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Abstract: (1) Background: Predicting chronic low back pain (LBP) is of clinical and economic interest
as LBP leads to disabilities and health service utilization. This study aims to build a competitive and
interpretable prediction model; (2) Methods: We used clinical and claims data of 3837 participants of
a population-based cohort study to predict future LBP consultations (ICD-10: M40.XX-M54.XX). Best
subset selection (BSS) was applied in repeated random samples of training data (75% of data); scoring
rules were used to identify the best subset of predictors. The rediction accuracy of BSS was compared
to randomforest and support vector machines (SVM) in the validation data (25% of data); (3) Results:
The best subset comprised 16 out of 32 predictors. Previous occurrence of LBP increased the odds for
future LBP consultations (odds ratio (OR) 6.91 [5.05; 9.45]), while concomitant diseases reduced the
odds (1 vs. 0, OR: 0.74 [0.57; 0.98], >1 vs. 0: 0.37 [0.21; 0.67]). The area-under-curve (AUC) of BSS was
acceptable (0.78 [0.74; 0.82]) and comparable with SVM (0.78 [0.74; 0.82]) and randomforest (0.79 [0.75;
0.83]); (4) Conclusions: Regarding prediction accuracy, BSS has been considered competitive with
established machine-learning approaches. Nonetheless, considerable misclassification is inherent
and further refinements are required to improve predictions.

Keywords: record linkage; machine learning; calibration; best subset selection; low back pain

1. Introduction

Non-specific low back pain (LBP) is one of the leading health problems and associated
with substantial individual burdens, health service utilization and indirect costs world-
wide [1–3]. LBP has been portrayed as having a good prognosis with a high proportion of
patients recovering spontaneously within few weeks, with no or minimal interventions.
Although this is true for most, a substantial proportion of patients will develop chronic or
recurrent back pain [4–6]. This has implications for the provision of health services.

One rationale is to focus service provision on subjects with subsequent high service
utilization, reflecting relevant impairment and suffering. For health care providers and
health insurances, the identification of such patients is, therefore, of great importance,
since this is a prerequisite for the rational allocation of limited specialized services and for
offering targeted interventions to those who are most affected. This would, for example, be
of relevance to optimize disease management programs for chronic low back pain, which
are mandated by the statutory health insurance in Germany.

Machine-learning approaches such as randomforest [7] have been shown to obtain
high accuracy for the prediction of events and have frequently outperformed established
models [8]. Nevertheless, the deficiencies of machine-learning approaches, including ran-
domforest, comprise the following: (a) a black box like behavior, (b) lacking interpretability
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of results, and (c) the results cannot be reused in new data sources as the model definition
is conducted implicitly [9,10].

In best subset selection (BSS) approaches, all possible combinations of candidate vari-
ables are explored in a regression model, i.e., 2P-1 possible subsets must be examined.
This approach was proposed decades ago and provides accurate and interpretable pre-
diction models, as candidate variables, which do not affect the prediction accuracy of
the model, will be removed [11]. BSS is also known as L0—penalization and represents
one among many penalized approaches, such as the lasso [12]. Due to its computational
costs, BSS has rarely been applied in health research studies, although the availability of
high-performance-cluster machines and parallel computing make BSS more feasible.

In this study, we follow the pipeline of machine-learning approaches (model training,
model calibration, and model validation) to obtain the best subset of predictors from claims
data and those of a population-based cohort to predict future consultations for low back
pain. For benchmarking, BSS results will be compared with parameter-tuned randomforest
and support vector machines.

2. Materials and Methods
2.1. Data Sources
2.1.1. Study of Health in Pomerania

The Study of Health in Pomerania (SHIP) [13] is a population-based project that
comprises two distinct cohorts, SHIP-START and SHIP-TREND. This study is restricted to
the baseline examinations conducted for the more recently started SHIP-TREND cohort
(SHIP-TREND-0). Participants were sampled in Mecklenburg-Vorpommern, a region in
northeast Germany, and followed up every 4–6 years. After the exclusion of deceased
and relocated individuals, the net sample comprised 8826 individuals. In total, 4420
(2275 women) followed the invitation (response 50.1%) and were examined during the
baseline visits between 2008 and 2012.

The SHIP-TREND-0 examination program comprised medical and dental examina-
tions, laboratory measurements, an interview, and self-reported questionnaires, among
others. In the latter, several standardized instruments were presented to participants,
comprising the PHQ-9 [14], a diagnostic instrument for depressive symptoms, and a von
Korff short version [15,16] to grade the severity of LBP.

