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Abstract: The presence of cumulus cells (CCs) surrounding ovulated eggs is beneficial to in vitro
fertilization and preimplantation development outcomes in several mammalian species. In the
mouse, this contribution has a negligible effect on the fertilization rate; however, it is not yet clear
whether it has positive effects on preimplantation development. Here, we compared the rates of
in vitro fertilization and preimplantation development of ovulated B6C3F1 CC-enclosed vs. CC-free
eggs, the latter obtained either after a 5 min treatment in M2 medium containing hyaluronidase
or after 5–25 min in M2 medium supplemented with 34.2 mM EDTA (M2-EDTA). We found that,
although the maintenance of CCs around ovulated eggs does not increment their developmental rate
to blastocyst, the quality of the latter is significantly enhanced. Most importantly, for the first time,
we describe a further quantitative and qualitative improvement, on preimplantation development,
when CC-enclosed eggs are isolated from the oviducts in M2-EDTA and left in this medium for a total
of 5 min prior to sperm insemination. Altogether, our results establish an important advancement in
mouse IVF procedures that would be now interesting to test on other mammalian species.
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1. Introduction

In most eutherian mammals, the metaphase II oocyte (egg) is ovulated, surrounded by layers
of cumulus cells (CCs) embedded in an extracellular matrix of hyaluronic acid. CCs play several
crucial roles. They are the first barrier that sperm encounter when gaining the ampulla region in their
travel towards the egg, physically entrapping the male gametes and guiding them to the egg [1–3].
Two studies proved that mouse sperm initiate the acrosome reaction during their passage through
the CCs [4–6], rather than later when entering in contact with the zona pellucida, as widely thought
before [7–9]. Additionally, a number of studies have discussed a function for CCs in the selection of
morphologically normal human sperm [10–12]. Although the presence of CCs surrounding the egg
is not strictly required for successful in vitro fertilization (IVF), suggesting that they are dispensable,
a number of studies have underlined the beneficial effect of their presence on both rates of fertilization
and preimplantation development in pigs [13–15], buffalos [16], and cattle [17–22]. In the mouse,
the presence of CCs surrounding ovulated eggs has a negligible effect on the in vitro fertilization
rate [23], but it still remains unclear whether they are required at the time of fertilization for improved
preimplantation developmental competence or if the procedure with the enzyme hyaluronidase,
routinely used for the removal of CCs, may result in a drawback of their early developmental potential.
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In the present study, we set out 1) to compare fertilization and preimplantation development rates
of ovulated B6C3F1 CC-enclosed eggs with those of CC-free eggs, the latter obtained after a treatment
either in M2 medium containing hyaluronidase or, to avoid the use of this enzyme, in Ca-free M2 medium
supplemented with 34.2 mM of the calcium-chelating agent EDTA (ethylene-diamine-tetraacetic acid),
a concentration used for the disaggregation of mouse preimplantation embryo blastomeres [24].
CCs were removed completely after 25 min EDTA treatment; however, already after 5 min we could
observe—under the microscope at 200×magnification—a relaxation without cell loss of the cumulus
oophorus. Thus, 2) we tested the hypothesis that a relaxation of the CC-to-CC contacts, obtained thanks
to a brief treatment in M2 medium containing a high metal ion-chelator concentration, could result in
an improvement of the developmental outcome.

At completion of these experiments, we discovered that although the presence of CCs around
ovulated eggs did not improve their developmental rate to blastocyst, the quality of the latter was
significantly enhanced. Importantly, we demonstrated that a 5 min EDTA treatment of CC-enclosed
eggs prior to insemination, whilst preserving cumulus oocyte complexes (COCs) integrity, remarkably
enhanced, compared to all the other treatments tested, their developmental competence to blastocyst.

