Source Apportionment of Coarse Particulate Matter (PM10) in Yangon, Myanmar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling Methods
2.2. Chemical Analysis
2.3. Chemical Component Classification
2.4. Statistical Analysis
2.5. Source Apportionment
3. Results
3.1. Bulk Chemical Composition
3.2. Source Apportionment
3.2.1. Source Identification and Mass Reconstruction
3.2.2. CMB Source Apportionment of PM10 OC
3.2.3. Combined Results from All Source Apportionment Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shi, Y.; Matsunaga, T.; Yamaguchi, Y.; Li, Z.; Gu, X.; Chen, X. Long-term trends and spatial patterns of satellite-retrieved PM2.5 concentrations in south and southeast Asia from 1999 to 2014. Sci. Total Environ. 2018, 615, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Yi, E.E.P.N.; Nway, N.C.; Aung, W.Y.; Thant, Z.; Wai, T.H.; Hlaing, K.K.; Maung, C.; Yagishita, M.; Ishigaki, Y.; Win-Shwe, T.-T.; et al. Preliminary monitoring of concentration of particulate matter (PM2.5) in seven townships of Yangon City, Myanmar. Environ. Health Prev. Med. 2018, 23, 53. [Google Scholar] [CrossRef] [PubMed]
- Viaene, P.; Belis, C.A.; Blond, N.; Bouland, C.; Juda-Rezler, K.; Karvosenoja, N.; Martilli, A.; Miranda, A.; Pisoni, E.; Volta, M. Air quality integrated assessment modelling in the context of EU policy: A way forward. Environ. Sci. Policy 2016, 65, 22–28. [Google Scholar] [CrossRef]
- Aung, L.L.; Zin, E.E.; Theingi, P.; Elvera, N.; Aung, P.P.; Han, T.T.; Oo, Y.; Skaland, R.G. Myanmar Climate Report; Norwegian Meteorological Institute: Oslo, Norway, 14 September 2017. [Google Scholar]
- Lough, G.C.; Schauer, J.J.; Lawson, D.R. Day-of-week trends in carbonaceous aerosol composition in the urban atmosphere. Atmos. Environ. 2006, 40, 4137–4149. [Google Scholar] [CrossRef]
- Bae, M.-S.; Schauer, J.J.; Deminter, J.T.; Turner, J.R. Hourly and daily patterns of particle-phase organic and elemental carbon concentrations in the urban atmosphere. J. Air Waste Manag. Assoc. 2004, 54, 823–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Secrest, M.H.; Schauer, J.J.; Carter, E.M.; Lai, A.M.; Wang, Y.; Shan, M.; Yang, X.; Zhang, Y.; Baumgartner, J. The oxidative potential of PM2.5 exposures from indoor and outdoor sources in rural China. Sci. Total Environ. 2016, 571, 1477–1489. [Google Scholar] [CrossRef] [PubMed]
- Skiles, M.J.; Lai, A.M.; Olson, M.R.; Schauer, J.J.; de Foy, B. Source apportionment of PM2.5 organic carbon in the San Joaquin valley using monthly and daily observations and meteorological clustering. Environ. Pollut. 2018, 237, 366–376. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Occupational Safety and Health (NIOSH). Elemental Carbon (Diesel Particulate): Method 5040. In NIOSH Manual of Analytical Methods, 4th ed.; NIOSH: Cincinnati, OH, USA, 2003. [Google Scholar]
- Stone, E.; Schauer, J.; Quraishi, T.A.; Mahmood, A. Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan. Atmos. Environ. 2010, 44, 1062–1070. [Google Scholar] [CrossRef]
- Bae, M.-S.; Schauer, J.J.; Turner, J.R. Estimation of the monthly average ratios of organic mass to organic carbon for fine particulate matter at an urban site. Aerosol Sci. Technol. 2006, 40, 1123–1139. [Google Scholar] [CrossRef]
