The R2, adjusted R2, and RMSE values were recorded to evaluate
the goodness of fit and robustness of the model. In the second methodology, we used the 2014 data as
the validation data and the remaining observations as the training data for model development to
assess the accuracy of the external verification.

3. Results

3.1. Descriptive Statistics of O3 Concentrations

Overall, the level of ozone did not change statistically during the 16-year period (p-value < 0.01).
The annual mean concentration of O3 for all monitoring sites in Taiwan was 27.96 ± 3.98 ppb
(54.89 ± 7.81 µg/m3), which is higher than those in the Netherlands (35.80 ± 5.50 µg/m3), Augsburg,
Germany (38.20 ± 3.10 µg/m3), and Nanjing, China (48.50 ± 3.88 mg/m3) [21–23], but lower than Linan,
China (82.06 µg/m3) [35]. Figure 2 shows the annual average O3 levels at six types of monitoring
stations over the study years. The highest level of O3 is 39.14 ppb at a national park station, followed
by 32.09 ppb at a background station, 30.77 ppb at an industry station, 27.67 ppb at an “other” type
station, 27.53 ppb at a regular station, and 23.50 ppb at a traffic station. Generally, there are lower
concentrations in urban areas, especially at traffic sites.Int. J. Environ. Res. Public Health 2019, 16, x  7 of 13 
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3.2. LUR Model Assessment

Table 2 shows the coefficient estimate, partial R2, and overall performance of the LUR model
developed in this study. With the overall model R2 of 0.74 and an averaged, 10-fold cross-validated
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R2 of 0.70, this model presents a mid-high prediction performance level. Even when the external
data validated with the R2 value was reduced to 0.39, this model still showed a mid-range prediction
performance level. The major variables selected are statistically significant predictors for the developed
models including concentrations of NOx, distance to thermal power plants, all types of residential areas
within 25 m, relative humidity, forest within 500 m, altitude, distance to main road, purely residential
areas within 25 m, cemeteries and crematoriums within 3000 m, temples within 500 m, temperature,
non-irrigated crops within 250 m, temples within 1000 m, and industrial areas within 5000 m. Most
variables show a negative association with O3 except for forest, altitude, and non-irrigated crops.
Temples, cemeteries, and crematoriums were collected in the final model, indicating that the pollutant
level was affected not only by well-known pollution sources but also by unique local sources. In our
model, the NOx concentration was first entered into the model with a partial R2 = −0.54. The highly
negative correlation with NOx was lower than that in the Netherlands (R = −0.87) [21] but higher than
that in Neuherberg, Germany (R = −0.32) [22], which suggests a substantial photochemical effect on
ozone–NOx associations in Taiwan [22]. Such negative correlation between O3 and NOx also presents a
challenge to minimize the health impact by ozone and pollutants from primary factories, thermal power
plants, and traffic emissions. Taiwan, while being a small island, has the highest motor vehicle density
in Asia with an average of 378 vehicles per square kilometer. Likewise, Taiwan has the highest number
of scooters per square kilometer in the world. Indeed, the vehicle-emitted NOx [21] was selected as the
prediction variable with the highest partial R in our LUR model. We can thus conclude that emission
by motor vehicles is the most dominant factor that affects the O3 concentration in Taiwan. The high
population density in Taiwan (649 person/km2) might also have an impact on O3 concentration since
all types of residential areas were selected in our model. Moreover, a highly negative correlation with
relative humidity was obtained. The underlying reasons for the reduction of O3 in the presence of
water vapor are not clear, although it is known that the water vapor present in the air affects the corona
initiation field strength [36,37]. In addition, we found a positive correlation between O3 and forest
within a large buffer, consistent with a previous study [21]. The forest predictor suggests the absence
of primary NOx sources and/or biogenic VOCs, either of which may increase ozone formation.

Table 2. Land use regression model for annual average ozone concentration (ppb).

Variable Regression Coefficient p-Value Partial R

Intercept 1.52 <0.01

NOx −4.79 × 10−3 <0.01 0.54

Thermal power plant −1.55 × 10−6 <0.01 0.08

All types of residential—25 m −1.25 × 10−5 0.06 0.001

Relative humidity −1.85 × 10−3 <0.01 0.02

Forest—500 m 1.15 × 10−7 <0.01 0.02

Altitude 1.03 × 10−4 <0.01 0.009

Distance to main road 9.64 × 10−6 <0.01 0.005

Purely residential—25 m −3.25 × 10−6 0.13 0.004

Cemetery and crematorium—3000 m −1.71 × 10−8 <0.01 0.004

Temple—500 m −4.29 × 10−3 0.01 0.003

Temperature 9.05 × 10−3 <0.01 0.003

Non-irrigated crops—250 m 2.09 × 10−7 <0.01 0.002

Temple—1000 m −4.13 × 10−4 0.05 0.001

Mixed residential area—25 m −9.25 × 10−4 <0.01 0.04

Industrial area—5000 m −1.44 × 10−9 <0.01 0.003

Model performance: overall model R2 = 0.74; adjusted R2 = 0.73; Root Mean Square Error (RMSE) = 0.04 ppb;
10-fold cross-validation R2 = 0.70; externally validated R2 = 0.39.
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3.3. Spatiotemporal Variations of O3

Figure 3 illustrates the annual average O3 concentration for the entire study period, as simulated
by the developed model. Red to blue on the maps represents the levels of ozone pollution from high to
low. Eastern areas clearly have higher O3 concentrations throughout the predicted period. The highs
and lows of O3 concentrations in different areas of Taiwan is consistent with existing knowledge about
ozone formation and destruction. For instance, relatively high O3 concentrations are observed in
highland areas in many regions of the country [38–40]. In this study, O3 concentrations close to the
Central Mountain Range are also higher than those on the plains. However, the O3 concentrations on
the top of the mountain should not be used because of the lack of monitoring stations in this area.

