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Abstract: The extensive pattern of economic growth has an inestimable negative impact on the
ecological environment, which causes the soil pollution problem to become increasingly prominent.
In order to improve the effectiveness and rationality of prevention and control of heavy metal
pollution in regional soil, it is necessary to understand the current situation of pollution, identify
pollution sources and clarify future pollution risks. In this paper, an industrially developed city in
eastern China was taken as the study region. The positive matrix factorization model (PMF) model
and Unmix model was applied to identify and apportion the pollution sources of soil potential
toxic elements after evaluating the ecological risk of soil potential toxic elements. The PMF model
identified six factors, including single source and composite source. The Unmix model also identified
six sources, including sources of nature, industrial discharge and traffic emissions. The comparison
between the two models showed that Hg and Ni pollution, as well as Cr enrichment in the study
region, were related to the industrial discharge from enterprises and factories. Cd pollution was
related to traffic emission sources. Cu and Zn pollution were related to the multiple sources mixed
with soil parent material, traffic emissions and industrial discharge from electronic enterprises. Pb
pollution was related to natural sources (e.g., soil pH) but also to industrial sources (e.g., industrial
wastes discharge). Enrichment was related to soil parent material and agricultural inputs. Our study
also implies that soil heavy metal pollution or enrichment in the study region was mainly from
anthropogenic sources and supplemented by natural sources.

Keywords: potential toxic elements; source identification; source apportionment; PMF; Unmix;
industrial city

1. Introduction

The rapid progress of industrialization and urbanization is not completely divorced
from extensive development models of the past [1,2]. The irrational industrial structure
and the lack of technology for sustainable development have led to the total discharge of
pollutants remaining high [3]. The soil pollution continues to expand and deepen, which
seriously damages the safety of agricultural products and human health [4–6]. Potential
toxic elements in soil, in particular, have cumulative effects of teratogenic, cancer and
mutation [7]. When the amount of potential toxic element accumulation reaches up to a
certain extent, potential toxic elements may be suddenly activated, posing a serious threat
on food safety and human living environments [8,9]. Furthermore, since the potential toxic
elements in soil are easy to accumulate and latent but difficult to remove [10], it is more
complicated and time-consuming to restore contaminated soil than gas and water [11–13].
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Therefore, cutting off soil pollution pathways as far as possible, as well as strengthening
soil potential toxic element monitoring and control, is of vital significance to curb the
deterioration trend of soil pollution and protect the soil ecological environment [6,14].

Analyzing and identifying the sources of potential toxic elements in soil is necessary
to make decisions for subsequent prevention and management of soil pollution [15]. The
sources of potential toxic elements in soil are mainly divided into natural sources (mainly
parent material and soil forming process) [16,17] and human sources (such as industrial
discharges, automobile exhausts, fertilizer and pesticide inputs, agricultural film appli-
cation and sewage irrigation) [3,18–20]. The latter sources lay a great influence on the
contents of potential toxic elements in soil. At present, the source apportionment models
of soil potential toxic elements also have two categories. The one is a diffusion model
that takes pollution sources as the research object, and which depends on the pollutant
emission inventory for calculation. The other is a receptor model that takes contaminated
areas as the research object, such as chemical mass balance (CMB), factor analysis (FA),
principal component analysis (PCA), positive matrix factorization analysis (PMF), Unmix
model, cluster analysis, projection pursuit regression and genetic algorithm [4,5,15,21]. In
recent years, a growing number of research has focused on the source apportionment of soil
potential toxic elements with popular methods of isotope tracer, such as the PMF model,
UNMIX model and PCA model. In particular, the PMF model and UNMIX model are both
proposed receptor models based on the principle of factor analysis and improved based
on the PCA model, and which are recommended by the United States Environmental Pro-
tection Agency (USEPA). Although the PMF model and UNMIX model have been widely
used in previous studies [22–25], the single analytical method for sources apportionment
has certain limitations. Owing to the inevitable systematic error and sample influence
generated by the algorithm, the diversified integration and comprehensive application of
various source apportionment methods have distinct advantages for exploring pollution
sources of soil potential toxic elements [26,27].