2.1.2. Claims Data

In Germany, Statutory Health Insurances host data of approximately 72.8 million
assured individuals; 87.7% of the whole population [17]. For SHIP participants’, respective
data were available between 2002 and 2018. We considered ICD-10 codes specific to
diseases and symptoms in the lumbar spine (Dorsopathies, M40.XX to M54.XX), excluding
ICD-10 codes of thoracic and cervical diagnoses (e.g., M54.01 to M54.04). Excluded ICD-10
codes are listed in the supplement under paragraph “List of ICD-10 codes” and supplement
Table S1. In addition, physicians’ fee schedules were considered and grouped into those
being claimed for back-pain-associated treatments by General practitioners, Orthopedists,
Neurologists, Radiologists or for respective medical interventions. The list of included
physicians’ fee schedules is provided in the supplement (Table S2).

2.1.3. Record Linkage

Data from the statutory health insurance and from SHIP have no common identifier for
record linkage. Therefore, we followed the approach of Vatsalan et al. [18] and linked the
data sources based on surname, name, date of birth, and sex of participants, with linkage
consent. The names were normalized to upper-case letters; the indexing of candidate pairs
was blocked via birth date. All exact agreements were considered matches and possible
matches, i.e., agreements with Levenshtein distance > 0, were manually reviewed.
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2.2. Methods

Data preparations and record linkage were conducted using SAS version 9.4 (SAS
Institute Inc., Cary, NC, USA). R version 4.0.3 has been used for all analyses [19], including
zero-inflated regression models using the R package pscl [20,21]. For the best subset selec-
tion, the R code was parallelized [22] and computed at the high-performance-computing
center of the University of Greifswald [23].

2.2.1. Study Design

For each SHIP-TREND-0 participant, a longitudinal analysis period covering three
years of observation was considered (Figure 1). The year antedating the SHIP examination
served as the baseline period, which also covers physicians’ fee schedules and ICD-10 codes
from four quarters (Q-3 to Q0). This reflects the billing periods in ambulatory care. The
year before the baseline period (Q-7 to Q-4) was used to identify any previous occurrences
of ICD-10 codes related to unspecific low back pain. Claims data of quarters Q1 to Q4
represent follow-up data after participation in SHIP (Figure 1).
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2.2.2. Primary Outcome

The primary outcome was the sum of ICD-10 codes specific to diseases and symptoms
in the lumbar spine during the year after baseline (Q1 to Q4, Figure 1). Assigned ICD-
10 codes are a valid surrogate measure for physician consultations, as they can only
be assigned following a consultation. This outcome represents count data, which were
examined for zero-inflation using a score test [24,25] (Supplement Figure S1).

2.2.3. Candidate Variables

The following 12 candidate variables were considered for best subset selection from
claims data: categorized age (<40; 40–69; > 69), history of LBP (yes/no prior to baseline),
imaging procedure related to back pain in the baseline period, medical interventions related
to back pain in the baseline period, sum of back-pain-related ICD-10 codes (in the quarter
of the SHIP examination only), sum of back-pain-related ICD-10 codes (in at least two
quarters of the baseline period), visited physician specialties in the baseline period (none,
general practitioner only, specialist only, general practitioner and specialist), use of opioids,
use of benzodiazepine, occurrence of ICD-10 code M54.XX only (unspecific back pain),
the Charlson comorbidity index [26], and the interaction between categorized age and
unspecific M54.XX only. (XX = any code after the decimal point is selected, except for those
excluded and listed in the Supplement).

All 32 candidate variables from SHIP are listed in the supplement (Table S4, Figure S4).
This list was created based on the expert opinion of the investigators, and an informal
literature review. Non-linear associations between candidate variables and the primary
outcome were examined using generalized additive models (Supplement Figure S2). In
addition, three interaction effects were assessed: depression x sex, depression x PHQ-9,
and disc prolapse x radiating back pain. To reduce overall computational costs, we applied
an exploratory variable selection using a boosting approach with stability selection [27]
(please see supplement paragraph: “Exploratory variable selection”). This method has
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previously been applied to high-dimensional and collinear data [28]. In the case of strong
non-linear associations (effective degrees of freedom > 1 and p < 0.05), the respective
candidate variable was modelled as having a linear as well as a non-linear effect. With
respect to the candidate variable age, the exploratory analyses favored a discretized form
of age over a smoothed variant (B-spline) and a linear form. Therefore, discretized age was
also used in the claims data. Overall, 19 candidate variables and one interaction effect were
examined in the best-subset selection approach using the SHIP data.

The best subsets of claims data and SHIP data were joined afterwards and assessed in
another best subset selection approach in the joined data.

