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Abstract: Natural and anthropogenic disasters may be associated with redistribution of chemical
contaminants in the environment; however, current methods for assessing hazards and risks of
complex mixtures are not suitable for disaster response. This study investigated the suitability of
in vitro toxicity testing methods as a rapid means of identifying areas of potential human health
concern. We used sediment samples (n = 46) from Galveston Bay and the Houston Ship Channel
(GB/HSC) areas after hurricane Harvey, a disaster event that led to broad redistribution of chemically-
contaminated sediments, including deposition of the sediment on shore due to flooding. Samples
were extracted with cyclohexane and dimethyl sulfoxide and screened in a compendium of human
primary or induced pluripotent stem cell (iPSC)-derived cell lines from different tissues (hepatocytes,
neuronal, cardiomyocytes, and endothelial) to test for concentration-dependent effects on various
functional and cytotoxicity phenotypes (n = 34). Bioactivity data were used to map areas of potential
concern and the results compared to the data on concentrations of polycyclic aromatic hydrocarbons
(PAHs) in the same samples. We found that setting remediation goals based on reducing bioactivity
is protective of both “known” risks associated with PAHs and “unknown” risks associated with
bioactivity, but the converse was not true for remediation based on PAH risks alone. Overall, we
found that in vitro bioactivity can be used as a comprehensive indicator of potential hazards and is
an example of a new approach method (NAM) to inform risk management decisions on site cleanup.

Keywords: new approach methods (NAMs); environmental mixtures; disaster research

1. Introduction

Natural disasters such as floods and hurricanes can lead to severe damage to urban-
ized estuarine environments and pose potential environmental and public health risks due
to the re-distribution of chemical contaminants [1]. These challenges are especially acute
in areas with known legacy contaminations whereby natural and anthropogenic disasters
may alter the contamination patterns and change potential hazards in unpredictable ways.
One recent example of such an event is Hurricane Harvey (2017), which resulted in extreme
flooding in the Houston/Galveston Bay region, a heavily industrialized area on the shores
of the Galveston Bay and the Gulf of Mexico. The sediments in the Galveston Bay are
known to be contaminated by various types of hazardous chemicals including polycyclic
aromatic hydrocarbons (PAHs), polycyclic biphenyls (PCBs), pesticides, and heavy met-
als [2]. Indeed, recent studies indicated that post-Harvey, pollutants such as PAHs were
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redistributed in the environmental matrixes such as sediments [3,4] and soil [5,6], leading
to potential new human health risks. Because disasters are emergency events, there is a
pressing need to develop methods for rapid and comprehensive assessments of potential
exposures to, and hazards of, complex environmental mixtures.

To better characterize the potential hazards of complex mixtures in the environment,
three general approaches are most commonly pursued: (i) improvements to the analytical
techniques to evaluate chemical composition of the mixtures, (ii) application of new in vitro
test methods to evaluate potential human and environmental hazards, and (iii) creation
of in silico models for predicting the composition and effects of mixtures [7]. Increased
sensitivity and broadening of the applicability domain of analytical techniques through
untargeted and high-resolution mass spectrometry allows for the characterization of com-
plex mixtures [8]. Indeed, the successful application of untargeted analytical methods
to disaster research response has been demonstrated recently for events that occurred in
the Houston/Galveston Bay area [9,10]. Similarly, biological assays show the potential to
facilitate identification of mixtures that may pose human and/or environmental health
risks [11–13]. Finally, computational approaches have also been developed, many of them
based on utilizing the information from both exposure characterization and bioactivity
measurements, to identify the chemicals of concern in mixtures that may be the drivers to
the overall bioactivity [14–16].

Still, knowledge gaps exist in whether the combination of chemical measurements
and biological in vitro assays can improve assessment of the potential human health risks
of complex mixtures, new exposures that are a product of a large-scale environmental
disaster in an area of prior legacy contamination. Therefore, this project explored the utility
of chemical exposure assessment and in vitro bioactivity data from the same post-disaster
sediment samples as data inputs for potential risk management and remediation of the
contaminated areas.