In this study, an industrial city in Southeast China was selected as a case study region,
and the PMF and Unmix models were applied to identify and apportion the pollution
sources of potential toxic elements in soils. The specific aims were to: (1) evaluate the
pollution level of potential toxic elements in soil through ecological risk assessment; (2)
identify and apportion the pollution sources of potential toxic elements in soil based on the
PMF and Unmix models. The results would provide significant information to verify the
quantitative sources as well as restore and manage the contaminated soil in industrial areas
in the future.

2. Materials and Methods
2.1. Study Region

A coastal city in eastern Zhejiang Province was selected as the study region, which
is located in the middle of China’s coastline (Figure 1). The elevation gradually decreases
from southwest to northeast, and the plain is the main landform (40.3%). The study re-
gion belongs to the northern subtropical monsoon climate with suitable precipitation that
contributes to local developed agriculture [7]. Despite the fertile edaphic condition, soil
acidification is widespread. Most of the soil was acidic (pH < 6.5), and some even showed
a strong acidity (pH < 5.5). Moreover, as an important economic center of the province, the
city has dense road networks and well-developed industries. In particular, the automo-
bile industry, electrical machinery and equipment industry, chemical raw materials and
products industry and fuel processing industry make the largest contributions. In addition,
chemical metallurgy enterprises, mechanical electronics enterprises, textile enterprises and
mining enterprises are four primary types of industrial enterprises in the study region [28].
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Figure 1. Location of the study region.

2.2. Data

Soil samples were from the survey project of soil heavy metal pollution in Zhejiang
Province in 2013. A total of 2051 soil samples of agricultural land surface (0–20 cm) were
collected in the study region (Figure 2). The sampling sites were arranged with the method
of uniform distribution, and the soil samples were collected by the plum blossom sampling
method. According to the agricultural sector standard (NY/T 1377-2007) of the People’s
Republic of China, soil pH was measured in H2O with a soil/solution ratio of 1:2.5 (m/v)
using the Glass Electrode method (GL, pHS-3C, REX, Shanghai, China). Hg was determined
by the double channel atomic fluorescence spectrometer after being digested by HNO3-HCl
in a water bath. Cr, Pb, As, Ni, Zn and Cu were determined by the inductively coupled
plasma optical emission spectrometry (ICP-OES 6300, Thermo Fisher Scientific, Waltham,
MA, USA) after being acid-digested with HCl-HNO3-HClO4. Cd were determined by
the inductively coupled plasma mass spectrometer (ICP-MS, Agilent 7500a, Palo Alto,
CA, USA) after being digested by HF-HNO3-HClO4. In order to ensure the accuracy and
reliability of determination results, parallel, blank and standard reference materials were
used for quality assurance and quality control [1,7].
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2.3. Methods
2.3.1. Ecological Risk Assessment

An ecological risk index was proposed by Hakanson [29], which can quantitatively
reflect not only the impact of each potential toxic element in a specific environment, but
also the comprehensive impact of multiple potential toxic elements in the environment.
It can be expressed by the following formulas:

Ei
r = Ti

r ×
Ci

r

Ci
0

(1)

RI = ∑m
i=1 Ei

r (2)

where: Ci
r represents the measured concentration of the ith potential toxic element at the rth

sampling location. Ci
0 represents the soil environmental quality standard of ith potential

toxic element, which takes the soil background values of Zhejiang province as standards,
i.e., As (9.2 mg/kg), Hg (0.086 mg/kg), Cr (52.9 mg/kg), Cd (0.07 mg/kg), Pb (23.7 mg/kg),
Cu (17.6 mg/kg), Zn (70.6 mg/kg) and Ni (24.6 mg/kg) [7]. Ti

r represents the toxicity
response parameter of the ith potential toxic element at the rth sampling location, which
reflects the toxicity level of potential toxic elements and the sensitivity of organisms to
heavy metal pollution, i.e., As (10), Hg (40), Cr (2), Cd (30), Pb (5), Cu (5), Zn (1) and Ni
(5) [7,29]. Ei

