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Abstract: Air travel has a decisive role in the spread of infectious diseases at the global level.
We present a methodology applied during the early stages of the COVID-19 pandemic that uses
detailed aviation data at the final destination level in order to measure the risk of the disease spreading
outside China. The approach proved to be successful in terms of identifying countries with a
high risk of infected travellers and as a tool to monitor the evolution of the pandemic in different
countries. The high number of undetected or asymptomatic cases of COVID-19, however, limits
the capacity of the approach to model the full dynamics. As a result, the risk for countries with a
low number of passengers from Hubei province appeared as low. Globalization and international
aviation connectivity allow travel times that are much shorter than the incubation period of infectious
diseases, a fact that raises the question of how to react in a potential new pandemic.

Keywords: air transport; aviation; COVID-19; coronavirus; epidemic model; risk assessment;
spatial analysis

1. Introduction

The recent pandemic caused by the novel coronavirus COVID-19 has once again brought
epidemiological modeling into the limelight. Especially during the early stages of the virus
propagation—when data were limited and highly uncertain—model projections were a major input for
understanding the magnitude and potential risks of the outbreak. Apart from predicting the dynamics
of transmission within a specific population, particular emphasis was put on quantifying the risk of
the disease spreading beyond the area of its original focus in Wuhan, China.

The contribution of transport—and aviation in particular—has been shown to be significant in the
spread of airborne diseases such as SARS, MERS [1,2] and the influenza A H1N1 [3], as well as other
infectious such as Ebola [4] or even vector-borne diseases such as Dengue [5] or Malaria [6].

Spatio-temporal dynamics also have a major role. Social interactions and personal contact patterns
at either the origin of the disease or areas connected to it affect the speed and range of prevalence
across different geographic zones [7]. Budd et al. [8] made a historical review of journey times and the
incubation period of selected infectious diseases. Travel times have decreased drastically and even
intercontinental trips have a duration that is a fraction of the incubation period of several diseases.
Coming to the case of the COVID-19 outbreak, no intercontinental flights from Wuhan were possible
before 2012, but in 2020 direct flights were available to London, Paris, Rome, Moscow, New York City,
San Francisco, Istanbul, Dubai, Sydney, and numerous other international destinations. As an example,
a direct flight from Wuhan to Rome, Italy takes 12 h 15 m and is available three times weekly.

Several studies have utilized air travel data for the estimation of disease importation risks.
The Vector-Borne Disease Airline Importation Risk (VBD-AIR) tool allows the combination of disease
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information and air travel networks to produce a user-defined global map of risk distribution [9].
A generic tool that allows the estimation of the median early disease arrival time from around the
world using air transport schedules was proposed by [10]. Air travel patterns were also employed
by Bajardi et al. [11] in order to theoretically model the potential impacts of travel restrictions on
the spread of an epidemic. Nevertheless, while travel and trade have been shown as relevant for
the international spread of the 2009 A/H1N1 influenza, the slow deployment of control measures in
countries with lower healthcare capacities led to spatial imbalances [12]. Air transport data have been
used indirectly to measure the effective distance and the relative arrival time of a disease outbreak,
with promising results when tested on historical data [13]. Based on the same premises, producing
near real-time or now-casting predictions on the international spread of COVID-19 appeared to be
based on scientifically sound principles [14].

However, most expectations about the ability to predict the global spread of COVID-19 proved
misleading or of limited use.

This includes our own work, which we present here in order to discuss the reasons why most
projections missed important aspects of the disease propagation dynamics. In our opinion, and as a
part of the scientific process, it is important to publish and discuss even the negative results of research
activities. The lessons learned from unsuccessful applications can be valuable for future work, either by
improving current practices or by re-examining risk assessment from a new perspective. Especially in
the case of predictive modeling, the wide body of literature that presents successful ex-post examples
of possible value may give the false impression that the spatial aspects of disease propagation are more
easily predictable than what is actually possible in reality.