2.2.4. Model Training

The whole model training is illustrated and annotated in the supplement (Figure S4).
In brief, we first split the SHIP-TREND-0 data set into training data and validation data
in a ratio of 3:1 (training data: n = 2869, validation data: n = 968). From the training data,
b = 500 repeated bootstrap samples were drawn to define inner training data (observations
selected by bootstrap) and inner validation data (observations not selected by bootstrap).
Then, hurdle-models comprising a zero-part (logistic regression) and a count-part (either a
Poisson or a negative-binomial distribution) were trained on the inner training data. The
resulting model was used to predict the outcomes on the inner validation data. The model
training process was iterated over two entities: (i) all possible combinations of covariates
(pi) in bootstrap bj, and (ii) b = 500 bootstrap samples of the training data. This approach
is similar to the one proposed by Filzmoser et al. for parameter tuning using repeated
double cross-validation [29]. All these steps were separately conducted for the claims data
and the SHIP data and, after the selection of the best subsets in each, the data were joined
(Claims + SHIP).

2.2.5. Model Evaluation

In each iterative step (pi, bj), information criteria (AIC, [30]) of Poisson and negative-
binomial models were used to evaluate the best distributional form. In addition, strictly
proper scoring rules were applied to assess the quality or agreement between the predicted
and observed outcomes in the inner validation data [31]. The best model, i.e., the best
subset of candidate variables, was considered to be the one that had, on average, the best
prediction accuracy over 500 bootstrap samples. The selected model was then used to
predict the outcomes in the outer validation data.

The goodness of fit of the optimal model was examined using rootograms, which
illustrate overfitting and underfitting of count data regression models [32]. Furthermore,
the estimated probability of having an ICD-10 code (yes or no, which corresponds to
the zero-part in the hurdle model) was used to predict and classify if study participants
will have an ICD-10 code after participation in SHIP. The area-under-curve (AUC) and
receiver-operating-characteristics (ROC) were generated for the best subsets of all three
datasets [33] and the sensitivity analyses.

2.2.6. Missing Data

Table 1 presents the proportion of missing values in all covariates originating from
the SHIP study. First, we separately applied multiple imputations by chained equations
(m = 20) using the R package mice [34] for training data and validation data. Second,
the increase in variance in the training data (Supplement Table S6) was evaluated for
each candidate variable with missing values. The highest increase in variance was found
for household income (4.58%), PHQ-9 (3.74%), and SF12 PCS sum score (1.24%). In all
other candidate variables, the increase was <1%. Recommendations for the application of
multiple imputations in the case of missing data < 5% are contradictory [35,36]. Therefore,
for model training, we used similar training data in best subset selection and randomforest
restricted to m = 1 imputation. However, to evaluate the best subset model in the validation
data, we used m = 20 imputations.
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Table 1. Characteristics of participants of the Study of Health in Pomerania TREND-0 cohort.

Characteristic Statutory Insurances Private Insurances

Participants with
Consent to Linkage

Participants without
Consent to Linkage

N 3837 242 341
Age (years)

Mean (SD) 52.6 (15.6) 50.9 (15.3) 45.2 (12.1)
Median [Min, Max] 53.0 [20.0, 84.0] 52.5 [23.0, 81.0] 44.0 [21.0, 78.0]

Family status
Single 409 (10.7%) 40 (16.5%) 36 (10.6%)
Married/Partner 2964 (77.2%) 170 (70.2%) 284 (83.3%)
Separated 241 (6.3%) 24 (9.9%) 18 (5.3%)
Widowed 211 (5.5%) 7 (2.9%) 3 (0.9%)
Missing 12 (0.3%) 1 (0.4%) 0 (0%)

Job characteristics
Never working 27 (0.7%) 2 (0.8%) 5 (1.5%)
At desktop, not

physically 1129 (29.4%) 75 (31.0%) 188 (55.1%)

At desktop and
physically demanding 504 (13.1%) 36 (14.9%) 64 (18.8%)

Not at desktop, not
physically 796 (20.7%) 49 (20.2%) 28 (8.2%)

Not at desktop but
physically demanding 1220 (31.8%) 61 (25.2%) 52 (15.2%)

Missing 161 (4.2%) 19 (7.9%) 4 (1.2%)
School years

<10 954 (24.9%) 64 (26.4%) 11 (3.2%)
10 2018 (52.6%) 104 (43.0%) 146 (42.8%)
>10 853 (22.2%) 73 (30.2%) 184 (54.0%)
Missing 12 (0.3%) 1 (0.4%) 0 (0%)

Household income
Mean (SD) 1300 (638) 1290 (704) 2140 (913)
Median [Min, Max] 1100 [149, 5070] 1100 [192, 3580] 2050 [149, 5070]
Missing 134 (3.5%) 33 (13.6%) 20 (5.9%)

