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Abstract: The concentration of negative air ions (NAIs) is an important indicator of air quality. Here,
we analyzed the distribution patterns of negative air ion (NAI) concentrations at different time scales
using statistical methods; then described the contribution of meteorological factors of the different
season to the concentration of NAIs using correlation analysis and regression analysis; and finally
made the outlook for the trends of NAI concentrations in the prospective using the auto regressive
integrated moving average (ARIMA) models. The dataset of NAI concentrations and meteorological
factors measured at the fixed stations in the Mountain Wuyi National Park were obtained from the
Fujian Provincial Meteorological Bureau. The study showed that NAI concentrations were correlated
with relative humidity spanning all seasons. Water was an important factor affecting the distribution
of NAI concentrations in different time series. Compared with other ARIMA models, the outlook
value of the ARIMA (0, 1, 1) model was closer to the original data and the errors were smaller. This
article provided a unique perspective on the study of the distribution of negative air oxygen ions
over time series.

Keywords: negative air ions (NAIs); time series; ARIMA model; health

1. Introduction

Negative air ions (NAIs) is a generic term for negatively charged gas molecules and
ions [1]. Negative air ions are also known as negative air (oxygen) ions, since they form
negative oxygen ions based on their ability to acquire electrons, most of which are acquired
by oxygen. In this study, NAIs referred mainly to oxygen-based negative ions. A study
showed that superoxide ions were involved in the biological effects of NAIs [2]. NAIs also
have many beneficial effects on human health, including physically and psychologically. On
the physical side, NAIs have a beneficial effect on the cardiovascular [3,4] and respiratory
systems [5]. On the psychological side, NAIs can improve sleep quality [6], improve mood
states [7] and treat chronic depression [8]. NAIs were mainly generated by the following
pathways: cosmic ray [9], radiation emitted by the radon element of mineral [10], solar
ultraviolet radiation [11], thunder and lightning [12], the shearing forces of water (the
Lenard effect) [3] and plants [13]. Therefore, factors such as vegetation cover, flowing
water bodies, and air humidity could be considered an important influence on the anion
content [14]. Moreover, forest health has emerged as a popular health and wellness program
in China today due to a large amount of NAIs produced by forests.

We referred to the formulas and pictures generated by NAI in the article by Jiang
Shuye [14], and list the ways, types and formulas of NAIs generation (Figure 1). The types of
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NAIs produced in different ways and their main compositions are natural NAIs [3,15–17],
corona NAIs (generated by the corona discharge ionization) [18–22] and Lenard NAIs
(generated by the shearing force of water) [23–25], as shown in Figure 1a.

Figure 1. The types of NAIs generated through different ways through the oxygen − based (a) NAI compositions. (b) The
evolution formula of NAIs. The blue arrows indicate the NAI transformation processes.

Figure 1b shows the evolution of a NAI to form another NAI. As a result, other NAIs
are generated such as CO3

−, OH−, HCO3
−, O3

−, O2
−, CO4

− and NO3
− [16,17,23,26–28].

In addition, the composition of NAIs is dynamic in the air, which depends on the electron
affinity and potential [29]. The equation in Figure 1 shows that the negative ions of oxygen
react with water, so we introduce meteorological elements in the following part of this
paper with a view to analyzing the relationship between meteorological factors and NAIs.

Mount Wuyi National Park is densely forested and characterized by high vegeta-
tion cover. A few studies have been conducted on studying the systematic production
of negative oxygen ions in Mount Wuyi National Park. Studies on NAIs have mainly
focused on the coupling relationship between NAIs and correlated factors [30] and the
spatiotemporal distribution pattern of NAIs [31], and NAIs also used in medical and
chemical applications [32,33].

Here, we launched a study on the temporal distribution pattern of NAI concentration
in Mount Wuyi National Park and based on the auto regressive integrated moving average
model (ARIMA) time series model, we made an outlook for the value of NAI concentra-
tions in this area, with the week as the time unit. Specifically, we used the average NAI
concentrations from week 1 to week 55 (1 October 2018 to 20 October 2019) as a training
sample to make the outlook for the average NAI concentrations from week 56 to week 68
(21 October 2019 to 19 January 2020). Our purpose is to cover the gap in NAIs research
in Mount Wuyi National Park and provide theoretical guidance for describing the NAI
concentration, providing an outlook for the changing trend of NAI concentration.