- Von Schneidemesser, E.; Stone, E.A.; Quraishi, T.A.; Shafer, M.M.; Schauer, J.J. Toxic metals in the atmosphere in Lahore, Pakistan. Sci. Total Environ. 2010, 408, 1640–1648. [Google Scholar] [CrossRef] [PubMed]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric chemistry and physics: From air pollution to climate change; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Lai, A.M.; Shafer, M.M.; Dibb, J.E.; Polashenski, C.M.; Schauer, J.J. Elements and inorganic ions as source tracers in recent greenland snow. Atmos. Environ. 2017, 164, 205–215. [Google Scholar] [CrossRef]
- Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T. Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants. Environ. Sci. Technol. 1993, 27, 2700–2711. [Google Scholar] [CrossRef]
- Lough, G.C.; Christensen, C.G.; Schauer, J.J.; Tortorelli, J.; Mani, E.; Lawson, D.R.; Clark, N.N.; Gabele, P.A. Development of molecular marker source profiles for emissions from on-road gasoline and diesel vehicle fleets. J. Air Waste Manag. Assoc. 2007, 57, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- Sheesley, R.J.; Schauer, J.J.; Chowdhury, Z.; Cass, G.R.; Simoneit, B.R.T. Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Schauer, J.J.; Zhang, Y.; Zeng, L.; Wei, Y.; Liu, Y.; Shao, M. Characteristics of particulate carbon emissions from real-world Chinese coal combustion. Environ. Sci. Technol. 2008, 42, 5068–5073. [Google Scholar] [CrossRef] [PubMed]
- Sheesley, R.J.; Schauer, J.J.; Zheng, M.; Wang, B. Sensitivity of molecular marker-based CMB models to biomass burning source profiles. Atmos. Environ. 2007, 41, 9050–9063. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Schauer, J.J.; Nolte, C.G.; Oros, D.R.; Elias, V.O.; Fraser, M.P.; Rogge, W.F.; Cass, G.R. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos. Environ. 1999, 33, 173–182. [Google Scholar] [CrossRef]
- Giannoni, M.; Martellini, T.; Del Bubba, M.; Gambaro, A.; Zangrando, R.; Chiari, M.; Lepri, L.; Cincinelli, A. The use of levoglucosan for tracing biomass burning in PM2.5 samples in Tuscany (Italy). Environ. Pollut. 2012, 167, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Hasheminassab, S.; Daher, N.; Schauer, J.J.; Sioutas, C. Source apportionment and organic compound characterization of ambient ultrafine particulate matter (PM) in the Los Angeles Basin. Atmos. Environ. 2013, 79, 529–539. [Google Scholar] [CrossRef]
- De Oliveira Alves, N.; Brito, J.; Caumo, S.; Arana, A.; de Souza Hacon, S.; Artaxo, P.; Hillamo, R.; Teinilä, K.; Batistuzzo de Medeiros, S.R.; de Castro Vasconcellos, P. Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment. Atmos. Environ. 2015, 120, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Puxbaum, H.; Caseiro, A.; Sánchez-Ochoa, A.; Kasper-Giebl, A.; Claeys, M.; Gelencsér, A.; Legrand, M.; Preunkert, S.; Pio, C. Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Tipayarom, D.; Oanh, N.T.K. Effects from open rice straw burning emission on air quality in the Bangkok metropolitan region. ScienceAsia 2007, 33, 339. [Google Scholar] [CrossRef]
- Vadrevu, K.; Ohara, T.; Justice, C. Land cover, land use changes and air pollution in Asia: A synthesis. Environ. Res. Lett. 2017, 12, 120201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization (FOA) of the United Nations. FAO GIEWS Country Brief on Myanmar. Available online: http://www.fao.org/giews/countrybrief/country.jsp?code=MMR (accessed on 25 July 2019).
- USDA Foreign Agricultural Service. Burma—Union of Grain and Feed Annual 2019; USDA: Washington, DC, USA, 2019; p. 20. [Google Scholar]
- Campaign Aims to Stop Burning of Leaves. Available online: https://www.mmtimes.com/news/campaignaims-stop-burning-leaves.html (accessed on 22 April 2020).