Backpain last 3M (NRS)
Mean (SD) 2.69 (2.63) 2.48 (2.57) 1.89 (2.24)
Median [Min, Max] 3.00 [0, 10.0] 2.00 [0, 10.0] 1.00 [0, 10.0]
Missing 14 (0.4%) 1 (0.4%) 0 (0%)

Impairment by backpain last
3M (NRS)

Mean (SD) 1.02 (1.89) 0.996 (1.98) 0.619 (1.53)
Median [Min, Max] 0 [0, 10.0] 0 [0, 10.0] 0 [0, 10.0]
Missing 15 (0.4%) 1 (0.4%) 0 (0%)

PHQ-9
no signs 513 (13.4%) 36 (14.9%) 57 (16.7%)
minimal 1907 (49.7%) 95 (39.3%) 174 (51.0%)
mild 976 (25.4%) 59 (24.4%) 89 (26.1%)
moderate 204 (5.3%) 20 (8.3%) 17 (5.0%)
severe 61 (1.6%) 4 (1.7%) 0 (0%)
Missing 176 (4.6%) 28 (11.6%) 4 (1.2%)

Use of NSAIDs
NSAIDs 383 (10.0%) 28 (11.6%) 27 (7.9%)
No NSAIDs 3444 (89.8%) 214 (88.4%) 314 (92.1%)
Missing 10 (0.3%) 0 (0%) 0 (0%)

Use of opioids
Opioids 64 (1.7%) 10 (4.1%) 0 (0%)
No opioids 3763 (98.1%) 232 (95.9%) 341 (100%)
Missing 10 (0.3%) 0 (0%) 0 (0%)
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Table 1. Cont.

Characteristic Statutory Insurances Private Insurances

Participants with
Consent to Linkage

Participants without
Consent to Linkage

Use of antidepressants
No antidepressants 3607 (94.0%) 232 (95.9%) 331 (97.1%)
antidepressants 220 (5.7%) 10 (4.1%) 10 (2.9%)
Missing 10 (0.3%) 0 (0%) 0 (0%)

ICD-10 codes for backpain
No 2684 (70.0%) 0 (0%) 289 (84.8%)
One 650 (16.9%) 0 (0%) 1 (0.3%)
Two 292 (7.6%) 0 (0%) 2 (0.6%)
≥3 211 (5.5%) 0 (0%) 1 (0.3%)
Missing 0 (0%) 242 (100%) 48 (14.1%)

2.2.7. Comparative Analyses

To compare the predictive accuracy of the best subset model with established machine-
learning algorithms we applied randomforest (RF) [7] and support vector machines (SVM) [37]
using the combined data (claims and SHIP). As in most machine-learning approaches [38],
randomforest and SVM have several tuning parameters to increase the predictive accuracy.
For randomforest, we used the R package tuneRanger to define the optimal parameter
setting [39]. For SVMs, we chose a radial basis function kernel due to non-linear associations
and applied a two-step grid search for the best parameter setting [40]. The R package e1071
was used to apply SVMs [41]. More details regarding the parameter tuning are provided in
the supplement, under the paragraph “Comparative analyses”.

2.2.8. Subgroup Analyses

Subgroup analyses were applied to examine sources for misclassification in predictive
models. Therefore, estimated probabilities for a future episode of LBP were stratified in
multiway-tables using the applied method, the training data and the validation data, back
pain severity, and pattern of search of care.

3. Results
3.1. Cohort Characteristics

The descriptive characteristics of 4420 participants of the SHIP-TREND-0 cohort at
baseline are summarized in Table 1. Of these, 341 (7.7%) were stated to be insured in a
private or other health insurance organization and excluded from the analyses. Due to a
temporarily reduced examination program, the insurance type was not asked for in 57 out
of 4420 (1.3%) participants’; however, 51 of these consented to record linkage and were sub-
sumed under the respective category. Therefore, out of the 4079 participants, 3837 (94.1%)
consented to record linkage of claims data and were included in the analyses. Participant
characteristics differed slightly between those consenting vs. not consenting record linkage.
For example, mean age of consenting participants was 1.7 years higher compared to those
not giving consent (Table 1). Larger differences, particularly regarding the household
income, were found in participants insured in private/other health insurances (Table 1).

In 30% out of those consenting to record linkage, at least one ICD-10 code suggestive
for LBP occurred within the baseline period. The distribution of the number of LBP-related
ICD-10 codes was zero-inflated in both the baseline period and the follow-up period
(Supplementary Figure S1).

3.2. Best Subset Models

The best subset of candidate variables in the joined data comprised eight predictors
for the zero-part and eight, partly different predictors for the count-part of the hurdle
model (Table 2). According to AIC, a Poisson distribution of the primary outcome was
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preferred over a negative-binomial distribution in all models and iterations of the model
training. Overall, the fit of a hurdle model using the best subset of predictors with a Poisson
distribution for the count-part was high in the training and validation data (please see
rootograms [32] in Supplement Figure S13).