The question this paper is trying to answer is whether air passenger traffic alone can provide
early information on the potential distribution of contagious diseases at the global level. Based on
the experience from the SARS, MERS and Ebola epidemics—which suggests that travel patterns
are a good predictor of spatial evolution of an epidemic—we mapped the expected distribution of
COVID-19 at the global level using now-casted origin-destination estimates of aviation passengers and
near real-time data on the spatial distribution of diagnosed infections. The number of reported cases
for each possible destination outside the initial outburst area was compared to the estimated traffic
intensity between Wuhan and the specific destination. The resulting ratio was used as an indicator of
the expected rate of infection of aviation passengers and as a means of comparison of the evolution
of the pandemic worldwide. The approach gave promising results during the initial phases of the
pandemic, but underestimated the risks associated with local infections at several distant destinations
and the development of numerous secondary foci of the disease.

The structure of the paper is as follows: Section 2 describes the main elements of the modeling
approach followed. Section 3 discusses the results and Section 4 analyzes the factors limiting the
predictive capacity. Finally, Section 5 summarizes the conclusions of this work.

2. Modeling the Risk of Coronavirus Spread Using Aviation Data

The information on the characteristics of the virus during the initial phases of the pandemic,
in January and February 2020, was very limited and arguably imprecise. Given that the vast majority
of diagnosed cases at that stage were concentrated in China (99% on 3 February), estimating the risk
for other countries in real time was—at least in retrospect—practically impossible. The distribution of
the cases within China appeared to follow a distribution similar to a gravity model, an observation that
suggested that travel patterns—which also present gravity model patterns of spatial distribution—may
be used as a proxy for the expected appearance of COVID-19 outside China.

The main hypothesis we made was that each passenger travelling from Hubei province after the
initial outbreak would have the same risk of being infected at a specific point in time, regardless of the
destination. Since the basic epidemiological analysis shows that the risk increases over time, a similar
increase would be expected for all destinations. In principle, even if the risk level itself is unknown,



Int. J. Environ. Res. Public Health 2020, 17, 3356 3 of 15

the ratio of diagnosed cases to number of passengers should be comparable across destinations at any
point in time.

2.1. Analyzing Air Transport Patterns

The first step of the approach was the estimation of the number of passengers leaving Hubei
province by plane and reaching a specific final destination, including possible connections. Wuhan is
an aviation hub in central China [15]. Wuhan and Hubei province are well connected with neighboring
provinces by rail and coach [16]. We used monthly data from the SABRE database [17,18] to track
the number of passengers to all possible destinations using historical data from 2016 to November
2019, the last month for which data were available at the time this paper was written. Almost
1 million passengers flew out of Wuhan every month. While China represents 89.9% of the final
destinations, indirect connections linked Hubei province to 23,532 distinct airports across the world. Air
transport activity from Wuhan, as across the aviation sector in general, is quite volatile with important
fluctuations over time and a high seasonal variation [19]. In addition, January and early February
traffic is greatly affected by the Chinese New Year’s holiday, both in terms of reduced economic activity
and increased tourism.

In order to create a more realistic picture of the number of passengers who left Wuhan during
January 2020, we developed a now-casting model to estimate the expected numbers of passengers
based on the trends revealed by data until November 2019. We applied an ARIMA (Autoregressive
Integrated Moving Average) model for each of the 23,532 possible destinations. The model was
estimated using the forecast package in R [20]. The decomposition of the monthly time series from
January 2016 to November 2019 allows the estimation of the contribution to the observed number
of passengers for each destination of the underlying trend in activity, the seasonal variation and the
random effects. The examples in Figure 1 correspond to three characteristic destinations: Beijing
(the top destination from Wuhan), Singapore (the top destination outside China) and Paris (the top
destination outside Asia). It is evident that the three examples follow different patterns as regards both
the trend in demand and the monthly variation, due to the different factors that affect international air
transport demand [21].
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The model we applied uses a rolling window of 36 months of historical data and a prediction step
of 2 months ahead. The results were validated by comparing the model estimates with the ground truth
for the last 11 months for which data were available (January 2019 to November 2019). The accuracy
of the model at the individual destination level can be considered high, with an R2 of 0.799, MAE
of 159.04 and RMSE of 906.54. A number of graphs that show how the estimates match data at the
country or continent level are provided in the Appendix A.