2. Materials and Methods
2.1. Sediment Deposition Model

To demonstrate the potential for sediment deposition following a hurricane, we used
Delft3D [17] to model where sediment deposition occurs following a hypothetical tropical
storm scenario. We chose a “Super-Ike” storm, so named because the track and storm
size characteristics were identical to 2008’s Hurricane Ike, but the wind speeds (retrieved
from the HWIND database [18]) were doubled to serve as a proxy for a severe storm in a
future climate scenario. Hurricane-induced surge and waves within the model were used
to drive bottom sediment motion onto adjoining land using a transport algorithm within
the Delft3D modeling suite. The bottom was assumed to be predominantly covered by very
fine sand, with an in-place density of 2650 kg/m3 and a diameter of 0.2 mm. The model was
configured so that only undersea sediment was allowed to move; any deposited sediment,
therefore, originated in the Galveston Bay and environs. Model outputs indicating areas of
potential sediment deposition in the study area are visualized in Figure 1 (black dots).
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Figure 1. Map of the study area of Houston Ship Channel and Galveston Bay in Houston, Texas. Black dots represent areas 
of potential sediment deposition on shore after a major hurricane (see Section 2.1 for details). Circles represent individual 
sediment sampling sites, which are divided into three areas: samples from the Houston Ship Channel (yellow), Mud and 
Clear Lakes (red), and Galveston Bay (blue). See Supplementary Table S1 for exact coordinates of each sampling site. 
Background map is from ESRI/OpenStreetMap. 

2.2. Chemicals and Biologicals  
Dimethyl sulfoxide (DMSO, cell-culture grade, ≥ 99%) was obtained from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA). Cyclohexane (HPLC grade) was purchased from 
Fisher Scientific (Waltham, MA, USA). Positive control compounds for each cell type were 
obtained from Sigma-Aldrich (St Louis, MO, USA). Cellular staining materials including 
Hoechst 33342, MitoTrackerTM Orange CMTMRos, and Calcein Green AM were provided 
by Life Technologies (Grand Island, NY, USA). Four types of human induced pluripotent 
stem cell (iPSC)-derived cell types (iCell hepatocytes 2.0, catalog no. C1023; iCell neurons, 
catalog no. C1008; iCell cardiomyocytes, catalog no. C1106; and iCell endothelial cells, 
catalog no. C1114) used in these experiments were from Fujifilm Cellular Dynamics Inter-
national (FCDI, Madison, WI, USA). Pooled human umbilical vein endothelial cells (HU-
VEC, catalog no. C2519A) were purchased from Lonza (Walkersville, MD, USA). Cell-
specific culture media and supplements were obtained from the same vendors as the cells.  

2.3. Sediment Sample Collection, Extraction, and Bioactivity Screening  
Surface sediment samples (<5 cm depth) collection procedures are detailed in [4]. 

Samples were from Houston Ship Channel and Galveston Bay area (Figure 1 and Supple-
mentary Table S1) and collected after Hurricane Harvey which occurred in late August-
early September of 2017. Samples were collected in 8 oz. combusted glass jars with Teflon 

Figure 1. Map of the study area of Houston Ship Channel and Galveston Bay in Houston, Texas. Black dots represent areas
of potential sediment deposition on shore after a major hurricane (see Section 2.1 for details). Circles represent individual
sediment sampling sites, which are divided into three areas: samples from the Houston Ship Channel (yellow), Mud and
Clear Lakes (red), and Galveston Bay (blue). See Supplementary Table S1 for exact coordinates of each sampling site.
Background map is from ESRI/OpenStreetMap.

2.2. Chemicals and Biologicals

Dimethyl sulfoxide (DMSO, cell-culture grade, ≥99%) was obtained from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Cyclohexane (HPLC grade) was purchased from
Fisher Scientific (Waltham, MA, USA). Positive control compounds for each cell type were
obtained from Sigma-Aldrich (St Louis, MO, USA). Cellular staining materials including
Hoechst 33342, MitoTrackerTM Orange CMTMRos, and Calcein Green AM were provided
by Life Technologies (Grand Island, NY, USA). Four types of human induced pluripotent
stem cell (iPSC)-derived cell types (iCell hepatocytes 2.0, catalog no. C1023; iCell neurons,
catalog no. C1008; iCell cardiomyocytes, catalog no. C1106; and iCell endothelial cells,
catalog no. C1114) used in these experiments were from Fujifilm Cellular Dynamics
International (FCDI, Madison, WI, USA). Pooled human umbilical vein endothelial cells
(HUVEC, catalog no. C2519A) were purchased from Lonza (Walkersville, MD, USA).
Cell-specific culture media and supplements were obtained from the same vendors as
the cells.
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2.3. Sediment Sample Collection, Extraction, and Bioactivity Screening