Table 2. Results of best subset selection for the claims data, the SHIP data, and the joined data to predict the number of
LBP-related ICD-codes during follow-up.

Characteristics Claims Data SHIP Data Joined Data
Model-Part OR/IRR 95% CI OR/IRR 95% CI OR/IRR 95% CI

Age discrete (ref: <40 years)
Age discrete (40 to 69 years) Zero 1.80 [1.38; 2.35] 2.02 [1.56; 2.61] 1.73 [1.33; 2.27]
Age discrete (>69 years) Zero 0.74 [0.51; 1.09] 1.10 [0.77; 1.56] 0.74 [0.51; 1.08]

Females (ref: males) Zero 1.34 [1.11; 1.62] 1.34 [1.10; 1.64]
Household income (per 100 €) Zero 1.03 [1.02; 1.05] 1.03 [1.02; 1.05]
Backpain intensity in last 3 month (NRS) Zero 1.05 [1.01; 1.10]
Radiating back pain (ref: none)

gluteal only Zero 1.47 [1.12; 1.93]
to the knee Zero 1.59 [1.15; 2.18]
into lower leg Zero 1.57 [1.07; 2.31]

History of disc prolapse (yes vs. no) 1 Zero 1.69 [1.25; 2.29] 1.32 [0.95; 1.82]
SHIP physician visit (ref: none) 2

General practitioner only Zero 1.54 [1.15; 2.05]
Specialist only Zero 2.73 [1.62; 4.58]
General practitioner and specialist Zero 2.97 [2.16; 4.09]

Competing diseases (ref: no)
one Zero 0.86 [0.66; 1.11] 0.74 [0.57; 0.98]
>one Zero 0.46 [0.27; 0.80] 0.37 [0.21; 0.67]

Charlson comorbidity index Zero 0.92 [0.87; 0.97]
# ICD-10 codes related to lumbar spine (2Q) 3 Zero 2.50 [2.03; 3.07] 2.43 [1.97; 2.99]
# ICD-10 codes related to lumbar spine (acute) 3 Zero 0.45 [0.36; 0.58] 0.44 [0.35; 0.56]
History of backpain (yes vs. no) 4 Zero 6.75 [4.95; 9.21] 6.91 [5.05; 9.45]
Age (years) Count 1.01 [1.00; 1.02]
Females (ref: males) Count 1.04 [0.88; 1.24] 1.00 [0.84; 1.20]
Family status (ref: single)

Married/Partner Count 1.57 [0.96; 2.57] 1.44 [0.88; 2.34]
Separated Count 1.63 [0.90; 2.96] 1.27 [0.71; 2.29]
Widowed Count 1.97 [1.09; 3.57] 1.60 [0.89; 2.87]

Work status (ref: employed)
Retired Count 0.97 [0.74; 1.26]
Unemployed Count 0.70 [0.48; 1.00]

Physical activity (ref: none)
1–2 h/week Count 1.26 [0.98; 1.60] 1.19 [0.93; 1.52]
>2 h/week Count 1.06 [0.79; 1.41] 1.04 [0.78; 1.39]

Backpain intensity in last 3 month (NRS) Count 1.05 [1.01; 1.09] 1.01 [0.97; 1.05]
Radiating back pain (ref: no)

gluteal only Count 1.41 [1.11; 1.80] 1.20 [0.94; 1.54]
to knee Count 1.54 [1.20; 1.99] 1.44 [1.12; 1.85]
to lower leg Count 1.59 [1.18; 2.13] 1.34 [1.00; 1.78]

History of disc prolapse (yes vs. no) 1 Count 1.26 [1.02; 1.56]
Osteoarthritis (yes vs. no) Count 1.11 [0.92; 1.34] 1.07 [0.90; 1.27]
SHIP physician visit (ref: none) 2

General practitioner only Count 1.09 [0.77; 1.53]
Specialist only Count 1.24 [0.78; 1.97]
General practitioner and specialist Count 1.40 [0.99; 1.98]

Use of benzodiazepine (yes vs. no) Count 0.82 [0.43; 1.57] 0.79 [0.41; 1.52]
History of backpain (yes vs. no) Count 1.35 [1.02; 1.79]
# ICD-10 codes related to lumbar spine (2Q) 3 Count 1.53 [1.41; 1.66] 1.56 [1.45; 1.68]
M54.XX only Count 0.49 [0.34; 0.70]
Claims: Physician visit (ref: none) 5

General practitioner only Count 0.98 [0.72; 1.35]
Specialist only Count 0.88 [0.52; 1.48]
General practitioner and specialist Count 0.89 [0.64; 1.24]

