Detecting Chemical Vapor Diffusion through Firefighter Turnout Gear
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of Passive Sampling Dosimeter
2.2. Burn Method and Extraction
2.3. GC-MS Parameters
2.4. Keyence Microscopy Parameters
2.5. Compound Identification
3. Results
3.1. Microscopic Analysis of ACL
3.2. Carcinogenic Compound Identification and Frequencies
3.2.1. Frequency of Priority Pollutants
3.2.2. Compound Identification
4. Discussion
4.1. Frequency of Priority Pollutants and Fire Debris Compounds
4.2. Compound Identification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Fire Protection Association. NFPA 1971: Standard on Protective Ensembles for Structural Fire Fighting and Proximity Fire Fighting, 2018 Edition; National Fire Protection Association: Quincy, CA, USA, 2018. [Google Scholar]
- United States Army. Test Operations Procedure (top)10-2-022a Chemical Vapor and Aerosol System-Level Testing of Chemical/Biological Protective Suits; United States Army: The Pentagon Arlington County, VA, USA, 2013. [Google Scholar]
- Risk Assessment Forum. Guidelines for Carcinogen Risk Assessment; USEP Agency, Ed.; Risk Assessment Forum: Washington, DC, USA, 2005. [Google Scholar]
- Priority Pollutant List, 40; United States Environmental Protection Agency: Washington, DC, USA, 2014; (423) (Appendix A); Volume 29, pp. 653–654.
- Brandt-Rauf, P.W.; Fallon, L.F., Jr.; Tarantini, T.; Idema, C.; Andrews, L. Health hazards of fire fighters: Exposure assessment. Br. J. Ind. Med. 1988, 45, 606–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golden, A.L.; Markowitz, S.B.; Landrigan, P.J. The risk of cancer in firefighters. Occup. Med. 1995, 10, 803–820. [Google Scholar] [PubMed]
- LeMasters, G.K.; Genaidy, A.M.; Succop, P.; Deddens, J.; Sobeih, T.; Barriera-Viruet, H.; Dunning, K.; Lockey, J. Cancer risk among firefighters: A review and meta-analysis of 32 studies. J. Occup. Environ. Med. 2006, 48, 1189–1202. [Google Scholar] [CrossRef] [PubMed]
- Akmeemana, A.; Williams, M.R.; Sigman, M.E. Major chemical compounds in the ignitable liquids reference collection and substrate databases. Forensic Chem. 2017, 5, 91–108. [Google Scholar] [CrossRef]
- National Center for Forensic Science. Ignitable Liquid Reference Collection Database; University of Central Florida: Orlando, FL, USA, 2001. [Google Scholar]
- National Center for Forensic Science. Substrate Database; University of Central Florida: Orlando, FL, USA, 2010. [Google Scholar]
- Fent, K.W.; Evans, D.E. Assessing the risk to firefighters from chemical vapors and gases during vehicle fire suppression. J. Environ. Monitor. 2011, 13, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Fent, K.W.; Eisenberg, J.; Snawder, J.; Sammons, D.; Pleil, J.D.; Stiegel, M.A.; Mueller, C.; Horn, G.P.; Dalton, J. Systemic exposure to pahs and benzene in firefighters suppressing controlled structure fires. Ann. Occup. Hyg. 2014, 58, 830–845. [Google Scholar] [PubMed]
- Barker, R.; Deaton, S.; Liston, G.; Thompson, D. A cb protective firefighter turnout suit. Int. J. Occup. Saf. Ergon. 2010, 16, 135–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, L.; Johnson, R.F.; Teal, W.B., Jr.; Cadarette, B.S.; Merullo, D.J. Joint Service Lightweight Integrated Suit Technology Program: Heat Strain Evaluation in An Environmental Chamber and in The Field; Army Research Inst of Environmental Medicine Natick MA: Natick, MA, USA, 1998. [Google Scholar]
- R Code Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Signal Developers, Signal Processing. 2014. Available online: http://r-forge.r-project.org/projects/signal/ (accessed on 15 March 2021).