Surface sediment samples (<5 cm depth) collection procedures are detailed in [4]. Sam-
ples were from Houston Ship Channel and Galveston Bay area (Figure 1 and Supplementary
Table S1) and collected after Hurricane Harvey which occurred in late August-early Septem-
ber of 2017. Samples were collected in 8 oz. combusted glass jars with Teflon cap liners
and were subsequently stored at −20 ◦C until further processing and analysis. Samples
were freeze-dried before extraction for in vitro bioactivity screening. Biologically available
fraction of each sediment sample was extracted using DMSO and cyclohexane as detailed
elsewhere [11] using the standard method [19]. Briefly, 2 mL of cyclohexane and 2 mL of
DMSO pre-equilibrated with cyclohexane at 10:1 ratio was added to 1 g of freeze-dried
sediment sample and the suspension was thoroughly mixed by vortexing for at least 1 min.
The DMSO fraction was collected after centrifugation (4700 rpm, 5 min) and this step was
repeated. The combined DMSO fraction was used as stock solution for subsequent in vitro
experiments. Vehicle control was prepared following the same procedures without adding
sediment samples.

Samples were tested in a compendium of human primary or iPSC-derived cell lines
from different tissues (hepatocytes, neuronal, cardiomyocytes, and endothelial) to test for
concentration-dependent effects on various functional and cytotoxicity phenotypes (n = 34).
We selected these cell types because many of the environmental chemicals expected to be
present in tested sediments are known to be associated with hepatotoxicity, neurotoxicity,
cardiotoxicity, and vascular toxicity (see literature review of the effects of Superfund priority
list chemicals on different organs in [20]). We have published methods for using iPSC-
derived cells [21–27] to assess the toxicity of the individual chemicals [20,28–32], whole
mixtures [11,16], and complex substances [33,34]. The reasons we chose iPSC-derived
cells are because: (i) these cells are more physiological than immortalized cell lines and
can be derived for different tissues/organs [35]; (ii) they can be obtained from the same
individual(s) to enable highly reproducible experiments [36]; (iii) despite some limitations
with the degree of maturation, these cells compare well to primary cells in terms of their
function and expected organ-specific toxicity [35,37,38]; and (iv) a small number of iPSC-
derived cell types can be as informative about hazard and safety margins as the larger set
of in vitro models [33], or many ToxCast bioassays [20]. Specifically, in a study of petroleum
substances [33] we found that bioactivity data from four human iPSC-derived and HUVEC
cells are superior to other immortalized cell lines to rank substances in a manner highly
concordant with their expected in vivo hazard potential. In addition, when we tested
42 Superfund priority list chemicals (selected to represent a diverse set of chemical classes)
using these five cell types [20], we found that each chemical had an effect in at least one cell
type and no correlation in quantitative effects on each phenotype was evident among cell
types, indicating cell type-specific effects. We also previously showed that the data from
the five cell types are more conservative than that derived from ToxCast screening [39]
because points of departure (POD) derived from high throughput in vitro data from the
five human cell types performed well as a conservative surrogate for regulatory in vivo
PODs and were less likely to underestimate in vivo potency and potential risk compared to
other in vitro-based PODs.

2.4. Concentration-Response Modeling and Data Integration

Point-of-departure (POD) values were derived from fitted curves with a nonlinear
logistic function using vehicle control-scaled data for each treatment, which were defined
as the dilutions where the fitted curve exceeded one standard deviation above or below the
mean of vehicle-treated controls, using R software-based script as reported previously [21].
POD values were further converted into toxicological priority index (ToxPi) scores [40],
which were inversely scaled from 0 to 1, with 0 indicating the lowest observed bioactivity
(i.e., the highest POD value in a given dataset) and 1 indicating the highest observed bioac-
tivity (i.e., the lowest POD value). The scaled POD values were then used as quantitative
inputs in ToxPi Graphical User Interface for data integration and visualization. Sediment
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samples were grouped based on biological similarity in an unsupervised analysis, without
prior knowledge of sample classification.