2. Materials and Methods

2.1. Animals and Reagents

Four 5-week-old female and 6-month-old male B6C3F1 mice were purchased from Charles River
(Como, Italy). Animals were maintained under controlled room conditions (22 ◦C, with 60% air
moisture, and 12L:12D photoperiod). The experiments of this study conducted on animals were
performed in accordance with the guiding principles of European (n. 86/609/CEE) and Italian (n. 116/92,
8/94) laws protecting animals used for scientific research and were approved by the Italian Health
Ministry with the project identification code N. 1100/2016-PR (15 November 2016). All chemicals used
were purchased from Sigma-Aldrich (St. Louis, MO, USA), unless otherwise stated. Ultrapure MilliQ
water (Merck) was used for preparing media.

2.2. Oocytes Isolation, In Vitro Fertilization and Preimplantation Development

Females were injected with 3.5 I.U. Folligon (Intervet Srl, Italy) followed, 48 h later, by an injection
of 3.5 I.U. Corulon (Intervet), and the oviducts were isolated after 15 h to collect ovulated metaphase
II (MII) eggs. Following isolation, ovulated CC-enclosed eggs were released from the oviducts in
1 mL of M2 medium in its regular formulation not containing EDTA [25], then they were immediately
transferred in M2 medium with the hereafter reported changes in formulation, corresponding to the
different tested experimental groups, to obtain either CC-enclosed (i–iv) or CC-free (v–vii) eggs: i) M2
medium (control, CTRL); ii) Ca2+-free M2 medium for 5 min (M2-Ca2+-free); iii) Ca2+-free M2 medium
supplemented with 34.2 mM (10 mg/mL) EDTA for 5 min (M2-EDTA5); iv) Ca2+-free M2 medium
supplemented with 26.3 mM (10mg/mL) EGTA for 5 min (M2-EGTA); v) M2 medium containing
500 I.U. hyaluronidase type II for 5 min (M2-Hyal); and vi) Ca2+-free M2 medium supplemented with
34.2 mM (10 mg/mL) EDTA for 25 min (M2-EDTA25).

Then, CC-enclosed or CC-free oocytes were washed twice in 1 mL M2 medium and twice in
Whittingham medium [25] where they were inseminated with capacitated sperm.

Sperm were isolated as previously described [26] and incubated for 60 min in 100 µL drops of
Whittingham medium, supplemented with 0.1 mM EDTA, at a final concentration of 1.8 × 106 sperm/mL.
Two hours after insemination, groups of CC-free or CC-enclosed oocytes were transferred into a
fresh Whittingham drop (2 µL/oocyte) for another hour and then the presumptive zygotes were
transferred into M16 medium supplemented with 0.1 mM EDTA (2 µL/oocyte) for preimplantation
development. To define the fertilization rate, zygotes were observed 6 h after insemination under an
inverted microscope; those with two pronuclei and at least two polar bodies were further cultured in
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M16 medium. Development to the 2-cell stage was evaluated at 24 h post-insemination (p.i), to morula
at 72 h p.i. and to the blastocyst stage at 96 h p.i.