r is the ecological risk index of a certain type of potential toxic element, which
can be divided into five grades, i.e., Slight risk (Ei

r < 40), Mild risk (40 ≤ Ei
r < 80), Moderate

risk (80 ≤ Ei
r < 160), Severe risk (160 ≤ Ei

r < 320) and Extremely severe risk (Ei
r ≥ 320). RI is

the comprehensive ecological risk index, which can be divided into four grades, i.e., Slight
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risk (RI < 150), Mild risk (150 ≤ RI < 300), Moderate risk (300 ≤ RI < 600) and Severe risk
(RI ≥ 600).

2.3.2. Positive Matrix Factorization Model

The positive matrix factorization (PMF) model is an improved factor analysis receptor
model developed by Paatero and Tappert [30]. Since the source component spectrum and
source contribution rate obtained by PMF model have explicable and definite physical
significance compared with other traditional factor analysis models, the PMF model has
been successfully applied to the source analysis of environmental pollutants. In this model,
the original matrix composed of receptor sample concentration data can be decomposed
into a factor score matrix, a factor load matrix and a residual matrix [31]. The basic matrix
is as follows:

Xij = ∑p
k=1 GikFkj + Eij (3)

where: Xij represents the concentration of the jth potential toxic element of the ith sample,
Fkj represents the concentration of the jth potential toxic element of source k (i.e., the spectral
matrix of source component), Gik represents the contribution of source k to the ith sample,
(i.e., the source contribution matrix), Eij represents the residual matrix of the jth potential
toxic element of the ith sample and p is the number of main factors (i.e., the number of
main sources).

The PMF model is iteratively calculated based on Multilinear engine 2 algorithm with
the original matrix continuously decomposed to obtain the optimal factor score matrix and
factor load matrix, in order to achieve optimization by minimizing the objective function
Q [32]. The formula is as follows:

Q = ∑n
i=1 ∑m

j=1

(
Eij

Uij

)2

(4)

where: n is the number of receptor samples, m is the types of measured potential toxic
elements and Uij represents the uncertainty of the jth potential toxic element of the ith
sample. This uncertainty is used to process the weight of each individual sample, which is
calculated as [33]:

U =

{ √
(EF × C)2 + (MDL × 0.5)2, C > MDL

5
6 × MDL, C ≤ MDL

(5)

where: EF is the error fraction, C is the measured concentration of potential toxic element
samples and MDL represents the Method Detection Limit that is determined by the detect-
ing instrument. For the samples in this study, the MDL of As, Hg, Cr, Cd, Pb, Cu, Zn and
Ni was 0.01 mg/kg, 0.005 mg/kg, 5 mg/kg, 0.05 mg/kg, 0.2 mg/kg, 1 mg/kg, 0.5 mg/kg
and 5 mg/kg, respectively.

2.3.3. Unmix Model

The Unmix model is another receptor model proposed by the US Environmental
Protection Agency to solve general environmental problems [34]. This model takes the
concentrations of samples as parameters, which can avoid the normalization process and
complicated adjustments of parameters. In this model, the singular value decomposition
method is applied to reduce the dimension of complex analytical data, in order to determine
source components and contributions [35]. Source components refer to the number and
types of sources, and source contributions refer to the contributions of each source to each
sample. The equation is as follows:

Cij = ∑m
k=1 UjkDik + S (6)
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where: Cij is the content of the jth potential toxic element of the ith sample; Ujk is the mass
fraction of the jth potential toxic element in source k, representing the component of source;
Dik is the total amount of source k in the ith sample, representing the contribution of source;
S is the standard deviation of each source’s component.

3. Results
3.1. Descriptive Statistics of Potential Toxic Elements in Soil

The minimum (Min), maximum (Max), mean, standard deviation (SD), coefficient
of variation (CV), skewness and kurtosis of potential toxic element contents in soil are
described (Table 1).

Table 1. Descriptive statistics of potential toxic element contents in soil in the study region (n = 2051).