Figure 2 and Table 1 summarize the results of the model at the aggregate level. For illustration
purposes, China is split into three different groups based on distance from Wuhan. The distance bands
(below 700 km, 700 to 1000 km and over 1000 km) correspond to the ranges where aviation has a low,
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moderate and high modal share [22]. The share of Chinese destinations in January 2019 was higher
than their average share during the 2016–2019 period (90.5% and 89.9%, respectively), but according to
the model estimates, in January 2020 it was expected to decrease to 89.4%. This would be the result
of switching between various destinations, especially the increase in the number of passengers to
Southeast and Far East Asia. The estimates, based on the underlying trends visible in the data available
until November 2019, suggest that the share of the trips with a final destination outside Asia would
remain low in January 2020, at around 1.8% of the total.
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Figure 2. Estimated worldwide distribution of air transport passengers from Wuhan, January 2020.

Table 1. Relative shares of aviation passengers from Hubei province to major zones, January 2019 data
versus estimates for January 2020.

Zone Share in Jan. 2019 (%) Share in Jan. 2020 (%) Difference (Percentage Points)

China (>1000 km) 45.8 45.6 −0.2
China (700–1000 km) 41.4 40.1 −1.3

Southeast Asia 4.1 4.9 0.81
Far East Asia 3.2 3.7 0.54

China (<700 km) 3.3 3.7 0.38
Europe 0.7 0.7 0.03

Americas 0.7 0.6 −0.19
Oceania 0.4 0.4 −0.06

Rest of Asia 0.4 0.4 −0.01
Africa 0.1 0.1 0

2.2. Combining Disease Data with Air Transport Activity

The second building block of the approach is the comparison with the numbers of diagnosed
cases of COVID-19 at each potential destination. This indicator, as opposed to the number of deaths,
hospitalized or recovered patients, was at the moment the only one with presumably reliable enough
data in real time to derive early warning indicators on the international spread of the disease. The data
we used were available, on a daily basis, through the Johns Hopkins Resource Center [23] and are
summarized in Tables 2–5.
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Table 2. Number of reported cases, China (<700 km from Wuhan).

Province 3rd February 2020 10th February 17th February 24th February

Hubei 11,177 31,728 59,989 64,287
Henan 566 1105 1257 1271
Hunan 521 912 1007 1016
Anhui 408 860 982 989
Jiangxi 391 804 933 934
Hebei 113 239 302 311

Total 13,176 35,648 64,470 68,808

Table 3. Estimated passengers and number of reported cases, China (700–1000 km from Wuhan).

Province Estimated Aviation Passengers
Jan. 2020 3rd Feb. 2020 10th Feb. 17th Feb. 24th Feb.

Guangdong 109,812 725 1177 1328 1345
Zhejiang 56,054 724 1117 1172 1205

Chongqing 35,278 312 489 553 575
Jiangsu 11,376 271 515 629 631

Shandong 49,634 259 487 543 755
Shanghai 56,127 203 303 333 335

Fujian 71,460 179 267 292 293
Shaanxi 24,427 66 219 240 245
Shanxi 26,472 66 122 130 132

Total 440,641 2805 4696 5220 5516

Table 4. Estimated passengers and number of reported cases, China (over 1000 km from Wuhan).

Province Estimated Aviation Passengers
Jan. 2020 3rd Feb. 2020 10th Feb. 17th Feb. 24th Feb.