- Asian Development Bank. Myanmar Energy Consumption Surveys Report; Asian Development Bank: Manila, Philippines, 2017. [Google Scholar] [CrossRef]
- Wickramasinghe, A.P.; Karunaratne, D.G.G.P.; Sivakanesan, R. PM10-bound polycyclic aromatic hydrocarbons: Concentrations, source characterization and estimating their risk in urban, suburban and rural areas in Kandy, Sri Lanka. Atmos. Environ. 2011, 45, 2642–2650. [Google Scholar] [CrossRef]
- Han, B.; Liu, Y.; You, Y.; Xu, J.; Zhou, J.; Zhang, J.; Niu, C.; Zhang, N.; He, F.; Ding, X.; et al. Assessing the inhalation cancer risk of particulate matter bound polycyclic aromatic hydrocarbons (PAHs) for the elderly in a retirement community of a mega city in north China. Environ. Sci. Pollut. Res. 2016, 23, 20194–20204. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, S.; Lohmann, R.; Yu, N.; Zhang, C.; Gao, Y.; Zhao, J.; Ma, L. Source apportionment of gaseous and particulate PAHs from traffic emission using tunnel measurements in Shanghai, China. Atmos. Environ. 2015, 107, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Brook, J.R.; Graham, L.; Charland, J.P.; Cheng, Y.; Fan, X.; Lu, G.; Li, S.M.; Lillyman, C.; MacDonald, P.; Caravaggio, G.; et al. Investigation of the motor vehicle exhaust contribution to primary fine particle organic carbon in urban air. Atmos. Environ. 2007, 41, 119–135. [Google Scholar] [CrossRef]
- Schauer, J.J.; Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos. Environ. 2007, 41, 241–259. [Google Scholar] [CrossRef]
- Wang, G.; Kawamura, K.; Zhao, X.; Li, Q.; Dai, Z.; Niu, H. Identification, abundance and seasonal variation of anthropogenic organic aerosols from a mega-city in China. Atmos. Environ. 2007, 41, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Bohac, S.V.; Chernyak, S.M.; Batterman, S.A. Composition and integrity of PAHs, nitro-PAHs, hopanes, and steranes in diesel exhaust particulate matter. Water Air Soil Pollut. 2013, 224, 1630. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.Y.; Gali, N.K.; Yang, F.; Zhang, J.; Ning, Z. Chemical characterization of size-segregated PM from different public transport modes and implications of source specific contribution to public exposure. Environ. Sci. Pollut. Res. 2017, 24, 20029–20040. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Wang, S.; Chang, X.; Cai, S.; Xing, J.; Hao, J. Modeling analysis of secondary inorganic aerosols over China: Pollution characteristics, and meteorological and dust impacts. Sci. Rep. 2016, 6, 35992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, B.; Austin, R.L.; Cocker, D.R. Temperature dependence of secondary organic aerosol. Atmos. Environ. 2009, 43, 3548–3555. [Google Scholar] [CrossRef]
- Sannigrahi, P.; Sullivan, A.P.; Weber, R.J.; Ingall, E.D. Characterization of water-soluble organic carbon in urban atmospheric aerosols using solid-state 13C NMR spectroscopy. Environ. Sci. Technol. 2006, 40, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Schauer, J.J. Evaluation of elemental carbon as a marker for diesel particulate matter. J. Expo. Anal. Environ. Epidemiol. 2003, 13, 443–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du Pont, P. Decentralizing Power: The Role of State and Region Governments in Myanmar’s Energy Sector; Asian Foundation: Yangon, Myanmar, 2019. [Google Scholar]
- Schmidl, C.; Bauer, H.; Dattler, A.; Hitzenberger, R.; Weissenboeck, G.; Marr, I.L.; Puxbaum, H. Chemical characterisation of particle emissions from burning leaves. Atmos. Environ. 2008, 42, 9070–9079. [Google Scholar] [CrossRef]