2. Methods
2.1. Study Site Selection

The study was conducted in the Mount Wuyi National Park of Fujian Province
in China. We set the Atmospheric Negative Air Ions Monitoring Station (117◦24′12′ ′,
27◦32′36′ ′) in the Mount Wuyi National Park, which can monitor the real-time concen-
tration of NAIs for 24 h and represent the concentration of NAIs in the park. The data
collection period ranged from 1 October 2018 00:00 to 20 February 2020 20:00 to calculate the
NAI concentrations on different time scales. Besides, the meteorological data were collected
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from the adjacent site less than 100 m away to investigate the influence of meteorological
factors on NAIs.

2.2. Instrumentation

The average NAI concentrations were measured by the FR500 negative oxygen ion
monitor (Huatron Corporation, Beijing, China) under the NAIs list by the China Mete-
orological Administration, as shown in Figure 2a. This instrument is usually calibrated
in real-time and has a high measurement accuracy of ≤5%. The measuring range was:
0–50,000 ion/cm3; ion mobility: ≥0.4 cm2/ (V.s). The instrument meets the requirements
of the functional specifications of the China Meteorological Administration.

Figure 2. Meteorological observation system, including; (a) FR500 negative oxygen ion monitor, and
(b) DZZ4 automatic meteorological station.

We used the DZZ4 automatic meteorological station, as shown in Figure 2b (Jiangsu
Radio Scientific Institute CO., LTD, Nanjing, China), to measure the following meteoro-
logical factors: air temperature, atmospheric pressure, relative humidity, precipitation,
wind speed and visibility. The parameters were as follows: precipitation in 1 h (PRE, mm);
average temperatures (TEM, ◦C); average atmospheric pressure (PRS, hpa); average relative
humidity (RHU, %); average wind speed of 10 min to be averaged in 1 h (WIN, m/s) and
visibility (VIS, m).

2.3. Data Selection

Here, we developed a statistical method to calculate the average NAIs on different time
scales based on the raw hourly data. For the raw hourly data, there were 12,190 values,
with 10,681 valid values and 1509 missing values. We used the raw valid values for
statistical analysis.

(1) Average hourly value. We calculated the average daily hourly value (0:00–23:00)
by averaging the valid values (excluding missing values) of all hourly data from 1 October
2018 0:00 to 20 February 2020 22:00. Specifically, we calculated the value of NAIs per hour
in an average of 1 day during this period. We took all the data holidays for an hour in this
period (1 October 2018 0:00 to 20 February 2020 22:00) and divided by the total number.

(2) Daily value (00:00–23:00). We calculated the mean of the daily data using valid
hourly data.

(3) Weekly value. The average of the hourly value during the week was used as the
weekly value. The study delineated a range of 1 to 68 weeks based on specific dates, as
shown in Table S1.
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(4) Monthly value. The average of the daily value during the month was used as the
monthly value.

(5) Frequency of NAI concentration intervals. The study used a frequency histogram
to analyze the frequency distribution of different NAI concentration intervals.

Since meteorological factors and seasonal factors could influence the NAI concentra-
tions, we used the meteorological data to investigate the effect of meteorological parameters
on NAIs. We used the raw meteorological data: hourly valid data for the period from
1 December 2018 0:00 to 30 November 2019 23:00 and then divided this time period into
4 seasons (winter season from 1 December 2018 to 28 February 2019, spring season from
1 March 2019 to 31 May 2019, summer season from 1 June 2019 to 31 August 2019 and
fall season from 1 September 2019 to 30 November 2019). Pearson correlation analysis
and multiple linear regression analysis of raw valid hourly data of the meteorological
data and NAI concentrations data in four seasonal periods was carried out. We here aim
to explore which meteorological factors contributed to NAI concentrations in different
seasons. Pearson correlation analysis and multiple linear regression analysis were carried
out using SPSS 14 software (IBM SPSS, Armonk, NY, USA).

2.4. Model Selection

The concept of the auto regressive integrated moving average (ARIMA) model was
proposed by Box and Jenkins in the 1970s [34,35]. For the ARIMA (p, d, q), AR shows
auto-regression, MA presents moving average, p presents the number of terms of auto-
regression of the model, q presents the moving average term of the model and d shows
difference times [36].