2.3. Immunocytochemistry

Blastocysts, obtained from five independent experiments each with its own CTRL group, were fixed
with freshly prepared 4% paraformaldehyde for 30 min and then permeabilized with 0.5% Triton X-100
for 15 min. To suppress nonspecific antibodies binding, embryos were incubated with 0.5% blocking
reagent (Roche) in TNT buffer (0.1 M Tris-HCl, pH 7.5, 0.15 M NaCl, and 0.05% Tween-20) for 20 min at
4 ◦C. Embryos were processed for consecutive immunolabeling using a rabbit polyclonal antihuman
OCT4 (Abcam, cat. no. ab19857, diluted 1:400 in PBS) and a rabbit antihuman CDX2 (Cell Signaling
Technology, cat. no. 3977S, diluted 1:100 in PBS) antibodies. Because the primary antibodies were
raised in the same species, sequential detection of both epitopes was done. Briefly, blastocysts were first
incubated for the detection of the OCT4 protein (using the secondary Alexa Fluor488 anti-rabbit IgG,
diluted 1:500 in PBS plus 0.01% Tween20, Molecular Probes) and then incubated for the detection of
the CDX2 protein (using the secondary Alexa Fluor555 anti-rabbit IgG, diluted 1:500 in PBS plus 0.01%
Tween20, Molecular Probes). Both primary and secondary antibodies were applied for 1 h at 37 ◦C;
after each incubation step, embryos were washed through three changes of TNT for 15 min each at 4 ◦C.
Then, embryos were stained with DAPI (0.2 µg/mL in PBS, 5 min), mounted in Vectashield (H-1000,
Vector), and slightly pressed to facilitate the determination of the cell number. Three-dimensional images
were acquired with an Olympus Provis epifluorescence microscope equipped with single-bandpass
filters for DAPI, AlexaFluor 488, AlexaFluor 555, and a Tango motorized Z-axis (MärzhäuserWetzlar,
Germany), and a Photometrics CH-350 camera. A collection of optical sections (0.5 µm Z-spacing)
was analyzed for cell counting using the Olympus Cell sens Dimension software. We did not use a
threshold level of signal but, in order to reduce the variability, the compared blastocysts were processed
in the same immunocytochemistry experiment and the images were acquired at the same exposure
conditions. Images were merged using ImageJ (http://imagej.nih.gov/ij/) and Adobe Photoshop CS3
software (Adobe, San Jose, CA, USA).

2.4. Statistical Analysis

Data, obtained from at least six independent experiments, were analyzed by Student’s t-test when
the comparison was done between two conditions or by one-way ANOVA when the comparison
was performed among more than two conditions. In the presence of a significant difference after the
one-way ANOVA a post-hoc test (Fisher LSD Method) was performed. Differences were considered
significant when p < 0.05.

3. Results

In a first set of experiments, our aim was to figure out whether the presence of CCs around the egg
was beneficial to fertilization and developmental competence. Thus, we compared the fertilization and
development rates of CTRL vs. CC-free eggs, the latter obtained either after hyaluronidase treatment
or 25 min culture in M2-EDTA25. Following insemination, CTRL, M2-Hyal, and M2-EDTA25 eggs
showed a similar fertilization rate (1-cell embryos; p ≥ 0.14) (Table 1). Then, after the first segmentation
division, of the three groups, a significantly higher frequency of CTRL embryos reached the 2-cell stage
compared to M2-Hyal (p = 0.043) and M2-EDTA25 (p = 0.001) embryos.

http://imagej.nih.gov/ij/
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Table 1. Number (mean % ± s.d.) * of cumulus cells (CC)-enclosed and CC-free eggs that, after fertilization, developed to blastocyst or of embryos that blocked
development during the passage from a stage to the next.

Treatment
MII

Preimplantation Development

Eggs Type Time
(min) Unfertilized 1-Cell Arrested 2-Cell Arrested Morula ** Arrested Blastocyst **

CC-enclosed

CTRL

5

147
21 126 6 120 10 110 7 103

(12.7 ± 6.3) a,b (87.3 ± 6.3) a,b (5.6 ± 6.5) a (82.4 ± 7.5) a,b (8.8 ± 5.8) a,b (91.2 ± 5.8) a,b (6.2 ± 4.0) a (85.4 ± 3.6) a

M2-Ca2+-free 111
16 96 16 79 6 73 6 67

(12.7 ± 7.4) a,b (87.3 ± 7.4) a,b (15.5 ± 8.8) b,c (74.2 ± 13.6) a,c (7.6 ± 2.7) a,b (92.4 ± 2.7) a,b (8.5 ± 6.1) a (84.6 ± 7.5) a

M2-EDTA5 122
6 116 3 113 2 111 2 109

(4.1 ± 3.3) b,c (95.9 ± 3.3) c (2.7 ± 3.3) a (93.3 ± 4.1) d (1.6 ± 2.7) b (98.4 ± 2.7) b (1.5 ± 2.6) a (96.9 ± 3.4) b