The table consists of two parts: the zero-part of the zero-inflated count data model, in which exponentiated coefficients correspond to
odds ratios, and the count part, in which exponentiated coefficients can be interpreted as incidence rate ratios.1 SHIP interview item: disc
prolapse ever before SHIP, 2 SHIP interview item: physician visits within last 4 weeks, 3 No. of ICD-10 codes (2Q: codes must have been
reported in two quarters of the baseline period of 12 month; acute: any of the code appeared within the quarter of the SHIP examination),
4 Claims data: any ICD-10 code suggestive for LBP prior baseline (yes vs. no), 5 Claims data: based on physicians’ fee schedules. # = the
quantity of respective ICD-10 codes.

In the zero-part of the hurdle model using the claims and SHIP data, participants
between 40 and 69 years of age had higher odds of future consultations compared to the
reference group of individuals under 40 years of age, while participants older than 69 years
had considerably lower odds (Table 2). The odds for consultations increased with a higher
household income, a history of disc prolapse, and female sex. In contrast, the presence
of chronic diseases (cardiovascular disease, cancer, diabetes) lowered the odds for future
consultations. The strongest association was observed for the number of ICD-10 codes in
the baseline period and a history of back pain (prior baseline) (Table 2). If ICD-10 codes
suggestive for LBP were found in at least two quarters of the baseline period (2Q), the
odds for a future event of LBP increased (odds ratio (OR): 2.43, 95% confidence interval
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(CI) [1.97; 2.99]), whereas, in contrast, if ICD-10 codes were found only in the quarter of the
SHIP examination (acute) the odds decreased (OR: 0.44 [0.35; 0.56]).

For the count-part of the hurdle model, different candidate variables were selected.
The count of back-pain-related ICD codes increased with the number of ICD-10 codes
(2Q) documented during the baseline period. In addition, higher back pain (numerical
rating scale (NRS), radiating back pain, and rare physical activity (1–2 h/week vs. none
and >2 h/week) increased the count. The use of benzodiazepines and being single (com-
pared to married/widowed/separated) lowered the counts (Table 2). Participants’ sex had
no effect on the count.

The predictive value of most candidate variables from SHIP data were lower compared
to candidate variables from the claims data (see Brier scores and Dawid–Sebastiani scores
in the Supplement). For example, self-reported physician visits was a strong predictor
within the best subset of the SHIP data. In the joined data, however, this predictor was
not selected. In contrast, competing diseases, which were defined based on SHIP data,
remained in the best subset of the joined data, as well as participant-reported outcomes of
back pain severity (NRS), radiating back pain, and household income.

3.3. Predictive Accuracy and Comparative Analyses

The best subset model using only SHIP data performed lowest in predicting future
LBP-related consultations with an area-under-curve (AUC) of 0.68 (95% CI [0.64, 0.72])
(Figure 2). This is considered a non-acceptable discrimination [42]. The accuracy of the best
subset model using claims data (AUC: 0.76 [0.72; 0.80]) was higher, and barely improved
on by the best subset of the joined data (AUC: 0.78 [0.74; 0.82]). The presence of missing
data had no influence on the predictive accuracy of the best subset model. The receiver-
operating-characteristic’s (ROCs) for the different imputations of the validation data were
almost identical (Supplement Figure S14).
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For comparative analyses using randomforest, the optimal parameter setting was
estimated using tuneRanger [39], which resulted in: mtry = 9 (number of variables used
for splitting the trees), ntree = 10,000 (number of trees), nodesize = 60 (minimum terminal
node size), sampsize = 1674 (sample size of learning data)). The tuned randomforest model
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obtained, by a slight margin, the highest accuracy (AUC: 0.79 [0.75; 0.83]). Parameter-
tuning of SVM resulted in a constant C of 1.3 and a γ–value of 0.02. The result of SVMs
was similar to BSS (AUC: 0.78 [0.74; 0.82]).

According to a variable importance measure of randomforest, the number of ICD-10
codes documented in the baseline period, age, and a history of back pain (prior baseline)
had the strongest importance for the prediction of future episodes of LBP (Supplement
Figure S5).