Sichuan 60,813 255 417 508 527
Beijing 57,573 191 342 387 399

Guangxi Zhuang 38,060 127 215 242 251
Heilongjiang 14,709 118 360 464 480

Yunnan 60,576 114 153 172 174
Liaoning 51,240 73 111 121 121
Hainan 87,056 71 144 163 168
Tianjin 26,128 56 105 128 135
Gansu 19,432 51 86 91 91

Guizhou 28,850 46 127 146 146
Inner Mongolia 13,487 34 58 73 75

Jilin 11,793 31 81 89 93
Ningxia Hui 11,969 31 53 70 71

Xinjiang Uygur 17,858 24 55 76 76
Hong Kong 7597 15 36 61 79

Qinghai 6581 13 18 18 18
Macau 6098 8 10 10 10
Tibet 3225 1 1 1 1

Total 523,046 1259 2372 2820 2915
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Table 5. Estimated passengers and number of reported cases, other main countries.

Country Estimated Aviation Passengers
Jan. 2020 3rd Feb. 2020 10th Feb. 17th Feb. 24th Feb.

Japan 12,094 20 26 59 144
Thailand 16,428 19 32 35 35
Singapore 12,797 18 43 77 89

South Korea 6297 15 27 31 763
Australia 4286 12 15 15 22
Taiwan 8688 11 18 22 28

United States 6397 11 12 15 35
Germany 964 10 14 16 16
Malaysia 8322 8 18 22 22
Vietnam 2194 8 14 16 16
France 1204 6 11 12 12

United Arab
Emirates 1022 5 7 9 13

Canada 1359 4 7 8 9
United Kingdom 2979 2 4 9 13

Philippines 2107 2 3 3 3
India 526 2 3 3 3
Italy 760 2 3 3 132

Russia 470 2 2 2 2
Cambodia 5775 1 1 1 1
Indonesia 6644 0 0 0 0
Pakistan 733 0 0 0 0

New Zealand 763 0 0 0 0
Nepal 309 0 1 1 1

Sri Lanka 153 0 1 1 1
Rest of the World 5376 0 0 8 104

Total outside
China 108,647 158 262 368 1464

2.3. A Brief Review of Epidemiological Models

The dynamics of the spread of a contagious disease are usually analyzed using either a
compartmental or a phenomenological model. In the case of compartmental models, the population is
divided into various groups depending on each individual’s state of infection. Such models include
the SIR model (Susceptible, Infected, Recovered) and its variations, and consist of a set of differential
equations that describe the change over time of the number of individuals in each compartment. In the
case of the basic SIR model, the rate of change of the number of infections is expected to be:

dI/dt = β I S/N − γ I (1)

where N is the total population, I is the number of infected individuals, S is the population still
susceptible to infection (total minus infected and recovered), while β and γ are parameters directly
linked to the basic reproductive number of the disease R0 = β/γ.

Phenomenological models, on the other hand, attempt to simulate the disease spread by fitting
data and assumptions into standard curves. A frequently used approach is the logistic equation:

dI/dt = r It−1 (1 − It−1/K). (2)

Such models rely on two parameters: the intrinsic infection rate, r, and the final epidemic size,
K [24].

A more recent approach, the Richards curves [25], improves the matching with actual
epidemiological curves, especially the early slower growth, but requires the estimation of two
additional parameters:

dI/dt = r Ip
t−1 (1 − It−1)/Kα) (3)
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where p indicates the similarity to the exponential growth curve (ranging from 0 for constant to 1 for
exponential), and α is a parameter that shifts the timing of the peak.

During the early stages of an epidemic, when the population dynamics in terms of deaths and
recoveries are not yet in play, the compartmental and the phenomenological approaches are in practice
equivalent and the cumulative number of infections over time can be approximated by:

lim
t→∞

I(t) =
(
1−

γ

β

)
N (4)

Estimating the value of R0 (and thus the values of β and γ), or even the population N that should
be used as a reference, is extremely challenging—if not outright futile—at the early stages of the
spread of a new disease. The uncertainty and questionable accuracy of the scarce data available in
the beginning of an outburst would lead to epidemiological models that are practically useless for
any prediction.