Yt = c +∅1 yt−1 + . . . +∅p yt−p + θ1 yt−1 + . . . + θq εt−q + εt (1)

In the formula, Yt presents differentiated sequence, εt is the noise sequence, ∅ is the
fitting parameter of the AR model, and θ is the fitting parameter of the MA model.

The study is based on the R software “forecast” and “tseries” packages to construct the
ARIMA time series model (Figure 3). The building process of the ARIMA model includes
the following parts.

Figure 3. ARIMA model flow chart.

(1) Data selection. The study selected weekly data as the unit based on the hourly data
from 1 October 2018 0:00–19 January 2020 23:00. The weekly data were divided into 68
weeks. The 1 to 55 weeks were training data to predict the NAIs from 56 to 68 weeks, and
the actual value was used as one of the criteria to evaluate the accuracy of the outlook. The
data for week 28 was null, and we took the predicted value of the ARIMA model in the
short-range to fill the missing values using the data from week 1 to week 27 by comparing
the measurement information of different ARIMA models.

(2) Data testing. We conducted the smoothness and the white noise test on the selected
data. If the series did not pass the smoothness test, we made it different to obtain a smooth
time series; then we conducted the white noise test on the data. The white noise series is



Int. J. Environ. Res. Public Health 2021, 18, 5037 5 of 15

a sequence of independent random identically distributed and zero-mean variables [37].
If the smooth data series was a white noise series, the series variation had no regularity,
so the trend of the series could not be found, and the ARIMA model’s construction is
meaningless [38]. If the result was smooth non-white noise data, then were able to fit the
model. We used R package “stats” to perform white noise detection on the time series and
“tseries” to perform smoothness tests.

(3) Model Fitting. For determining the parameters (p, d, q) in ARIMA, if the data were
differenced in the previous step, then the parameter d is the number of times the difference
was made. The model with the most appropriate p and q values was then selected by
comparing the relevant values’ size (Table 1). The AIC criterion was proposed by the
Japanese statistician Hiroshi Akaike in 1974 [39]; it was based on the concept of entropy. It
provided a measure for weighing the estimated model’s complexity and the goodness of
fit of the data. The best model is selected by building a model with different parameter
values: (p, q) of ARIMA. The smaller the AIC value was, the better the model would be.
The following was the AIC guideline definition formula.

AIC(n, m) = ln σ̂2
α + 2(n + m + 1)/N (2)

Table 1. Pearson correlation between NAI concentrations and meteorological factors based on raw hourly data.

Season Correlation and
Significance PRE TEM PRS RHU WIN VIS

Spring
Pearson correlation −0.052 * −0.034 0.136 ** −0.070 ** 0.004 0.082 **

Significance 0.031 0.155 0.000 0.004 0.876 0.001
n 1699 1699 1699 1699 1699 1699

Summer
Pearson correlation 0.002 −0.117 ** −0.008 0.140 ** −0.096 ** −0.026

Significance 0.931 0.000 0.735 0.000 0.000 0.303
n 1608 1608 1608 1608 1608 1608

Autumn
Pearson correlation 0.023 0.020 −0.112 ** 0.150 ** −0.099 ** 0.030

Significance 0.302 0.357 0.000 0.000 0.000 0.181
n 2051 2051 2051 2051 2051 2051

Winter
Pearson correlation −0.017 −0.116 ** −0.179 ** 0.306 ** −0.061 ** 0.127 **

Significance 0.448 0.000 0.000 0.000 0.006 0.000
n 2028 2028 2028 2028 2028 2028

Note: ** p < 0.01; * p < 0.05. The parameters were as follows: precipitation per hour (PRE, mm); average air temperatures (TEM, ◦C); average
atmospheric pressure (PRS, hpa); average relative humidity (RHU, %); average wind speed of 10 min (WIN, m/s) and visibility (VIS, m).

If AIC(p, q) = min
0≤n,m≤1

AIC(n, m), then the ARMA model order is determined to be (p, q)

and σ2
∝ was calculated by maximum likelihood estimate (MLE). The purpose of MLE was

to maximize the probability of the selected sample appearing in the selected population.
The AIC criterion has the advantage of reducing the influence of subjective factors on the
model’s accuracy and allows the determination of p and q. The AIC criterion performs a
series maximum likelihood estimate of the time series and requires the data to satisfy a
normal distribution.