3.4. Subgroup Analyses

Study participants with incident consultations of LBP in the follow-up period only,
i.e., those with no history of back pain and no ICD-10 codes suggestive for LBP during
the baseline period, had, according to both model approaches, low probabilities for future
LBP related consultations. The estimated probabilities were very similar for those with no
ICD-codes suggestive for LBP (Figure 3). As shown in the supplementary Table S7, these
two strata of study participants share very similar characteristics, except for participants’
sex (seek of care: 0|0 = 48.8% females, 0|1= 58.1% females, X2 = 9.21, p < 0.01) and back
pain in the last 3 months (µdiff = 0.49 scores on NRS, p < 0.01 (t-test)). Mean age was almost
identical between these two strata. However, participants with health care utilization only
after baseline (0|1) were more frequently aged from 40 to 70 years (X2 = 22.55, p < 0.01), a
subgroup that has been found to be more susceptible to seek care for LBP (Table 2).
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Figure 3. Predicted probabilities of future consultations for low back pain (LBP) stratified by the
applied method (best subset vs. randomforest and support vector machines (SVM)), backpain severity
(NRS), data source, and consultation patterns of seeking care. (Seek of care: 0|0 = no ICD-10 codes
suggestive for LBP in any of the analysis periods (N = 2229), 0|1 = ICD-10 codes suggestive for
LBP only during follow-up (N = 267), 1|1 = ICD-10 codes suggestive for LBP in all analysis periods
(N = 601), 1|0 = history of back pain prior baseline and/or ICD-10 codes suggestive for LBP at
baseline but not in the follow-up (N = 740)).

In addition, participants with a history of back pain and/or ICD-codes suggestive
for LBP in the baseline period but no ICD-codes in the follow-up periods had comparable
probabilities to those seeking continuously physicians care, i.e., having ICD-10 codes
suggestive for LBP in all three analysis periods. The former participants were slightly older
than those steadily seeking care (µdiff = 2.4 years, p < 0.01 (t-test)), and more frequently
competing diseases (OR: 1.58 [1.23; 2.03]), and lower household income (median: 1096 vs.
1364, Wilcoxon rank sum test: p < 0.01). The abovementioned patterns were similar across
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both methodological approaches, the training and validation data, and irrespective of back
pain severity (Figure 3).

4. Discussion

We applied best subset selection (BSS) in a common machine-learning pipeline of
model training in resampled data, model calibration and model averaging using strictly
proper scoring rules, as well as internal model validation of predictions of future consulta-
tions for low back pain (LBP) in the general population. The predictive accuracy of BSS
(AUC: 0.78) was comparable to the established machine-learning approaches randomforest
(SVM) (AUC: 0.79 (0.78)). The accuracy of all approaches is acceptable [42] and in line
with those reported for other machine-learning-based prediction models [8,43] and for
different back-pain-related outcomes [44]. In terms of computational time and efficacy, BSS
(21 h) was outperformed by randomforest (4:01 min) and SVM (24:46 min). From a clinical
perspective, the benefit of interpretable model coefficients, as provided by BSS (Table 2),
outweighs this computational drawback.

An acceptable accuracy (AUC in [0.7; 0.8], [42]), as in our study, is commonly reported
for prediction models of health research studies [43]. Regarding the prediction of LBP,
however, most previous studies lacked the validation of predictors as summarized by a
systematic review [45]. Therefore, in this clinical domain, our study represents one among
a few validated and clinically interpretable prediction models.

The best subset of predictors in the joined data comprised strong predictors from
claims data, particularly variables of previous consultations for LBP, and participant-
reported outcomes collected in the SHIP study, such as back pain severity (NRS), radiating
back pain, and household income. The latter outcomes were inferior in their predictive
value compared to the predictors from claims data (Supplement Figures S7–S12). Therefore,
the AUC of the best subset in the joined data improved only marginally compared to
the best subset using claims data only (Figure 2). The observed lack of improvement in
predictions with participant-reported outcomes was also indicated by the low-to-moderate
univariate associations of self-reported back pain outcomes and the frequency of LBP-
related ICD-10 codes (Supplement Figure S6). Therefore, it seems that past administrative
data are best at predicting future administrative data.

From a clinical perspective, this rather surprising finding reflects the fact that claims
data in this study represent data from patients who decided to seek medical care for LBP.
The clinical data from the SHIP study reflect the data of the general population. The results
of our study suggest that many participants with LBP were able to cope with LBP without
seeking medical care, and thus did not become patients. As was shown in other research,
health-care-seeking behavior is partially detached from clinical symptoms [46]. Another
important factor explaining differences in the predictive value of clinical data and claims
data is comorbidity or competing diseases. Participants with higher Charlson comorbidity
index (CCI) or competing disease were less likely to reconsult for LBP (Table 2). This does
not reflect lower pain severity, but a higher likelihood of seeking and obtaining care for a
predominant health problem and a lower likelihood of LBP being coded in the claims data.
This role of coping strategies and competing diseases was also affirmed by the systematic
review by Ferreira et al. [47].