M2-EGTA 105
3 102 7 95 2 93 2 91

(2.9 ± 6.4) c (97.1 ± 6.4) c (7.1 ± 2.9) a,b (90.2 ± 5.9) b,d (2.2 ± 3.1) b (97.8 ± 3.1) b (2.7 ± 3.7) a (95.2 ± 5.2) b

CC-free
M2-Hyal 5 144

16 128 25 103 11 92 6 86
(11.6 ± 9.7) a,b,c (88.4 ± 9.7) a,b,c (19.0 ± 7.2) c,d (71.1 ± 4.1) c (11.0 ± 7.9) a (89.0 ± 7.9) a (6.6 ± 4.2) a (83.2 ± 3.6) a

M2-EDTA25 25 130
23 107 26 81 7 74 6 69

(18.1 ± 7.7) a (81.9 ± 7.7) a (26.7 ± 8.8) d (60.4 ± 12.1) e (13.5 ± 8.7) a (86.5 ± 8.7) a (5.9 ± 5.5) a (81.3 ± 8.0) a

(*): In the same column, different superscript letters indicate a significant difference; (**): The developmental rate was calculated based on the number of 2-cell embryos set at 100%.
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From the 2-cell stage onward, CTRL and CC-free eggs attained morula and blastocyst stages at
frequencies not significantly different (p ≥ 0.214) (Table 1).

The results summarized in Table 1 show that an amount of eggs, comprised between 11.6–18.1%,
remained unfertilized; and also, during the first embryonic division, embryos were lost with a
frequency that varied depending on the experimental condition tested, in the range of 5.6 ± 6.5%
(CTRL), 19.0 ± 7.2% (M2-Hyal) (p = 0.002), or 26.7 ± 8.8% (M2-EDTA25) (p ≤ 0.001), indicating this step
as the most critical in development.

In the next set of experiments, we compared the developmental rates of CTRL vs. 5 min
EDTA-treated (M2-EDTA5) of CC-enclosed eggs.

When compared to CTRL, M2-EDTA5 eggs showed a remarkable improvement of both fertilization
(p = 0.046) and developmental rates (Table 1). Notably, the frequency of M2-EDTA5 embryos that
progressed to the 2-cell stage and to blastocyst was significantly higher compared to that obtained
with CTRL embryos (p = 0.037 and p = 0.009, respectively).

Then, we tested whether this fertilization and developmental improvement was attributable to
the 5 min incubation in the presence of EDTA or to the Ca2+-free M2 medium used. When comparing
the effects of either the presence (CTRL) or absence of calcium in the M2 medium, we did not record
significant differences either for fertilization (p = 0.994) or for their developmental rate to blastocyst
(p = 0.854) (Table 1).

Altogether, these results indicate that it was not the absence of calcium in the isolation M2 medium,
but rather the EDTA ions-chelating activity that determined the observed fertilization and development
improvements. To test the hypothesis that EDTA was having this positive effect through a Ca2+

chelating activity, in a further set of experiments we used EGTA (ethylene-glycol-tetraacetic acid) that
has a specific and higher affinity for calcium ions. CC-enclosed eggs were treated for 5 min in Ca2+-free
M2 medium containing 26.3 mM EGTA (M2-EGTA). As shown in Table 1, the frequencies of eggs that
were fertilized and that developed to blastocyst resembled those obtained with eggs incubated in
M2-EDTA5 (p = 0.767 and p = 0.678, respectively).

The total number of blastomeres making up a blastocyst, as well as the number of cells constituting
its trophectoderm (TE) and inner cell mass (ICM) are features representative of blastocyst quality [27,28].
Ninety-six hours after insemination, embryos were processed for the immunocytochemical localization
of CDX2 and OCT4 proteins, markers of TE and ICM cells, respectively. When, in a first set of
experiments, the quality of blastocysts obtained from CTRL was compared to that of those obtained
from M2-Hyal eggs, the results (Table 2) brought up a significantly (p = 0.037) higher total number of
cells in the former (53.1 ± 4.4) compared to the latter (50.1 ± 3.3).