We filtered the most appropriate p and q values by the AIC criterion, and further
filtered the model with reference to the relevant statistics such as the square root RMSE of
the mean squared error and the MAPE of the mean absolute percentage error. We used the
R package “base”to make the difference of the time series and “forecast” to fit the model
and evaluate accuracy.

(4) The outlook of the later values of NAI concentrations and evaluation of the model.
For the outlook of time series, we used the ARIMA model. Specifically, the ARIMA model
is trained on the original data to predict the time series’ future trend. After the outlook of
the later values, we evaluated the model in 2 steps: white noise detection of residuals and
normal distribution detection of residuals. (a) The residuals’ white noise test was based on
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the Ljung–Box method to determine if the p-value was higher than 0.05 and the residuals
were white (we would prefer the residuals to be white noise) and the result passed the
white noise test. (b) For the residuals’ normal distribution test, we used the R package
“ggpubr” and “ggplot2” to plot a normal QQ plot of the residuals and visually determine if
most of the drop points were on or near the line. If the residuals pass (a) and (b), it means
that ARIMA can fit the data successfully.

3. Results
3.1. The Distribution Characteristics of NAIs at Different Time Scales

By analyzing the monthly data of NAI concentrations from October 2018 to January
2020 (as shown in Figure 4), we could see that NAI concentrations from February to July
2019 were much higher than in other time periods, while NAI concentrations were low in
October 2018 to January 2019 and August 2019 to February 2020. The above two figures
showed clear seasonality in the monthly distribution of NAIs concentrations, with higher
concentrations in spring and summer and lower concentrations in autumn and winter. We
also found that the lower NAI concentrations occurred in the summer months of August.

Figure 4. Monthly average NAI concentrations from October 2018 to February 2020.

The NAI concentration value of August 2019 was much lower than July 2019. We
further verified this phenomenon using correlation analysis between NAIs and meteorolog-
ical factors in Table 1 based on raw hourly data. Specifically, we divided 1 December 2018
at 0:00 to 30 November 2019 into four parts according to the seasons. From 1 December
2018 to 28 February 2019 was defined as winter, from 1 March 2019 to 31 May 2019 was
defined as spring, from 1 June 2019 to 31 August 2019 was defined as summer and from
1 September 2019 to 30 November 2019 was defined as autumn. We matched hourly data
for meteorological factors with hourly data for NAIs on a time series. For missing values
of NAIs, we censored the meteorological data for the same time and matched them.

The results showed that different meteorological factors influenced NAIs in different
seasons, with relative humidity being significantly (positively) correlated (p < 0.01) with
NAI concentrations in all seasons. The (positive) correlation (p < 0.05) between precipitation
and NAI concentrations occurred only in spring. The fact that rainfall had less impact on
NAI concentrations was due to the drought suffered in summer and autumn 2019, as shown
in Table 1. Remarkably, the highest the value of Pearson correlation for meteorological
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factors was 0.306 from RHU in winter, so we used a multiple linear regression model to
further explore the contribution of meteorological factors to NAIs.

The study further analyzed the contribution of the meteorological factors with p < 0.01
in Table 1 to the NAIs using the multiple linear regression model as shown in Table 2.
The meteorological factors in winter contributed the most to NAI concentrations, and the
value of R2 was 0.224. Meteorological factors in other seasons contributed less to NAI
concentrations.

Table 2. Multiple linear regression analysis of meteorological factors and NAIs in different seasons.

Season R R2 Durbin-Watson Meteorological Factors

Spring 0.160 0.026 0.340 PRS; RHU; VIS
Summer 0.144 0.021 0.251 TEM; RHU; WIN
Autumn 0.209 0.044 0.495 PRS; RHU; WIN
Winter 0.473 0.224 0.124 TEM; PRS; RHU; WIN; VIS

Note: ** p < 0.01; * p < 0.05. The parameters were as follows: precipitation per hour (PRE, mm); average air
temperatures (TEM, ◦C); average atmospheric pressure (PRS, hpa); average relative humidity (RHU, %); average
wind speed of 10 min (WIN, m/s) and visibility (VIS, m).