In subgroup analyses of our study, we found that a considerable proportion of par-
ticipants (n = 740, 19.3%) with severe LBP had previously consulted a physician for LBP,
but these participants did not seek physicians’ care again during follow-up. The respective
participants were of higher age, more frequently retired, had more competing diseases, and
a lower household income. The characteristics of this subgroup had strong implications on
the predictive accuracy of all methodological approaches in this study. These participants
previously sought care for LBP, had a high intensity of back pain, and in 46.9%, back pain
was radiating to lower extremities (Supplement Table S7). In consequence, very high proba-
bilities for future episodes of LBP were estimated from all prediction approaches (Figure 3).
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Irrespective of any cutoff used to balance sensitivity and specificity in classification [48],
this subgroup of participants will be misclassified by present approaches (Figure 3).

In this study, claims data covering only two years were included in the prediction
model (Figure 1). Extending the pre-observation period might have allowed for the
identification of patients who used extensive medical services for LBP in the past and,
therefore, discontinued seeking care despite persisting pain, e.g., due to unsuccessful
treatment attempts or exhaustion of treatment options. Identifying this longitudinal pattern
in seeking care for LBP might improve prediction models, possibly under consideration of
competing diseases such as cancer.

A second subgroup susceptible to misclassification were participants with incident
LBP episodes in the follow-up only (Figure 3). Except for participants’ sex and a slightly
higher back pain intensity, these participants were almost similar compared to those not
seeking care for LBP (Supplement Table S7). Recently, a similar difficulty was found in the
correct prediction of incident LBP in a large claims data-based study for the new onset and
recurrence of LBP with over 400,000 participants [49].

Strength and Limitations: Our analyses were based on a large general population
sample, with a very high coverage of claims data. While we considered a wide ange of
predictors from SHIP and claims data, LBP and potential risk-factors could have been
characterized in more depth to further enrich the power of potential predictors, e.g., by
more widely covering psychosocial predictors, for example, fear-avoidance beliefs [44,50].
In addition, further refinements in the study design must be sought to more appropriately
select persons at risk of unfavorable LBP courses at different clinical states.

The best subset selection, as applied in our approach, is not a true machine-learning ap-
proach. Although we emphasize that there is no clear distinction between statistical model-
ing and machine-learning [43], advanced regression techniques such as lasso—which learns
from the data and requires parameter tuning—are sometimes not considered machine-
learning [43], whereas the application of logistic regression for prediction is sometimes,
debatably, considered a machine-learning approach [8]. We consider our approach an inter-
pretable or hybrid form, which mimics the pipeline of machine learning while maintaining
interpretability: the approach was conducted to make robust predictions. From the data,
we learned the optimal combination of candidate variables and the best fitting distribution,
and we gained insight into the clinical and socio-demographic roles of candidate variables.

We applied common statistical and epidemiological reasoning to reduce bias. For
example, unlike many machine-learning applications, in which either single-value imputa-
tions are used [8] or missingness in data elements is not mentioned at all [51], we explicitly
addressed the uncertainty of imputations using multiple imputations in the validation
data, and independently of the training data. The best subset model was evaluated in the
validation data for 20 imputed versions of the data (Supplement Figure S14). In this study,
the impact of missing data was negligible.

In randomforest, multiple interactions between candidate variables are implicitly ac-
counted for, which can be investigated, for example, using the R package randomForest-
Explainer [52]. This feature of randomforest might explain the slightly better performance
compared to best subset selection. The superiority of randomforest, as well as SVM, was
found for computational efficacy. This computational drawback of BSS will be mitigated
as soon as advances in mixed-integer-optimization (MIO) are extended to use cases with
data elements of mixed data types (continuous and categorical). Bertsimas et al. [53] have
shown the possibility of solving more complex settings of best subset selection in minutes.

The strongest limitation of our study is that we were not able to validate the model
with external data. Our approach comprised internal validation, as all data were generated
and collected under the same design.

5. Conclusions

Claims data alone could be used to predict patients with LBP who are likely to
reconsult for LBP with acceptable accuracy. Adding participant-reported outcomes from a
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population-based cohort study to the prediction model yielded a minor improvement, but
only in the current unstratified setting. Therefore, further refinements of patients at risk
are required to obtain insights into the role of predictors at different patient states over the
course of LBP.

The development of prediction models in health research should comprise epidemio-
logical and statistical reasoning to minimize bias, maintain the interpretability of results,
and pass through a pipeline of model training, calibration, and validation. These efforts
can result in prediction models, with a comparable performance to machine-learning ap-
proaches. The latter, such as randomforest, should be applied more frequently, to benchmark
and possibly improve the models proposed by other modelling techniques in case of a
major inferiority. Overall, and given a comparable performance, the interpretability of the
study results outweighs computational efficacy in health research. In this manner, best
subset selection appears a reasonable modeling approach.
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