Table 2. Mean number ± s.d. of blastomeres counted in blastocysts at 96 h p.i. (DAPI) and of cells
positive to trophectoderm (CDX2) or inner cell mass (OCT4) immunocytochemical markers. In brackets,
the number of blastocysts analyzed for each experimental group is given. The images show a typical
blastocyst that developed from a CC-enclosed egg incubated for 5 min in M2-EDTA (M2-EDTA5) prior
to sperm insemination. In the same column, different superscript letters indicate a significant difference.

Eggs

Treatment
(Number of

Embryos
Analyzed)

DAPI
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(Number of 

embryos 

analyzed) 

DAPI 

 

CDX2 

 

OCT4 

 

Merge 

 
CC-enclosed CTRL (12) 53.1 ± 4.4 a 40.2 ± 4.7 a 13.1 ± 2.0 a  

CC-free M2-Hyal (18) 50.1 ± 3.3 b 39.1 ± 3.2 a 11.0 ± 1.7 b  

CC-enclosed 
CTRL (24) 52.2 ± 4.3 a 38.7 ± 3.6 a 14.0 ± 1.7 a  

M2-EDTA5 65.0 ± 10.8 b 47.1 ± 8.2 b 17.9 ± 4.3 b  

CDX2
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This difference is explained with a higher number of ICM blastomeres (13.1 ± 2.0 vs. 11.0 ± 1.7;
p = 0.009). Instead, CTRL blastocysts appeared with a lower number of total (p = 0.001), TE (p = 0.004),
and ICM (p = 0.010) blastomeres, compared to those obtained from M2-EDTA5 eggs (Table 2).

4. Discussion

The results of our investigation indicate that the maintenance of CCs around the ovulated
egg is beneficial to the outcome of mouse in vitro preimplantation development. More specifically,
in the comparison between CTRL CC-enclosed vs. CC-free eggs, we observed that the presence
of CCs surrounding ovulated eggs whilst negligible on the fertilization rate—confirming an earlier
study [11]—it does slightly, but significantly, improve blastocyst quality.

A further marked enhancement was obtained when CC-enclosed eggs were isolated during a
5 min period in M2 medium containing a calcium-chelating agent, either EDTA or EGTA. EDTA is part
of many media used for preimplantation embryo culture, including the M16 medium used in our study
(0.1 mM). Whilst the regular M2 medium formulation (like the one we prepared) does not include
EDTA, a novelty of our study is that we showed that a 5 min passage of ovulated COCs in M2 medium
containing a high EDTA concentration, significantly improves the rate of preimplantation development
to blastocyst. Thus, following this treatment, we demonstrated a highly significant increase of 2-cell
embryos that reached the blastocyst stage, with three out of six experiments in which we attained a
100% development. Furthermore, the blastocysts obtained displayed a higher number of TE and ICM
blastomeres, both contributing to the higher total number of blastocyst cells.

Although our study does not identify a mechanism for the recorded developmental improvement,
we speculate that the 5 min treatment, though incapable of removing the CCs surrounding the egg,
determines their relaxation and may create a favorable environment for sperm selection. In addition,
being EDTA an inhibitor of the 3-phosphoglycerate kinase [29], a key glycolysis enzyme active in CCs
and involved in oocyte’s aging after ovulation [30], EDTA-treatment of post-ovulatory COCs might
delay oocyte aging and contribute to an overall improvement of their developmental competence.

5. Conclusions

Altogether, our results highlight how a 5 min incubation step of ovulated CC-enclosed eggs in M2
medium containing a high concentration of a calcium chelator markedly improves preimplantation
development both quantitatively and qualitatively. This new method establishes an important
advancement in mouse IVF procedures that would be now interesting to test on other mammalian
species. If the improvement recorded with the mouse would be confirmed with other model animals
such as the cow, its use could be envisaged in human ART (assisted reproductive technologies), where the
prevalence of clinical cycles is now performed using the intra cytoplasm sperm injection technique.
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