2.4. Modelling the Spread of the Disease Based of Air Trip Patterns

Nevertheless, monitoring and comparing the spread of the disease in different locations can still
provide value to public health authorities. In the approach we present here, we calculated the ratio of
infected individuals to the estimated number of travellers from Hubei province to each destination.
Assuming that all travellers leaving Wuhan have the same probability of being infected regardless of
their destination, the cumulative number of infected individuals at time t reaching destination j would
be expected to be:

I(t)j = nj(t) q (5)

where nj(t) is the total number of passengers from the origin of the infection (Hubei province in this
case) to each destination j, and q is the apparent ratio of infected passengers to total passengers:

q =
I(t)0∑
j n0(t)

=
I(t)0

v0N0
(6)

where I(t)0 is the cumulative number of infected at the origin, sum(n0(t)) is the total number of
passengers from the origin, N0 is the population at the origin and v0 is the ratio of travellers to
population at the origin.

While neither formulation of Equation (6) can be directly estimated, it is sufficient to indicate that
q is the same regardless of the destination. We should therefore expect, transforming Equation (5), that
the ratio:

Q = I(t)j/nj(t) (7)

should be constant for all destinations and across time.

3. Discussion of the Results

We estimated q, the ratio of infected passengers to total passengers, at the province and territory
level within China, and at the country level for the rest of the world. As described in Section 2, we used
the estimated number of aviation passengers for January 2020 and transformed them to an equivalent
daily volume. The q indicator was calculated for four different points in time at weekly intervals: on
the 3rd, 10th, 17th and 24th of February 2020, corresponding to t values of 34, 41, 48 and 54 days,
respectively (assuming t = 0 as 31/12/2019, the date of the first reported case in the Johns Hopkins
database). The number of aviation passengers to the provinces within less than 700 km from Wuhan is
virtually null (Hubei province itself, as well as Anhui, Hebei, Henan, Hunan and Jiangxi), therefore the
approach is not applicable in those cases.

Figure 3 shows the results for Chinese provinces between 700 and 1000 km from Wuhan. The q
indicator ranges from 4 to 10 infected cases per one thousand passengers in most cases, except Zhejiang
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and especially Jiangsu (of which Nanjing, a major city, is only 3 h from Wuhan by train). Apart from
the obvious possible differences in diagnosing and reporting, the main reason for discrepancies in the
case of those provinces close to Wuhan and Hubei is their high share of train, bus and car travel to and
from Wuhan.
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Figure 3. Estimated ratio of infected passengers (cases per 1000 passengers), China (700–1000 km from Wuhan).

On the other hand, the picture is more homogeneous for Chinese provinces and territories over
1000 km from Wuhan (Figure 4). For such distances, air travel is practically the only option for
passengers and the q indicator has a range of between 2 and 6 cases per thousand passengers. The two
outliers are Tibet (with a single case in the period, but also a very low number of estimated passengers)
and Heilongjiang, where the number of cases was proportionally higher already on February 3, possibly
as a result of the province having entered the local transmission phase early.
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Figure 4. Estimated ratio of infected passengers, (cases per 1000 passengers), China (over 1000 km from
Wuhan).

As regards other countries apart from China (Figure 5), the indicator had a range of between 0
and 6 cases per thousand passengers until 17 February, with Germany being an outlier (but with only
16 reported cases). Up to that point, the comparison of the indicators for distant Chinese destinations
(more than 1000 km from Wuhan) and countries outside China confirmed the hypothesis of diagnosed
cases being proportional to the number of passengers arriving from Wuhan. Even though the absolute
number of cases was very low and the ratios were unstable, the global distribution patterns seemed to
follow the expected dynamics and to correspond to the air transport patterns.
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Given that the majority of final destinations of passengers from Wuhan were in Mainland China,
the results implied that the appearance of infected cases would follow the same pattern as that of
aviation trips (Figure 1), with the risk for countries outside Asia being low. Additionally, since China
had implemented an extended quarantine since the last week of January, these patterns suggested that
the risk for additional cases in the rest of the world would be limited, as infections in other Chinese
provinces and territories were kept under control. An additional observation that could be made at that
moment was that the reporting quality in China was comparable to that of most neighboring countries,
with indicator levels being at similar levels. However, surprisingly a number of countries—including
Indonesia and the Philippines—report a very low number of cases compared to the expected number
of passengers from Hubei. It should be noted, though, that the number of tests performed in several
countries was very low and the actual number of symptomatic or asymptomatic cases may actually be
much higher.