2.5. Associations of Sediment Spatial Locations and Biological/PAH Measurements

The U.S. EPA priority 16 PAHs as well the total PAH concentrations in sediment
samples were analyzed by Geochemical and Environmental Research Group at Texas A&M
University as previously reported [4]. Bioactivity data (POD values for each cell type)
and PAH concentrations were used for the analysis of potential correlation with spatial
locations as detailed elsewhere [11]. Tests of spatial association for bioactivity or PAH data
were performed using the standard Mantel approach [41], where the time dimension in the
original method can be substituted with any type of multivariate outcome. The approach
compares matrices of pairwise geographical distances to squared feature differences for
all pairs of sampling sites [42]. For global tests using all biological or chemical features,
distance matrices using all paired samples (i, j) were calculated using 1 - qij, where qij is the
Spearman correlation of all features. Each test was implemented in R and p values were
obtained using 10,000 permutations, and padj were derived from multiple testing correction
using the Benjamini-Hochberg procedure [43].

2.6. Mapping of PAH Concentrations and In Vitro Bioactivity Data

To interpolate and visualize the distribution patterns of both PAHs and bioactivities for
the tested sediment samples, kriging was performed in ArcGIS software (version 10.7.1, ESRI
Inc., Redlands, CA, USA) on ToxPi scores calculated from selected cell types and on concentra-
tions of individual and cumulative PAHs, as has been previously described [44,45]. Kriging
was performed with the Spatial Analyst Tool with the default Spherical semi-variogram model.
The Average Nearest Neighbor Tool, which measures the distance between each feature and
its nearest neighbor’s location, was used to determine the lag size of 0.003. The total shape
file for the Houston Shio Channel and Galveston Bay was taken from the Houston – Galve-
ston Area Council GIS dataset (Available website: https://gishub-h-gac.hub.arcgis.com/,
accessed date (17 December 2021))and modified to mask the Kriging results. All values were
log-transformed prior to kriging and visualization.

2.7. Prediction between Chemical and Biological Measurements

A multivariate penalized ridge regression procedure was performed for the prediction
between chemical measurements (n = 40) and biological features (n = 34) of each sediment
sample. Evaluations were performed using leave-one out cross-validation, i.e., prediction
for elements in one matrix from the ith sample using coefficients obtained after removing
the ith sample, to avoid overfitting. The approach involves selecting a single tuning
parameter, performed to give minimum mean-squared prediction error. Final predictions
were returned to the original scale by multiplying each column by the original standard
deviation and adding the original mean. The details of the prediction approach and
parameter tuning are detailed elsewhere [11].

2.8. Hazard Index and Cancer Risk Calculation for PAHs

To characterize the human health risks from PAHs using traditional risk assessment
approaches, the PAH concentration of each sediment sample was used to calculate the
hazard index (HI) and cancer risk (CR). To be conservative, concentrations of alkylated
PAHs were added to the parent PAHs, respectively. The assessment was performed based
on U.S. EPA Regional Screening Levels (RSLs) in two scenarios, e.g., recreate exposure
to sediment, which includes 5 days per year and 6 hours each day, and the scenario
that considers sediment as residential soil, which assumes the exposure occurs after the
sediments were deposited on land. Original RSL calculation parameters were downloaded
from U.S. EPA website (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search (accessed
date (17 December 2021)) and summarized in Supplementary Files S1 and S2. The cancer
risk was expressed as the number of cases per million individuals.

https://gishub-h-gac.hub.arcgis.com/
https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search
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2.9. Comparing Alternative Remediation Goals

We compare two approaches for setting remediation goals. In the “traditional” ap-
proach, the remediation goal is set by requiring a HI ≤ 1 and CR ≤ 1 in a million. Specifi-
cally, this goal corresponds to a remediation “dilution factor” that represents the amount of
reduction in concentration necessary to satisfy the HI or CR requirement. In the “bioactivity-
based” approach, the remediation goal is set by requiring that no more than 10% of the
in vitro endpoints are bioactive. Because the bioactivity concentration-response functions
are already expressed in terms of dilution from the original extraction, this goal corresponds
to the 10th percentile POD across endpoints and cell types. In each case, the “residual” risk
or bioactivity is calculated to determine the extent to which the “traditional” approach is
protective with respect to bioactivity and vice versa.