Potential Toxic Elements As Hg Cr Cd Pb Cu Zn Ni

Min 0.868 0.015 6.04 0.03 8.13 4.28 34.3 2.89
Max 69.8 2.26 326 1.84 263 315 714 234

Mean 6.61 0.29 67.73 0.2 43.12 34.77 110.68 29.1
SD 2.99 0.3 29.4 0.1 16.05 16.69 36.52 15.59
CV 45.23 103.45 43.41 50.00 37.22 48.00 33.00 53.57

Skewness 5.11 2.34 1.47 7.26 2.44 4.56 5.16 4.14
Kurtosis 97.29 6.71 10.23 101.37 21.62 51.17 62.5 41.52

SB values of Zhejiang 9.2 0.086 52.9 0.07 23.7 17.6 70.6 24.6
SB values of China 11.2 0.065 61 0.097 26 22.6 74.2 26.9

Note: The unit of CV was % and units of others were mg/kg. SB represented soil background [35].

The content range of Cd (0.03~1.84 mg/kg) was the smallest, whereas that of Zn
(34.3–714 mg/kg) was the largest. The contents ranges of the rest potential toxic elements
were ranked in increasing order as Hg, As, Ni, Pb, Cu and Cr. The average values of As,
Hg, Cr, Cd, Pb, Cu, Zn and Ni were 6.61 mg/kg, 0.29 mg/kg, 67.73 mg/kg, 0.2 mg/kg,
43.12 mg/kg, 34.77 mg/kg, 110.68 mg/kg and 29.1 mg/kg, respectively. Compared with
soil background value [36], among all the potential toxic elements, the mean concentration
of As did not exceed the soil background values of both Zhejiang and China, whereas
Hg and Cd were opposite, namely far higher than the two background values. The mean
concentration of Hg was 2.37 times the soil background value of Zhejiang and 4.46 times
the soil background value of China. Correspondingly, the mean concentration of Cd was
higher by 2.86 and 2.06 times. Furthermore, the mean concentrations of other potential
toxic elements exceeded the soil background values to varying degrees, indicating that
potential toxic elements, except As, were enriched to various extents in the study region,
with Hg and Cd being the most serious. CV reflects the average variation degree of the
whole sample. Thus, it can be seen that Hg in the study region showed an extreme variation,
Ni and Cd showed high variations and As, Cr, Pb, Cu and Zn showed medium variations,
illustrating that the data were of a high degree of dispersion. Therefore, it reflected the
obvious heterogeneity of the spatial distribution of eight potential toxic elements. Moreover,
the extreme variation of Hg also indicated that it was strongly subjected to human activities.

Spearman correlation analysis was used to explore the relationship among various
potential toxic elements. The significant positive correlation between potential toxic el-
ements suggests the similarity of potential toxic element sources. On the contrary, the
significant negative correlation not only suggests different sources, but also may indi-
cates a certain antagonistic effect between potential toxic elements [37]. It is obvious that
significant positive correlation existed among most potential toxic elements in the study
region (Table 2). The correlation coefficients of Ni-As, Ni-Hg and Ni-Cr were relatively
high (r > 0.8), indicating that Ni might have the same anthropogenic source together with
As, Hg and Cr. A similar situation happened between As-Cr, Pb-Hg and Cu-Zn (r > 0.7),
suggesting the same agricultural or industrial sources. In addition, soil pH is one of the
important factors to control the effectiveness of potential toxic elements in soil, in the way
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of affecting the activity and availability of soil potential toxic elements [38]. There was a
certain correlation between soil pH and potential toxic element contents in the study region.
To be specific, Hg, Cd, Pb and Zn were significantly negatively correlated with soil pH,
whereas the remaining potential toxic elements were significantly positively correlated
with soil pH, which indicated that the acidic soil in the study region had a certain impact
on the concentration of potential toxic elements.