A dramatic change can be seen in the data for the 24th of February in a number of countries
outside China (Figure 5). Suddenly, the number of cases in South Korea, Japan and Iran presented a
pronounced spike. While South Korea and Japan were among the countries where the risk had already
been identified, Iran was a case that the travel pattern analysis had completely missed. The model
estimates on the number of travellers from Hubei to Iran were between 33 and 236 per month, a value
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too low to raise any alarm. These three countries were only the beginning of the pandemic at the
worldwide level that in the course of the following 8 weeks infected more than 3 million people and
caused more than 200 thousand deaths (as of 27 April 2020).

It is now known that the main reason for the rapid expansion in countries outside Asia was the
appearance of local foci that were not detected initially, and the subsequent spread of the virus from
them both locally and internationally. This evolution of the pandemic revealed a curious pattern: the
countries that had high levels of interaction with China realized the level of risk early and applied
strict control measures, resulting in a comparatively limited spread of the disease. Whereas countries
that appeared to have a lower risk—since they were not in such direct contact with the area of the
primary focus of the pandemic—eventually reached disease levels that exceeded those in the original
focus in China (especially the USA, Spain and Italy). In that sense, our approach appears as sufficient
to capture the true positives, but—as all approaches that we are aware of—may underestimate risk and
lead to false negatives with a high impact. This is a general weakness of any risk assessment model
that we try to explain and discuss in the following sections.

4. Limitations to Predictive Capacity

The capacity of aviation activity to predict the appearance of infected cases can be affected by
various factors that may influence the ratio of infected passengers reaching a specific destination. In the
approach presented here, we assumed—for lack of data—that the socio-economic and demographic
profile of travellers to all destinations is the same. The assumed profile includes the ratio of local to
visiting travellers and their age distribution, as well as their income or professional activity distribution.

Most probably, the infection rates of the local population in Hubei province are different than the
one for visitors, mainly because of the difference in terms of the total time spent in the origin of the
pandemic and—as a result—the period of exposure. The analysis of exportations of symptomatic cases
with MERS-CoV in the period 2013–2015 [26] differentiated between locals and visitors to the Middle
East, the center of the MERS outbreak. The exposure time of visitors was estimated using tourism
statistics, while the exposure of locals was assumed to be equal to the upper bound of the disease
incubation period (10.2 days). A model-based study of frequent flyers suggests that the probability
that an asymptomatic infected person will make an international flight is higher for high-frequency
travellers than for low-frequency ones [27]. One would therefore expect differences in the infection
rates between destinations that serve mainly visitors to Wuhan (e.g., flights to Europe) and destinations
that serve a higher proportion of locals (e.g., flights to destinations in China with employees returning
to work).

The socio-economic profile of the travellers can also affect the probability of super-spreaders,
individuals who due to the type or intensity of their social interactions can transmit the disease to a
disproportionate number of others. A higher frequency of infections in health care settings has been
observed for SARS and MERS [28]. To what concerns travel, frequent flyers have been shown to have
a higher probability of being super-spreaders [1]. Visitors to Wuhan, especially ones for business
purposes, probably had a higher number of social interactions at the origin than the average local
inhabitant (as well as at the destination, increasing even more the probabilities of spreading the disease).
A similar pattern may have been in place in the propagation from the secondary focus of Milan, where
a large number of foreign visitors to commercial exhibitions or sport events may have caused the
spread to other countries.