3. Results and Discussion
3.1. Study Area and Sample Selection Rationale

Using hydrodynamic modeling, we show that a “Super-Ike” storm can result in
substantial deposition of sediments into populated areas (Figure 1, black dots), particularly
along the Houston Ship Channel, in the Mud & Clear Lakes area, and along the Galveston
Bay coast south of Beach City, TX. Modeled on-shore sediment deposition depths ranged
from 0 to 3.4 cm, although the vast majority of deposition depths were < 0.1 cm. The
modeled wind-induced surge for the Super-Ike storm (not shown) appeared to be greatest
in the region of Mud Lake and Clear Lake, likely due to the lower elevations in these
areas; this explains the greater density of deposited sediments in this region (Figure 1).
Accordingly, the sediment samples (n = 46) that were collected throughout Galveston Bay
and Houston Ship Channel areas appear qualitatively representative of sediments that may
result from the deposition on land after a comparable tropical storm (Figure 1). Hurricane
Ike was a relatively fast-moving storm, and this Super-Ike modeled storm shared those
track characteristics. As sediment transport and morphological change have different time
scales [17], one can reasonably expect even greater deposition with a slower-moving storm
of similar power.

3.2. Bioactivity of Sediment Samples

Quantitative estimates of in vitro effects of sediment extracts from a targeted set of
human cell-based models and phenotypes were used to evaluate potential human health
hazard of each sample (Figure 2A). Many of the samples exhibited little to no bioactivity
across tested phenotypes, as can be seen from the overall low ToxPi values. However, a
number of clusters of potential concern were observed both in terms of the samples with
high bioactivity and cell type/phenotypes that were most frequently affected. For example,
6 of 46 tested samples exhibited high activity in iCell hepatocytes and about half of all
samples were bioactive in iCell cardiomyocytes. Overall, there was a wide range of total
bioactivity observed among 46 samples (Figure 2B) with sample HSC-12, collected at the
mouth of Buffalo Bayou, exhibiting the highest ToxPi score. Even though samples from
the Houston Ship Channel had an overall higher bioactivity as compared to other areas
tested (Figure 2C), there was no significant difference in the means for each area because
the ranges were largely overlapping.
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quartile range and whiskers are min/max values) showing the distribution of the overall bioactiv-
ity ToxPi scores in each study area. 
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Figure 2. Biological profiles of sediment samples collected from the Houston Ship Channel (HSC),
Mud and Clear Lakes (MCL), and Galveston Bay (GB). (A) Heatmap showing relative bioactivity
of each sample (columns) in each cell type/phenotype (rows). Hierarchical clustering was used to
organize rows and columns by similarity. See Supplementary File S3 for the data. (B) Ranking of the
samples based on the overall ToxPi scores ranking of all samples. Samples from each study area are
color coded as indicated in Figure 1. (C) Box and whiskers plots (line = mean, box = interquartile
range and whiskers are min/max values) showing the distribution of the overall bioactivity ToxPi
scores in each study area.

3.3. Spatial Associations of Bioactivity and PAH Concentration Data in Sediment Samples

Because we observed wide variability in bioactivity among samples in the entire
study area, we tested if bioactivity and/or PAH concentrations were spatially associated.
Specifically, we determined whether physical proximity among sampling sites was associ-
ated with the similarity of either bioactivity or PAH concentrations by using a statistical
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test of spatial association (a modified version of Mantel test [41]). We found that among
the bioactivity phenotypes, only two endpoints from neuronal cell assays were signifi-
cantly spatially correlated (Figure 3A). We note that stringent statistical correction was
implemented in these analyses to guard against false positives. The lack of broad spatial
association in bioactivity was in accord with finding in a previous study [11], indicating
the sensitivity of the in vitro phenotypes to specific chemicals that may be present at each
sampling location. However, a number of PAHs were significantly correlated in terms of
their spatial distribution (Figure 3B), a finding that was also concordant with previous
observations of the chemical contaminant “hot spots” of the chemicals in the same class
during environmental sampling after Hurricane Harvey [11,44,45].
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Figure 3. Spatial correlation among in vitro bioactivity (A) and PAH concentrations (B). Shown are
adjusted p values (log10 scale) for spatial correlation of each parameter and a vertical dotted line
represents padj = 0.05 (false discovery rate) threshold. These p values were derived using a modified
spatial correlation method as described in text.