Table 2. Correlation analysis of soil potential toxic element contents and pH in the study region.

r As Hg Cr Cd Pb Cu Zn Ni pH

As 1
Hg 0.018 1
Cr 0.753 ** 0.302 ** 1
Cd −0.014 0.385 ** 0.045 * 1
Pb −0.057 * 0.712 ** 0.157 ** 0.444 ** 1
Cu 0.564 ** 0.445 ** 0.753 ** 0.357 ** 0.345 ** 1
Zn 0.417 ** 0.373 ** 0.571 ** 0.494 ** 0.528 ** 0.716 ** 1
Ni 0.813 ** 0.094 ** 0.923 ** −0.006 −0.04 0.690 ** 0.512 ** 1
pH 0.346 ** −0.412 ** 0.210 ** −0.051 * −0.554 ** 0.081 ** −0.050 * 0.372 ** 1

* Correlation is significant at the 0.05 level. ** Correlation is significant at the 0.01 level.

3.2. Ecological Risk of Soil Potential Toxic Elements

Except for Hg and Cd, the ecological risks of other potential toxic elements were slight
(Table 3). According to the ecological risks, the orders of the mean values of potential toxic
elements were Hg (134.08) > Cd (84.35) > Cu (9.88) > Pb (9.88) > As (7.19) > Ni (5.91) > Cr
(2.56) > Zn (1.57). A slight risk posed by Hg affected over 20% samples, which was the
same as mild and moderate risks posed by Hg. Furthermore, 14.92% and 10.24% of samples
were at severe and even extreme severe risk levels. A total of 49.83% and 44.22% of samples
showed mild and moderate risk of Cd, but 2.63% and 0.24% of samples remained at severe
and extreme severe risk of Cd. The rest of the potential toxic elements posed a slight or
mild risk in samples. Overall, there was relatively serious risk of Hg and Cd pollution in
the study region, which corroborated the conclusion drawn from the descriptive statistical
analysis. Moreover, the comprehensive ecological risk in the study region was mainly
at moderate risk, with 4.24%, 20.97%, 47.29% and 27.50% of the samples being at severe,
moderate, mild and slight risk levels, respectively.

Table 3. Ecological risk index of soil potential toxic elements in study region.

Ecological
Risk

Index

Potential
Toxic

Elements

Min Max Mean
Proportion of Ecological Risk Level

Slight Mild Moderate Severe Extreme
Severe

Ei
r

As 0.94 75.87 7.19 99.95 0.05 0.00 0.00 0.00
Hg 6.98 1051.16 134.08 23.31 24.57 26.96 14.92 10.24
Cr 0.23 12.33 2.56 100 0.00 0.00 0.00 0.00
Cd 12.86 788.57 84.35 3.07 49.83 44.22 2.63 0.24
Pb 1.72 55.49 9.10 99.95 0.05 0.00 0.00 0.00
Cu 1.22 89.49 9.88 99.85 0.10 0.05 0.00 0.00
Zn 0.49 10.11 1.57 100 0.00 0.00 0.00 0.00
Ni 0.59 47.56 5.91 99.90 0.10 0.00 0.00 0.00

RI 49.70 1201.72 254.64 27.50 47.29 20.97 4.24 -

Note: Min, Max and Mean had no units, and the unit of proportion of ecological risk level was %.

Spatially, Hg and Ni had prominently high ecological risks in urban areas, especially in
the northern part (Figure 3). Cr, Pb, Cu and Zn also had high ecological risks in downtowns
with larger areas. In the south of the study region, Cr had a large continuous area of high
ecological risk, whereas Pb, Cu and Zn had visibly scattered dot areas. The ecological risks
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of As and Cd were different. The high ecological risk area of As fell in the southern coastal
corner rather than the urban areas, and Cd had ubiquitous dot areas of high ecological risks
across the study region. In terms of the comprehensive ecological risk, only the north, west
and southwest parts of the study region were at low ecological risk, illustrating the rest
of the areas were at high ecological risk levels of soil heavy metal pollution. Notably, the
central urban part of the study region was subjected to moderate or even extreme severe
ecological risk, indicating that the situation of heavy metal pollution was worth attention.
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3.3. Potential Pollution Sources of Potential Toxic Elements in Soil
3.3.1. Source Apportionment Based on PMF Model

To set the number of factors as 3–9 and the operation times as 20, the initial points
were randomly selected to run the PMF model successively [39]. When the number of
factors was 6, the ratio of Qrobust to Qtrue tended to converge and reached the minimum,
and the residual error ranged from −3 to 3. Moreover, the r2 values of the most potential
toxic elements were larger than 0.88, except that the r2 value of Hg was 0.4. Consequently,
the six factors were able to fully explain the information contained in the original data,
indicating that the six-factor source scheme was the most stable based on the PMF model
(Figure 4).
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Figure 4. Source composition of the PMF model.