- Rinke, C.N.; Williams, M.R.; Brown, C.; Baudelet, M.; Richardson, M.; Sigman, M.E. Discriminant analysis in the presence of interferences: Combined application of target factor analysis and a bayesian soft-classifier. Anal. Chim. Acta 2012, 753, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.R.; Sigman, M.E.; Lewis, J.; Pitan, K.M. Combined target factor analysis and bayesian soft-classification of interference-contaminated samples: Forensic fire debris analysis. Forensic. Sci. Int. 2012, 222, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, E.R.; Howery, D.G. Factor Analysis in Chemistry; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Malinowski, E.R. Determination of rank by median absolute deviation (drmad): A simple method for determining the number of principal factors responsible for a data matrix. J. Chemom. 2009, 23, 1–6. [Google Scholar] [CrossRef]
- Inagaki, M. Chapter 5—porous carbons. In New Carbons—Control of Structure and Functions; Inagaki, M., Ed.; Elsevier Science: Oxford, UK, 2000; pp. 124–145. [Google Scholar]
- Williams, M.R.; Fernandes, D.; Bridge, C.; Dorrien, D.; Elliott, S.; Sigman, M. Adsorption saturation and chromatographic distortion effects on passive headspace sampling with activated charcoal in fire debris analysis. J. Forensic. Sci. 2005, 50, 316–325. [Google Scholar] [CrossRef] [PubMed]
Compound | Frequency in Ignitable Liquids (%) | Frequency in Substrates (%) |
---|---|---|
Acrolein | 1 | 1 |
Methylene chloride | 1 | 1 |
1,2-Dichloroethane | 0 | 1 |
Benzene 1 | 1 | 18 |
Toluene 1 | 30 | 83 |
Ethylbenzene 1 | 25 | 59 |
Bis(2-chloroethyl) ether | 0 | 1 |
Phenol | 1 | 23 |
Naphthalene 1 | 24 | 48 |
Acenaphthene 1 | 1 | 1 |
Diethyl phthalate | 4 | 1 |
Fluorene 1 | 7 | 31 |
Anthracene | 22 | 6 |
Dibutyl phthalate | 0 | 3 |
Compound | Examples of Substrates |
---|---|
Benzene | Cotton towel, vinyl siding, polystyrene ceiling tiles, automobile car seats, roofing paper |
Toluene | Polyester carpet, thermal paper, vinyl siding, polystyrene ceiling tiles, window blinds |
Ethylbenzene | Magazines, gel pens, vinyl siding, automobile tires, window blinds |
Phenol | Polyurethane mattress pads, bamboo hardwood, cotton paper, laminate flooring |
Naphthalene | Nylon carpet, cork tiles, yellow pine wood, vinyl siding, railroad tie, plastic clothesline |
Fluorene | Polyester carpet, railroad tie, polyester quilt batting, alder wood |
Anthracene | Polyester carpet, railroad tie |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corbally, M.A.; Williams, M.R.; Chappell, J.N.; Sigman, M.E. Detecting Chemical Vapor Diffusion through Firefighter Turnout Gear. Int. J. Environ. Res. Public Health 2021, 18, 4833. https://doi.org/10.3390/ijerph18094833
Corbally MA, Williams MR, Chappell JN, Sigman ME. Detecting Chemical Vapor Diffusion through Firefighter Turnout Gear. International Journal of Environmental Research and Public Health. 2021; 18(9):4833. https://doi.org/10.3390/ijerph18094833
Chicago/Turabian StyleCorbally, Michelle A., Mary R. Williams, Jessica N. Chappell, and Michael E. Sigman. 2021. "Detecting Chemical Vapor Diffusion through Firefighter Turnout Gear" International Journal of Environmental Research and Public Health 18, no. 9: 4833. https://doi.org/10.3390/ijerph18094833
APA StyleCorbally, M. A., Williams, M. R., Chappell, J. N., & Sigman, M. E. (2021). Detecting Chemical Vapor Diffusion through Firefighter Turnout Gear. International Journal of Environmental Research and Public Health, 18(9), 4833. https://doi.org/10.3390/ijerph18094833