Next, we tested concordance between bioactivity and PAH concentrations. An ex-
ample of spatial distribution of the bioactivity data (red-yellow-blue gradient) from iCell
cardiomyocytes is shown in Figure 4A (see maps for other cell types as Supplementary
Figure S1). Kriging analysis was used to interpolate to the entire sampling area based on
the data from the individual testing locations. Sampling locations are shown as purple dots
on the same map, with the size of each dot proportional to the total concentration of the
16 priority PAH in that sample. From this visualization, it is evident that the areas of great-
est bioactivity in iCell cardiomyocytes are generally co-localizing with the highest PAH
concentrations in the samples collected from Houston Ship Channel and Clear/Mud Lakes
area. Thus, we examined whether in vitro bioactivity phenotypes and PAH concentrations
correlated (Figure 4B). Most of the in vitro phenotypes (all of the phenotypes in HUVECs)
did not correlate significantly with PAH values after adjustment for multiple comparisons;
however, several of those, particularly from iCell cardiomyocyte and some from iCell
hepatocytes, showed strong positive correlations. Positive correlation for the individual
phenotypes is expected as it indicates that higher PAH concentration is associated with
higher bioactivity (i.e., larger ToxPi value).
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Figure 4. Correlation analysis between bioactivity and PAH content of the sediment samples. (A)
Interpolation of the spatial patterns in bioactivity of samples based on all phenotypes from iCell
cardiomyocytes. ToxPi values for this cell type were used to create the map that visualize bioactivity
as a color gradient (red = highest, blue = lowest; see the legend inset for color gradient). Sampling
locations are identified as purple dots and the cumulative concentration of 16 EPA priority PAH
were used to scale each dot (see the legend inset for scaling). (B) Spearman correlation of all PAHs
with total bioactivity in each cell type. Significant (padj < 0.05) correlations are shown as dots that are
colored based on the p value as indicated in the color bar.
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3.4. Predictions of Bioactivity and PAH Concentrations in Sediment Samples

It is traditionally expected that potential hazard (i.e., bioactivity) would be propor-
tional to the exposure (i.e., chemical concentrations); however, while the bioactivity would
be a product of cumulative effect of all chemicals in each sample, exposure assessment
is typically conducted for each chemical class individually. In our study, detailed PAH
data were available for these sediment samples. Therefore, by testing whether in vitro
bioactivity data can be used collectively to infer PAH concentrations in these sediment
samples, or vice versa, we could probe the strength of the associations between these two
data types in addition to the spatial correlation analysis shown in Figure 4. This question is
significant because both in vitro bioactivity and chemical analyses are time consuming and
if these data streams are predictive of each other, more rapid assessment can be achieved
by prioritizing sample analyses. Conversely, if there is little predictive power, it would
imply that other chemicals could be present in samples and elicit bioactivity, suggesting
that PAH analysis alone would not be sufficiently inclusive for risk management in this
post-disaster scenario.

To test this, we used a regression model with rigorous cross-validation to examine
how well bioactivity data can be used to infer PAH concentrations (Figure 5A) or vice
versa (Figure 5B). We found that about one third of the in vitro phenotypes can be inferred
from PAH data (black bars in Figure 5A). For example, PAH concentrations were highly
predictive of some of the bioactivity data with the strongest correlation (r = 0.81) for
iCell hepatocytes “cell mean area” phenotype (Figure 5C). Even though the correlation
coefficients for some of the bioactivity phenotypes were lower, they were still highly
significant as in the example of iCell cardiomyocytes “decay.to.rise” phenotype (Figure 5D).
Conversely, the bioactivity data were a poor predictor for PAH concentrations in the same
samples, indicating that it is highly likely that there may be additional chemicals present in
the sediments that may pose human health hazard.