Based on the PMF model, six factor components and corresponding contributions of
potential toxic elements were identified (Table 4). Since the load of Factor 1 only had As,
Factor 1 was obviously the main source of As. Although Cd, Hg and Ni all had loads in
Factor 2, whereas the load of Cd reached up to 100%, Factor 2 was the main source of Cd.
Hg, Cr and Pb all had loads in Factor 3. Since the loads of both Hg and Pb were far higher
than the load of Cr (the load of Pb even reached up to 100%), Factor 3 was taken as the main
source of Hg and Pb. As for Factor 4, the load of Cu reached up to 100%, which was much
higher than the loads of both Hg and Cr, and it could be considered as the main source of
Cu. Factor 5 had similar loads of Cr and Ni, i.e., 82.750% and 87.644%, respectively, which
was the main source of Cr and Ni. Since Factor 6 had distinct loads of Zn (100%) and Ni
(11.415%), it was evidently the main source of Zn.

The highest load of Factor 1 is As. Up to 99.95% of the samples are not contaminated
by As (Table 3), indicating little interference of human activity. Soil parent material is the
main source of As background in soil, and the content of As will gradually enrich with
later development of the soil. Generally, the concentration of As is less than 15 mg/kg,
whereas there were 6 samples in the study region whose concentrations of As exceeded
15 mg/kg. These samples were distributed in coastal cultivated lands from the east to
the south (Figure 5a), suggesting a connection with inappropriate agricultural inputs (e.g.,
fertilizers and pesticides) [40,41]. Therefore, Factor 1 was a composite source of nature and
agriculture.
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Table 4. Source components and contributions of potential toxic elements based on the PMF model.

Species Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

Source components
(mg/kg)

As 6.589 0 0 0 0 0
Hg 0 4.000 0.073 0.027 0 0
Cr 0 0 7.428 4.165 55.609 0
Cd 0 0.196 0 0 0 0
Pb 0 0 43.032 0 0 0
Cu 0 0 0 34.509 0 0
Zn 0 0 0 0 0 110.390
Ni 0 0.272 0 0 25.306 3.296

Source contributions (%)

As 100 0 0 0 0 0
Hg 0 3.877 70.452 25.671 0 0
Cr 0 0 11.053 6.198 82.750 0
Cd 0 100 0 0 0 0
Pb 0 0 100 0 0 0
Cu 0 0 0 100 0 0
Zn 0 0 0 0 0 100
Ni 0 0.942 0 0 87.644 11.415
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Cd showed a high load in Factor 2. Since Cd was largely affected by external pollution,
and the areas of high source contribution were mostly adjacent to the main roads (Figure 5b),
Cd pollution in the study region was related to traffic emissions. Automobile exhaust
can accumulate Cd in soil through atmospheric deposition and air dust adsorption [42].
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Furthermore, Cd hiding in automobile tires and fuels can enter the soil through the wear
and tear of automobile tires [43]. Therefore, Factor 2 was a single source of traffic emissions.

Factor 3 was principally composed of Hg and Pb, both of which concentratedly pol-
luted the central urban region. It is obvious that Hg reached extreme variation (Table 1),
and Hg and Pb had homology (Table 4). In the study region, the majority of industrial
enterprises gathered in the central and north (Figure 5c). Since metallurgy, energy and
chemical industries take coals as the primary fuel, the production process makes great
contributions to the accumulation and enrichment of Hg. Hence, coal mining and combus-
tion are regarded as the main source of Hg pollution in soil. The potential toxic element
Hg is dispersed to the atmosphere during combustion and then enters the soil through
atmospheric deposition [40]. Likewise, Pb accumulation is also largely caused by emissions
of coal combustion, and gasoline combustion and wear of automobile parts can increase the
concentration of Pb in soil [44,45]. Therefore, Factor 3 was a composite source of industrial
discharge and traffic emissions.