- Gonçalves, C.; Evtyugina, M.; Alves, C.; Monteiro, C.; Pio, C.; Tomé, M. Organic particulate emissions from field burning of garden and agriculture residues. Atmos. Res. 2011, 101, 666–680. [Google Scholar] [CrossRef]
- Alves, C.A.; Evtyugina, M.; Vicente, A.M.P.; Vicente, E.D.; Nunes, T.V.; Silva, P.M.A.; Duarte, M.A.C.; Pio, C.A.; Amato, F.; Querol, X. Chemical profiling of PM10 from urban road dust. Sci. Total Environ. 2018, 634, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Oil and Gas Planning Department. Myanmar Energy Statistics 2019; Economic Research Institute for ASEAN and East Asia (ERIA): Central Jakarta, Indonesia, 2019. [Google Scholar]
- Villalobos, A.M.; Barraza, F.; Jorquera, H.; Schauer, J.J. Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013. Sci. Total Environ. 2015, 512–513, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.H. The forests of Burma. Bull. Torrey Bot. Club 1965, 92, 144. [Google Scholar] [CrossRef]
- Slagle, J.T. Climate Change in Myanmar: Impacts and Adaptation. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, December 2014. [Google Scholar]
- Wang, G.; Cheng, C.; Meng, J.; Huang, Y.; Li, J.; Ren, Y. Field observation on secondary organic aerosols during Asian dust storm periods: Formation mechanism of oxalic acid and related compounds on dust surface. Atmos. Environ. 2015, 113, 169–176. [Google Scholar] [CrossRef]
- Després, V.R.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.S.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.O.; Pöschl, U.; et al. Primary Biological Aerosol Particles in the Atmosphere: A Review. Tellus B Chem. Phys. Meteorol. 2012, 64, 15598. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich-Nowoisky, J.; Kampf, C.J.; Weber, B.; Huffman, J.A.; Pöhlker, C.; Andreae, M.O.; Lang-Yona, N.; Burrows, S.M.; Gunthe, S.S.; Elbert, W.; et al. Bioaerosols in the earth system: Climate, health, and ecosystem interactions. Atmos. Res. 2016, 182, 346–376. [Google Scholar] [CrossRef] [Green Version]
Factor | Variance Explained (%) | Determining Species | Potential Sources |
---|---|---|---|
1 | 54.08 | Al, wi-K, Sc, Ti, Cr, Fe, Co, Sr, Y, Mo, Cs, | Dust |
Ba, La, Ce, Pr, Nd, Sm, Eu, Dy, Ho, Yb, Lu, | |||
W, Pt, Th, U, WIOC, Nitrate, Mn, Rb | |||
2 | 13.84 | Sulfate, Ammonium, K, Mn, Se, Tl | Secondary aerosols |
3 | 8.75 | Cu, Sn, Sb, Ag | Metal manufacturing |
4 | 8.54 | EC, WSOC | Biomass burning |
5 | 5.23 | Pb, Zn | Roadway emission |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sricharoenvech, P.; Lai, A.; Oo, T.N.; Oo, M.M.; Schauer, J.J.; Oo, K.L.; Aye, K.K. Source Apportionment of Coarse Particulate Matter (PM10) in Yangon, Myanmar. Int. J. Environ. Res. Public Health 2020, 17, 4145. https://doi.org/10.3390/ijerph17114145
Sricharoenvech P, Lai A, Oo TN, Oo MM, Schauer JJ, Oo KL, Aye KK. Source Apportionment of Coarse Particulate Matter (PM10) in Yangon, Myanmar. International Journal of Environmental Research and Public Health. 2020; 17(11):4145. https://doi.org/10.3390/ijerph17114145
Chicago/Turabian StyleSricharoenvech, Piyaporn, Alexandra Lai, Tin Nwe Oo, Min M. Oo, James J. Schauer, Kyi Lwin Oo, and Kay Khine Aye. 2020. "Source Apportionment of Coarse Particulate Matter (PM10) in Yangon, Myanmar" International Journal of Environmental Research and Public Health 17, no. 11: 4145. https://doi.org/10.3390/ijerph17114145
APA StyleSricharoenvech, P., Lai, A., Oo, T. N., Oo, M. M., Schauer, J. J., Oo, K. L., & Aye, K. K. (2020). Source Apportionment of Coarse Particulate Matter (PM10) in Yangon, Myanmar. International Journal of Environmental Research and Public Health, 17(11), 4145. https://doi.org/10.3390/ijerph17114145