3.5. Risk Characterization and Site Remediation Scenarios from In Vitro Bioactivity or PAH data

Finally, we evaluated the impact of using bioactivity data as an alternative basis for
determining remediation goals, in comparison to tradition risk characterization using PAH
concentrations. As shown in Figure 6, without remediation, all samples would exhibit
bioactivity in at least 10% of phenotypes, but less than half of samples had PAH cancer
risks greater than one in a million. Using PAH cancer risk as the basis for remediation, as
would be traditionally the case, a substantial degree of bioactivity remains in the samples,
with all but three samples having more than 10% of phenotypes bioactive, and more than
10 samples having at least 50% of phenotypes bioactive. By contrast, using bioactivity
reduction to 10% of phenotypes as the basis for remediation, the resulting PAH cancer
risks are <1 in a million for all except three samples, and <1 in 100,000 for all samples (still
acceptable risk, given the Superfund risk range of 10−6 to 10−4). This is because traditional
risk assessment only “looks under the lamppost” and thus only results in risk mitigation
for the “known” (measured) contaminants. Our analysis above showed that PAHs alone
could not account for all observed bioactivity, and thus other bioactive chemicals must be
present. Bioactivity-based remediation, on the other hand, in this case protects both against
“known” risks such as PAHs, as well as “unknowns” that, while unidentified individually,
collectively result in a bioactive signature indicative of their presence.



Int. J. Environ. Res. Public Health 2021, 18, 13378 11 of 16

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 16 
 

 

versa (Figure 5B). We found that about one third of the in vitro phenotypes can be inferred 
from PAH data (black bars in Figure 5A). For example, PAH concentrations were highly 
predictive of some of the bioactivity data with the strongest correlation (r = 0.81) for iCell 
hepatocytes “cell mean area” phenotype (Figure 5C). Even though the correlation coeffi-
cients for some of the bioactivity phenotypes were lower, they were still highly significant 
as in the example of iCell cardiomyocytes “decay.to.rise” phenotype (Figure 5D). Con-
versely, the bioactivity data were a poor predictor for PAH concentrations in the same 
samples, indicating that it is highly likely that there may be additional chemicals present 
in the sediments that may pose human health hazard.  

 
Figure 5. Cross-validated prediction of in vitro bioactivity and PAH concentrations. Significance of 
prediction for in vitro bioactivity data from PAH levels (A), or vice versa (B) is expressed as padj 
values (false discovery adjustment was performed using the Benjamini-Hochberg method). Signif-
icant results (padj < 0.05, vertical red dashed line) are shown as black bars. Also shown are illustra-
tive cross-validated regression predicted values (y-axis) versus actual values (x-axis), for predict-
ing (C) “cell.mean.area” phenotype in iCell hepatocytes, or (D) “decay.to.rise” phenotype in iCell 
cardiomyocytes. Dots are samples, red line is linear regression and blue shaded areas are 95% con-
fidence intervals. Regression coefficients (r) and associated adjusted p-values are indicated. 

Figure 5. Cross-validated prediction of in vitro bioactivity and PAH concentrations. Significance of prediction for in vitro
bioactivity data from PAH levels (A), or vice versa (B) is expressed as padj values (false discovery adjustment was performed
using the Benjamini-Hochberg method). Significant results (padj < 0.05, vertical red dashed line) are shown as black bars.
Also shown are illustrative cross-validated regression predicted values (y-axis) versus actual values (x-axis), for predicting
(C) “cell.mean.area” phenotype in iCell hepatocytes, or (D) “decay.to.rise” phenotype in iCell cardiomyocytes. Dots are
samples, red line is linear regression and blue shaded areas are 95% confidence intervals. Regression coefficients (r) and
associated adjusted p-values are indicated.
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Figure 6. Risk Characterization at Baseline and Under Traditional and Bioactivity-based Remediation
Goals. Shown are bioactivity (A) and cancer risk due to PAHs (B) at baseline (open red circles on the
right of each dumbbell) and after traditional chemical-based (A) or bioactivity-based (B) remediation
(closed circle on left of each dumbbell; green if below the remediation goal, red if still above the
remediation target). The dotted lines represent the “target” remediation criteria (10% phenotypes
active for bioactivity and “1 in a million” cancer risk for PAHs). Panel A shows that cleanup based on
reducing traditional cancer risks is not protective with respect to remaining bioactivity, and results
in substantial residual bioactivity across in vitro phenotypes. Panel B shows that cleanup based on
reducing bioactivity is also protective of cancer risks for PAHs, reducing contamination in all but
three sites to the residual risk values of <1 in a million.