The load of Factor 4 was mainly Cu. The large areas with Cu pollution had a dispersed
distribution. Since the samples in this study were mostly collected from agricultural soil,
unreasonable agricultural inputs might be the reason for Factor 4. As an industrially devel-
oped city, the deepening of urbanization drove more rural lands into urban construction
lands, leaving limited cultivated lands to produce more crops, which aggravates the burden
of cultivated lands and leads to excessive fertilizer application. The use of compound
fertilizers also causes excessive accumulation of potential toxic elements (e.g., Cu and Zn)
in soil [46]. The high source contribution of Factor 4 was aggregated in the northern part of
the study region (Figure 5d), where the waste gas released by mechanical and electronic
enterprises increases Cu pollution in soil through atmospheric deposition. Therefore, Factor
4 was a single source of agriculture.

Factor 5 was primarily composed of Cr and Ni. There was a significant positive
correlation between Cr and Ni, indicating that they were polluted by the same sources
(Table 3). Both Cr pollution and Ni pollution in the study region were quite slight, thus
they were mainly affected by soil parent material. Since polluted Cr and Ni samples were
mainly concentrated in the southern part, where a certain number of textile enterprises are
distributed (Figure 5e), the waste gas settlement caused by industrial activities causes Cr
accumulation [47]. Therefore, Factor 5 was a composite source of nature and industry.

The main load of Factor 6 was Zn, whose pollution did not happen in most areas. Thus,
soil parent material and natural weathering processes might partly explain Factor 6. In
addition, the collected soil samples were mainly distributed around roads and mechatronics
enterprises. The exhausts of automobiles and electroplate factories inevitably lead to the
enrichment of Zn [48]. Therefore, Factor 6 was a composite source of nature, industrial
discharge and traffic emissions.

3.3.2. Source Apportionment Based on Unmix Model

The normalization of original data was processed to eliminate the influence of the
content difference among eight potential toxic elements. Since the boundary (i.e., red
virtual line) appeared in all data boxes of eight potential toxic elements (Figure 6), rational
boundaries were considered to exist among all eight potential toxic elements. Thus, no
data needed to be removed and all of them could be used in the Unmix model. When the
number of sources was set to six, the Min Rsp was 0.97 and the Min Sig/Noise was 2.77
(Table 5), both of which were greater than system requirements (i.e., Min Rsq > 0.8 and
Min Sig/Noise > 2). Consequently, the result that 97% of the variance of species could be
explained was stable and optimal, indicating the six-source scheme was the most reliable
based on the Unmix model.
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Table 5. Source concentrations of potential toxic elements based on the Unmix model (Normalized).

Species Source 1 Source 2 Source 3 Source 4 Source 5 Source 6

As 0.059 0.039 −0.022 0.016 0.439 0.056
Hg 0.398 −0.002 0.022 0.044 0.006 0.007
Cr 0.153 0.095 0.049 −0.008 0.177 0.358
Cd 0.045 0.042 0.082 0.732 0.027 0.047
Pb 0.132 0.617 −0.019 0.091 0.125 0.049
Cu 0.080 −0.015 0.503 0.039 0.058 0.117
Zn 0.063 0.229 0.364 0.110 0.102 0.100
Ni 0.070 −0.005 0.022 −0.024 0.066 0.267

Total 0.289 0.104 0.057 0.071 0.100 0.330

9 Species, 2051 Obs., 6 Sources,
Min Rsq = 0.97, Min Sig/Noise = 2.77

Note: Due to the error of data uncertainty, the concentrations of source components of some species appeared
negative. After inspection, the errors above were acceptable.