4. Discussion

While land use regression models have become increasingly popular for simulating air pollutant
concentrations, they are rarely used in Taiwan [19,41]. In addition, although the Taiwan EPA has
widely monitored air quality with different characteristics in different areas, there is no proper way
to use the large-scale monitoring network established by the EPA to estimate public exposure. Thus,
this paper used LUR models to estimate O3 concentrations across the island according to the EPA’s
monitoring network. This study shows a successful combination of LUR models for air pollutants and
the EPA’s publicly available data from its national monitoring network. This is also significant for the
epidemiological studies which need data with fine-scale exposure concentrations.

The descriptive statistics of on-site O3 observations show lower concentrations in urban areas
but higher levels in rural areas. This pattern is consistent with the understanding that O3 will react
with NO emitted by combustion sources including vehicle exhaust [21]. In addition, pollutant sources
can impact air quality not only in local areas but also in downwind rural areas [42–45]. Moreover, the
biogenic volatile organic compounds (BVOCs) in the atmosphere of forests are attributed to isoprene
and monoterpenes, which have been shown to contribute to the formation of elevated ozone levels.

This could explain why the highest level of O3 occurred at a national park station.
In this study, the value of the model R2 is 0.74, which demonstrated better model performance than

a previous study in Asia, where the model R2 was 0.60 [23]. Huang also developed LUR models for O3

concentration using data from the Nanjing Environmental Monitoring Center in 2013 but only selected
longitude and slope as predictors in the model, both of which are temporally constant. Because of this,
Huang’s model cannot be used to predict O3 concentration in different seasons or years. In contrast,
this study chose temporally variable predictors such as NOx concentration and temperature, meaning
we were able to develop a model that is better for estimating O3 concentration in different years.

A previous study using an LUR model for O3 concentration from Sweden [46] found significantly
higher concentrations (60 to 83 µg/m3) in Malmö and Umeå (36 to 63 µg/m3). However, these mean
concentrations of three weekly measurements were conducted in only three months (April, May/June,
and August), and it disregarded other months with minimum concentrations. Kerckhoffs et al. [21]
developed a national O3 model using four bi-weekly programs in each season for the Netherlands
and reported much lower annual average O3 concentrations, from 25.0 to 47.8 µg/m3. In contrast,
this research shows a wider range (from 36.73 to 70.18 µg/m3) because we covered an area with more
diversity to include both remote areas and the metropolitan Taipei, which is four times more populated
than Amsterdam. In addition, some of our findings are similar to Kerckhoffs’, wherein higher traffic
often leads to lower O3 concentrations.
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While traffic is often the dominant factor in predicting O3 concentrations in the cities of Europe
or the United States, some culturally specific O3 sources must be considered in Asia. Joss paper
and incense burning are very important for many Asian households and temples for religious
purposes [47], and several studies have shown their contributions to air pollution [27,48]. Incense
and joss money combustion emit VOCs (i.e., benzene, benzo (a) pyrene, and formaldehyde) and
NOx [32–34,49]. The level of O3 is highly correlated with NOx and VOC concentrations in the presence
of sunlight [22,50], but none of these studies considered joss paper and incense burning-related
variables or developed an LUR model for O3 concentration. In this study, we used the number of
temples, cemeteries, and crematoriums to reflect local emissions by joss paper and incense burning,
which proved to be a significant predictor in our newly developed model. Thus, we suggest that future
studies should consider this unique local cultural source as a predictor when establishing LUR models
for O3 in other Asian regions.

There were some limitations when we selected predictors in this study. For instance, traffic
intensity, wind factor, the number of buildings, and population, though used by others to improve
model performance [21,22,24], were not used in this study because these data are not readily available
in Taiwan. Nonetheless, this model used a tremendous amount of data covering the entire island
for the past 14 years to represent spatiotemporal variation of O3 concentrations better than previous
studies (which only used data for a single year or less and in specific locations). Our LUR model is
limited to only provide annual data because of the constant variables (such as residential area, distance
to the main road, and number of temples). In addition, the uneven distribution of stations (e.g., few
sites located in mountain areas and eastern Taiwan) might lead to some uncertainty. However, the
annual data could be used to study long-term health impacts. For instance, in [51,52] the authors
used the annual average ozone to evaluate the associations between ozone concentrations and the risk
of death. By using long-term monitoring pollutant data to establish an LUR model with culturally
specific predictors, this model presents a mid-high prediction performance level, which can be used to
better depict O3 concentration variation in Asian cities.

5. Conclusions

This study is the first to use the spatiotemporal variation of ozone concentration in Taiwan to
develop an LUR model. The model shows the spatial variance of ozone over the entire island of
Taiwan, especially in the context of ozone being a secondary pollutant. By using data from the EPA’s
national monitoring network, which routinely monitors air quality with different characteristics in
different areas, and with the consideration of culturally specific predictors such as temples, we confirm
that the LUR models developed in this study can predict the fine spatial variability of both long-term
and short-term outdoor O3 concentrations. Moreover, this LUR method could be similarly used in
future studies to develop new LUR models for other pollutants in Taiwan. In terms of local residents’
health or health effect indicators, this study offers much-needed support to air epidemiological studies
in the future.
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