4. Conclusions

Hurricane Harvey made landfall on San Jose Island, Texas in August 2017 and re-
sulted in extreme flooding in the coastal areas in Texas, including the city of Houston, a
major population center in the United States, and the surrounding heavily industrialized
areas. The event, from both rainfall and coastal flooding, resulted in broad redistribution
of sediments in the Houston Ship Channel and Galveston Bay, including deposition of
sediment known to be contaminated by a variety of chemicals [2,46,47] on shore in densely-
populated residential areas. Previous studies documented redistribution of PAHs and other
chemicals after Hurricane Harvey [4–6,48,49]. While the data on chemical contaminants in
soil, water, or sediment samples would be typically used as a basis for risk management
and remediation decisions [50], the distribution of the contaminants in affected areas is dif-
ficult to ascertain with precision over large areas of potential impact. In addition, there may
be many chemicals present that are not evaluated [11,48]. Although in vitro test methods
are routinely used to assess ecotoxicity of sediments [51], including in Galveston Bay [52],
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their utility for assessing human health risks from chemical exposures is a novel area of
active study [7].

The broad disturbance of Galveston Bay sediment caused by Hurricane Harvey has
established a new baseline of contamination, which have the potential to be redistributed
again because of future storm events. Therefore, we posited that post-Harvey sediment
samples can be used as a representation for contamination events after future disasters,
and hypothesized that human in vitro cell-based assays may be highly informative, and
complementary to traditional chemical analysis of PAHs, for risk management in situations
that result in suspected redistribution of contaminants. Through hydrodynamic modeling
we verified that a realistic major hurricane making landfall in the same area, a near certainty
given the recent patterns of tropical storms in the Gulf of Mexico, will result in sediment
redistribution from the Houston Ship Channel, Mud & Clear Lakes region, and Galveston
Bay into densely-populated areas. Using sediment samples from these regions, we found a
high range of bioactivity across samples, with the general trend of Houston Ship Channel
> Mud & Clear Lakes > Galveston Bay. The spatial patterns of in vitro ecotoxicity in
Galveston Bay [52] were qualitatively similar to those we found for human cell-based
in vitro bioactivity, with greater potential hazards present in the Houston Ship Channel
and Mud & Clear Lakes region, and lower farther out into the Galveston Bay. Interestingly,
although most bioactivity phenotypes did not exhibit strong spatial correlations, some
PAH concentrations were spatially associated. Moreover, while PAH concentrations were
predictive of some bioactivity phenotypes, overall bioactivity data was a poor predictor
of PAH concentrations, strongly suggesting that additional bioactive contaminants are
present in addition to PAHs. This is further demonstrated in our risk characterization
and evaluation of alternative remediation goals, where it is evident that setting cleanup
levels based on PAH risks alone only may result in only modest reduction in overall hazard
(i.e., bioactivity), whereas using bioactivity reduction as the criteria for cleanup will be
protective against PAH cancer risks.

Overall, this study demonstrated the utility of in vitro, human cell-based assays to
address the critical issue of “unknown” contaminants that may pose a human health hazard
in a disaster scenario. Using post-Harvey sediment samples as a case study, our data shows
that traditional chemical analysis of contaminants of concern (i.e., PAHs) may not account
for the potential hazards (i.e., observed bioactivity). At the same time, in vitro bioactivity
can be used as an alternative more relevant benchmark for rapid decision-making regard-
ing cleanup levels that will be adequately protective with respect to “known” chemical
exposures that may be present. We conclude that in vitro bioactivity is a comprehensive
indicator of potential hazards and can be used as a new approach method (NAM) to inform
risk management decisions on site cleanup during disaster events that may be associated
with exposures to complex chemical mixtures.
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sample calculated from bioactivity POD values.
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GB Galveston Bay
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