The average hourly value of NAI concentration distribution a day showed an ap-
proximate increasing trend from 19:00–6:00 and was much higher in 6:00 and 14:00–15:00.
Overall, NAI concentrations were higher at midday and in the afternoon and were lower
in 10:00–11:00 in the morning and 19:00 (Figure 5a). Due to the excessive amount of data,
the data overlaps, so we calculated the mathematical statistics for the raw hourly data
based on the boxplot (Figure 5b). The value of the boxplot includes the maximum, third
quartile, medium, first quartile, minimum and outliers. The maximum NAI concentration
in the figure is 50,000, which is because the range of the negative oxygen ion monitoring
instrument that can be monitored is 0–50,000. We can see that the value of the median,
maximum, third quartile and first quartile of the hour of the day was roughly similar to
the trend in Figure 5a.

Figure 5. Daily distribution of hour-by-hour value of NAI concentrations. (a) Average hourly value of NAI concentration
distribution a day. (b) Boxplot of NAI concentrations of raw hourly data. The value of the boxplot includes outliers,
maximum, third quartile, median, first quartile and minimum.

We calculated the frequency of NAI concentration intervals based on hourly data
from 1 November 2018 00:00 to 20 February 2020 20:00, as shown in Figure 6. The NAI
concentration range of its frequency over 500 includes [58, 1758], (1758, 3458], (3458, 5158],
(5158, 6858], (6858, 8558] and (8558, 10,258]; these interval segments are connected to
each other, and connecting them to each other forms a new interval, which is (58, 10,258).
Among [58, 10258], the interval [3458, 5158] has the highest frequency, reaching 2477. These
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results show that as the concentration of NAIs increases, the frequency also becomes very
low, and the frequency of outliers in NAI concentrations is also relatively small.

Figure 6. Frequency histogram of hourly data of NAI concentrations.

3.2. Filling in Missing Values of NAI Concentrations by Developing ARIMA Time Series Models

We used the average weekly value as weekly values and combined them into 68 weeks
of data. The first 55 weeks were the training data, and the NAIs were predicted for
56–68 weeks.

The data for week 28 were null, and we took the ARIMA model in the short-range
to fill the missing values from the R package “forecast”. We used the predicted value
output by the ARIMA model to fill in missed values. First, we performed the stationarity
test and white noise test on the data of 1–27 weeks and fitted the ARIMA (p, d, q) model.
The smoothness test result was p-value = 0.4322 > 0.05, so we needed to perform one
differentiation in the time series. After one differentiation, we secondly performed the
smoothness test and the result was p-value = 0.05, which passed the smoothness test,
but it did not pass the white noise test because p-value = 0.08486 > 0.05. The new series
passed the smoothness test with p-value = 0.01203 < 0.05 and the white noise test with
p = 0.004859 < 0.05. Finally, we defined the d value of ARIMA (p, d, q), which was 2.

We fitted different ARIMA models to compare their accuracy measures, as shown
in Table 3. For parameter p and q, we simulated the p, q values in different models and
chose the most appropriate model by comparing the Akaike information criterion (AIC),
mean error (ME), root mean squared error (RMSE), mean absolute error (MAE), maximum
permissible error (MPE), mean absolute percentage error (MAPE, %), the mean absolute
scaled error (MASE) and ACF1 (auto correlation of errors at lag 1). We found that the RMSE
and AIC was smallest when (p, d, q) was (0, 2, 2) and used 2,6238.82 to be the predicted
value of this model to fill the missed value.

After completing the model, we tested the fit model consisting of a white noise test
on the residual test series. The “white noise” was different from the white noise before
modeling, and we hoped that the residuals of the model were completely random series,
i.e., the white noise series. The residual white noise of ARIMA (0, 2, 2) model was tested
by the Ljung–Box test; the p-value was 0.803, which indicated that the residuals were not
autocorrelated, and the residual was a sequence of the white noise.
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Table 3. Comparison of fitted values and evaluation parameters for different ARIMA models.