Infection during flights has been found to have a significant probability. Even though aircraft are
equipped with High-Efficiency Particulate Air (HEPA) filters, which reduce the risk of transmission
through the air circulation system, several studies have demonstrated that infection rates can be as
high as 4.3% in a 9-h flight, and that the risk does not depend on the relative seating of contagious
passengers and passengers infected in-flight [29]. Mangili and Gendreau already discussed the need
for additional work on in-flight transmissions [30], but insufficient data have been made available in
the meanwhile to allow a more robust conclusion.



Int. J. Environ. Res. Public Health 2020, 17, 3356 12 of 15

The diagnostic capacity and protocols applied in airport controls have been discussed using the
experience from SARS [31,32]. Grout et al. [33] identified several inconsistencies in infection control
measures and major differences in how national and international legislation is enforced by airlines and
airports. The differences in the diagnosing quality may affect the number of cases reported. However,
while focusing on controls at the point of entry may improve the identification of travellers with
symptoms, in the case of COVID-19 this strategy may have given a false sense of security.

Climate and local environmental conditions may also affect the speed of local transmission and
can lead to deviations from the expected number of infections. Such an association has been suggested
for SARS and MERS [34], but has not yet been demonstrated in the case of COVID-19. It is still not
clear how the virus reacts to temperature or air pollution, especially particulates. Both aspects will
probably be researched extensively in the future.

The low level of risks suggested by both aviation data and airport controls can distract
attention from what—in hindsight—proved to be the main reason the pandemic reached such
levels: asymptomatic cases. The number and transmission capacity of asymptomatic cases was a
“known unknown” from the beginning of the outbreak. Since COVID-19 has a long incubation period
(up to or even exceeding 14 days) and tests were not yet available, the number of asymptomatic carriers
could not be measured or estimated even in later stages of the pandemic.

5. Conclusions

The frequently cited work by Colizza et al. (2007) explored the predictability of stochastic dynamic
models on global disease distribution and concluded that:

“ . . . stochastic fluctuations are less important than the constraints imposed by the transport
network structure that imposes an overall pattern to the epidemic evolution. In this respect, global
properties provide insights on the general features of the epidemic spreading in relation with the
underlying network but do not provide adequate information on the predictability of the resulting
pattern” [35].

Our empirical results from modeling the spread of COVID-19 suggest the opposite, at least as
regards the first part of the statement. The stochastic fluctuations of the factors that affect the air
transport-related spread of the disease introduce high levels of uncertainty and consequently limit the
predictability of the resulting spatial pattern.

Aviation activity analyzed with the methodology we presented here can provide an early signal
for risk. Such information is important for destinations with a high number of passengers from the
origin of the pandemic, since it can correctly identify potential risks. The indicator used is also a
convenient measure to compare the evolution across countries and identify changes in the direction of
the trends.

Soon, however, if a large enough number of disease carriers has travelled undetected, the easiness
of air travel can convert a local outburst into a global pandemic. In that case, the value of aviation-based
distribution models is limited, due to their systematic underestimation of risk for destinations with
low passenger volume from the origin or interactions with a secondary focus of infection.

Strict measures (quarantine, flight cancelations, travel restrictions) can reduce risks significantly
but come with the cost of a large social, economic and political risk. Airport controls, especially in the
case of novel diseases with unknown symptoms or high asymptomatic shares, can prove inadequate
and may even give a false sense of security. International collaboration and exchange of information
are important elements in managing risk. While the random effects of disease propagation cannot be
controlled, monitoring the situation at the global level using reliable data can significantly improve the
reaction of public authorities.

As with any risk assessment approach, the evaluation of the actual risk and the costs of the
possible risk mitigation strategies can pose delicate trade-offs. However, keeping in mind that modern
aviation permits connecting any two points on the planet in less than 48 h, the chances for new virulent
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diseases spreading around the world are high and the need for better predictive tools becomes even
more urgent.
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