(p, d, q) Fitted
Value AIC ME RMSE MAE MPE MAPE MASE ACF1

(0, 2, 0) 44,412.54 545.99 432.3713 12,361.73 8842.708 −8.91302 105.5697 1.428684 −0.53091
(0, 2, 1) 33,384.6 527.72 483.9527 7722.098 5739.791 −22.8288 60.53931 0.927357 −0.31949
(0, 2, 2) 26,238.82 523.42 720.3416 6537.497 4925.537 −29.9626 59.61555 0.795801 0.03333
(1, 2, 0) 40,049.89 539.91 496.785 10,450.91 7624.494 −19.8323 89.65436 1.231862 −0.28397
(2, 2, 0) 27,482.05 533.29 252.3898 8654.897 6388.379 −27.5835 70.08172 1.032147 −0.14205
(2, 2, 2) 28,093.83 526.45 700.1022 6448.297 4708.604 −27.836 56.00602 0.760752 −0.057
(2, 2, 1) 26,988.48 525.95 472.1389 6666.584 5086.942 −27.9409 59.45506 0.821879 −0.07016
(1, 2, 1) 29,899.82 527.44 502.4846 7288.674 5579.637 −27.4644 63.05462 0.901482 −0.15394
(1, 2, 2) 28,553.56 524.83 740.2056 6524.263 4830.089 −28.8038 58.05218 0.78038 −0.04547

Note: The mathematical indicators were as follows: Akaike information criterion (AIC), mean error (ME), root mean squared error (RMSE),
mean absolute error (MAE), maximum permissible error (MPE), mean absolute percentage error (MAPE, %), the mean absolute scaled
error (MASE) and ACF1 (auto correlation of errors at lag 1). The bold format of the values represents the type of ARIMA selected in the
study, due to its lower AIC, RMSE, etc.

Then, we tested the residuals of the ARIMA (0, 2, 2) model for normality by plotting
a QQ plot of the normality test, by drawing a 45-degree line relative to the x and y axes
and visually observing whether the points representing the residuals fell on or near the
45-degree line, and the grey area in the graph represents the 95% confidence interval of the
normal distribution (Figure 7). All values were inside the grey area. Our result indicated
that the residuals passed the normality test and showed that the established ARIMA (0, 2, 2)
model was reasonable.

Figure 7. The normal distribution QQ plot of the residuals of the ARIMA (0, 2, 2) model.

3.3. Making the Outlook of NAIs Concentrations by Developing ARIMA Time Series Models

After filling in the missing data from week 28 using ARIMA (0, 2, 2), we started
to make the outlook the data from weeks 56–68 based on the ARIMA model for data
from weeks 1–55. According to the smoothness test for the raw data, its p-value was
0.6033, which was greater than 0.05, then it failed to do the smoothness test. We needed to
differentiate the data to make it stable.

Next, we differenced the data once, then the p-value was less than 0.05, which passed
the smoothness test, and the differenced time series was a smooth time series. The differen-
tial data were tested for white noise (p-value = 0.002258) and passed the white noise test,
so the data were smooth non-white noise data and could be fitted to the ARIMA model.
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Here, we selected the ARIMA (p, d, q) model parameters, where d = 1 since the previous
data were differenced once. For parameter p and q, we simulated the p, q values in different
models and chose the most appropriate model by comparing the Akaike information
criterion (AIC), mean error (ME), root mean squared error (RMSE), mean absolute error
(MAE), maximum permissible error (MPE), mean absolute percentage error (MAPE, %),
the mean absolute scaled error (MASE) and ACF1 (auto correlation of errors at lag 1), as
shown in Table 4. We found that the RMSE and AIC was smallest when (p, d, q) was (1, 1, 1),
(0, 1, 1), (0, 1, 2), (2, 1, 0) and (2, 1, 1). Combining the other metrics, we finally chose (0, 1, 1)
as the (p, d, q) value of the model.

Table 4. Comparison of evaluation parameters for different models.

(p, d, q) AIC ME RMSE MAE MPE MAPE MASE ACF1

(0, 1, 0) 1127.64 68.91637 8058.546 5822.154 −16.5185 50.52383 0.981823 −0.40433
(1, 1, 1) 1117.11 198.4567 7014.965 5393.174 −19.694 51.15323 0.909482 −0.01324
(0, 1, 1) 1115.41 173.0956 7035.695 5323.927 −19.9934 50.98074 0.897804 0.031298
(1, 1, 0) 1120.18 97.27034 7371.012 5222.038 −19.3682 49.95879 0.880622 −0.10025
(0, 1, 2) 1117.14 192.8843 7017.028 5385.995 −19.7073 51.08738 0.908271 −0.0086
(2, 1, 0) 1119.26 121.0036 7167.071 5176.703 −19.6148 49.82251 0.872977 −0.03197
(2, 1, 1) 1119.07 210.9474 7011.803 5392.778 −19.7556 51.31665 0.909415 −0.01143
(2, 1, 2) 1121.10 202.9406 7013.89 5395.582 −19.7244 51.23666 0.909888 −0.01233

Note: The mathematical indicators were as follows: Akaike information criterion (AIC), mean error (ME), root
mean squared error (RMSE), mean absolute error (MAE), maximum permissible error (MPE), mean absolute
percentage error (MAPE, %), the mean absolute scaled error (MASE) and ACF1 (auto correlation of errors at
lag 1). The bold format of the values represents the type of ARIMA selected in the study, due to its lower AIC,
RMSE, etc.

We predicted NAI concentrations for 56–68 weeks and plotted them in a time series
plot based on the ARIMA (0, 1, 1) model, as shown in Figure 8. ARIMA (0, 1, 1), compared
to the other ARIMA series model, had fitted values for 1–55 weeks that were relatively
rightward skewed due to the one difference, which had less impact on the results. The
ARIMA (0, 1, 1) model had relatively low values of AIC, RMSE, etc., and could largely
predict trends in NAIs well over the next 13 weeks.

Figure 8. Time series of weekly data of NAI concentration. Week 1 to 55 was used as a time series of training data. We can
see that the time series was highly fluctuating and uneven, and combined with topic 3.2, where the data did not pass the
smoothness test, we made 1 difference to the series to make the series smooth, which was the red line. In the ARIMA (0, 1, 1)
model time series plot, the black line represented the raw data of NAI concentrations, and the green line represented the
predicted values of NAI concentrations, which were closer to the raw values. The blue line represents weekly precipitation
(accumulate hourly precipitation into weekly precipitation).
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Besides, the study found that the weekly precipitation and weekly NAI concentration
have similar trends in the time series. Both precipitation and NAIs show a low and gentle
trend in the later periods, as shown in Figure 8. There may be some connection between
NAIs and the weekly data of accumulated precipitation. The meteorological factors were
linked to the NAIs in some way, so we next tested the weekly data on meteorological
factors and NAIs for correlation as shown in Table 5.

Table 5. Correlation analysis of weekly data of NAI concentrations with meteorological factors.

Period Correlation and Significance PRE_W TEM_W PRS_W RHU_W WIN_W VIS_W

Week 1–Week 68
Pearson correlation 0.472 ** 0.154 −0.384 ** 0.471 ** −0.270 0.093

Significance 0.000 0.209 0.001 0.000 0.026 0.452
n 68 68 68 68 68 68

Note: ** p < 0.01. The PRE_W in this table is the hourly precipitation summed to a week, TEM_W stands for average weekly temperature,
PRS_W represents the weekly average atmospheric pressure, RHU_W represents the weekly average relative humidity, WIN_W represents
the weekly average wind speed, VIS_W represents weekly average visibility. TEM_W, PRS_W, RHU_W, WIN_W and VIS_W are calculated
by averaging the raw hourly data over a week.

As seen in Table 5, the study showed a significant correlation between the concen-
trations of NAIs and cumulative precipitation, mean atmospheric pressure, and mean
relative humidity.

To further explore the contribution of meteorological factors to weekly NAI concentra-
tions, we performed a multiple linear regression analysis using the meteorological factors
with the highest correlations in Table 6 (PRE_W, PRS_W, RHU_W) and NAI concentrations.
We can see that the value of R2 is 0.349. This means that the meteorological factors (PRE_W,
PRS_W and RHU_W) contribute 34.9% to NAIs.

Table 6. Multiple linear regression analysis of meteorological factors and NAIs from 69 weeks.

Period R R2 Durbin-Watson Meteorological Factors

Week 1–Week 68 0.591 0.349 1.574 PRE_W; PRS_W; RHU_W

After completing the model, we tested the fit model consisting of a white noise test
on the residual test series. The “white noise” was different from the white noise before
modeling, and we hoped that the residuals of the model are completely random series, i.e.,
the white noise series. The residual white noise of the ARIMA (0, 1, 1) model was tested
by the Ljung–Box test; the p-value was 0.9571, which indicated that the residuals were not
autocorrelated, and the residual was a sequence of the white noise.

Then, we tested the residuals of the ARIMA (0, 1, 1) model for normality by plotting
a QQ plot of the normality test, by drawing a 45-degree line relative to the x and y axes
and visually observing whether the points representing the residuals fell on or near the
45-degree line, and the grey area in the graph represents the 95% confidence interval of the
normal distribution (Figure 9). Although a small number of values were outside the gray
area, most values were around the 45% line and inside the grey area. Our result indicated
that the residuals largely passed the normality test. Overall, we used the ARIMA (0, 2, 2)
model to fill in the week 28 data based on the weeks 1–27 data. Then, the ARIMA (0, 1, 1)
model was used to predict the week 56–68 data based on the week 1–55 data. Our results
showed that the established ARIMA (0, 2, 2) and ARIMA (0, 1, 1) model was reasonable.
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Figure 9. The normal distribution QQ plot of the residuals of the ARIMA (0, 1, 1) model.

4. Discussion
4.1. Time Series Analysis Based on Available Data

We found that NAI concentrations have a distinct diurnal variation profile. Specifi-
cally, NAI concentrations were highest at 0:00–6:00 and 14:00–15:00 daily and lowered at
10:00–11:00 and 18:00–19:00. The distribution of other meteorological factors may cause
this during the day.

The monthly variation in NAI concentrations showed clear variation characteristics,
with lower concentrations of NAIs from October 2018 to January 2019 and August 2019 to
February 2020, and higher concentrations from February 2019 to July 2019.

The study found that the NAI concentrations and the cumulative precipitation have
similar trends in the weekly time series, which shows certain links (Figure 8). The study
conducted correlation analysis and multiple linear regression analysis between NAIs and
meteorological factors on both hourly and weekly data and found significant correlations
between NAIs and relative air humidity on hourly time scales, and between NAIs and
cumulative precipitation, relative humidity and barometric pressure on weekly data scales.
Water is an important factor in the concentration of NAIs. In addition, it can be seen
from the formula of oxygen-based NAIs that water can produce NAIs by Lenard force,
and oxygen-based NAIs can react with water (Figure 1). This was due to the severe
lack of precipitation in the Wuyi mountains from August 2019, resulting in lower air
humidity and lower biological activity, which has reduced the amount of water and
plant-produced NAIs.

The study also found that the trend of NAI concentrations in some places in the figure
slightly lags the trend of precipitation. The reasons for the lag are: (1) According to the
maintenance personnel, water easily entered the negative ion monitor and damaged it
when in the high precipitation, and then the instrument went to be repaired, which makes
the observation of negative oxygen ions missing during this period of time. (2) After rainy
days, the water of precipitation evaporated on a sunny day, which also increased relative
humidity and the NAI concentrations of the air.

4.2. Research on the ARIMA Model Methodology

The ARIMA (0, 1, 1) model, which predicted a gradual increase in air anion concen-
tration over the next 13 weeks in weekly time units, performed well in the long-range
prediction, and the predicted values were close to the original values in terms of magnitude
and trend. However, in terms of the order of magnitude and trend, the predicted values
are becoming stable later as time increased, which may be related to the fact that the data
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undergo one difference and the sparse amount of data. Besides, there was a clear deviation
between the predicted and actual values after week 68 in terms of values and trends, which
may be related to other influencing factors and the application of the model to short- and
medium-range outlooks. Further research is needed to model the long-range prediction
of NAI concentrations and analyze the related influence mechanisms. Long-range trend
predictions will be challenging, given the climate changing and human activities which can
impact multiple relevant environmental factors related to NAIs and no single statistical
model that can fully and clearly assess such complex interactions. Meteorological factors
also should be considered in forecasting models. According to this study, future predictions
of NAI concentrations in the Wuyi Mountain can be combined with predictions of precipi-
tation. Our research has attempted to decompose seasonal factors, but the fitting failed due
to the limitation of the period of the raw data. Future studies can also consider external
variables such as seasonal factors and weather factors in the prediction model. Due to the
small amount of time series data in the study, it is unreasonable to clearly define the impact
that seasonality will have on the distribution of NAIs. For seasonality, it is recommended
that seasonality be determined from data measured over a period of 5–10 years or more.

5. Conclusions

This study described the distribution of NAI concentrations over time using mathe-
matical statistics and investigated the correlation of meteorological factors on NAI concen-
trations. Water was a significant factor in the temporal distribution of NAI concentrations.
In addition, we attempted to use ARIMA models to provide an outlook on later data of NAI
concentrations. This article provided a unique perspective on the study of the distribution
of negative air oxygen ions over time series.
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