Based on the Unmix model, six source concentrations of potential toxic elements
after normalization were identified (Table 5). All kinds of potential toxic elements have
loads in Source 1, especially Hg, Cr and Pb. The contribution of Source 1 to Hg was the
largest (peaking at 94%), which was far higher than Cr (23%) and Pb (28%). Hence, the
characteristic element of Source 1 is Hg. Pb and Zn had relatively higher loads in Source 2,
whose contributions were 47% and 21%, respectively. Whereas for Zn, the contribution of
Source 6 was higher than that of Source 2. Hence, the characteristic element of Source 2
is Pb. Source 3 had relatively higher loads of Cu and Zn. The contribution of Source 3 to
Cu is 29%, which was lower than that of Source 6 (39%). The contribution of Source 3 to
Zn is 18%, which was lower than that of Source 6 (29%) and Source 2 (21%). Hence, the
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characteristic elements of Source 3 were considered to be Cu and Zn. The load of Cd in
Source 4 was much higher than that of other potential toxic elements, and the contribution
of Source 4 to Cd was the largest, reaching up to 56%. Hence, Cd was mainly affected by
Source 5. In addition to Hg and Cd, all other potential toxic elements had certain loads in
Source 5. The contribution of Source 5 to As was 52%, which obviously exceeded that of
Source 1 (20%) and Source 6 (22%). Hence, the characteristic element of Source 5 was As.
Similar to Source 1, all eight potential toxic elements had loads in Source 6, particularly Cr
and Ni. The contributions of Source 6 to Cr and Ni were 61% and 76%, respectively, which
were the highest among all sources. Hence, Source 6 was regarded as the main source of Cr
and Ni.

Source 1 had a predominate load of Hg. The high-source contribution area of Source 1
was distributed in contiguous urban areas, and scattered across northern and southern sides
and the southeast coastal dot area (Figure 7a). Source 1 was mainly affected by industrial
discharge (wastewaters, exhaust gas and waste residue) caused by enterprises or factories,
which was similar to the results based on the PMF model. Conversely, the contribution of
Source 1 to Pb was lower, based on the UNMIX model, making the component of Source 1
simpler. Therefore, Source 1 was a single source of industrial discharge.
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Source 2 was characterized by high loadings of Pb. The CV of the measured concentra-
tions of Pb was 37.22%, suggesting limited human disturbance. The source contributions in
the southwest of the study region was higher than that in the eastern coastal area (Figure 7b),
which was similar to the spatial distribution of soil pH, namely higher soil pH in the coastal
area but continuously reduced soil pH in the western area close to inlands. Pb in acidic
soils dissolves continuously with the increasing of soil acidity [49], indicating that lower
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soil pH contributes to higher Pb content in soil. Therefore, Source 2 was a single source of
nature affected by soil pH and soil formation process.

Source 3 was heavily loaded with Cu and Zn. There were many dot areas with high
source contributions in the study region especially the northern part (Figure 7c). And a
significant positive correlation also showed between Cu and Zn (Table 2). Electroplate
wastewater can bring about excessive Cu and Zn in agricultural soils through irrigation [50].
The accumulation of Cu and Zn are also closely related to the harmful discharge of mechan-
ical and electronic enterprises in the study region. Therefore, Source 3 was a single source
of industrial discharge.

The characteristic element of Source 4 was Cd, whose spatial distribution of source con-
tribution was almost the same as that obtained based on the PMF model. Therefore, Source
4 was still considered as the single source of traffic emissions generated by automobile
exhausts and wear of automobile parts.

As accounted for, the highest load was in Source 5. The source contributions of As
were higher in coastal areas but lower in inland areas. Therefore, similar to the results
based on PMF model, Source 5 was a single source of nature affected mainly by soil parent
material.

The characteristic elements of Source 6 were Cr and Ni, and were consistent with
Factor 5 based on the PMF model. Therefore, Source 6 was a composite source consisting
of soil parent material derived from nature and industrial discharge caused by human
activities.

4. Discussion
4.1. Comparison of the PMF Model and the Unmix Model
4.1.1. Model Evaluation

To evaluate the applicability of the PMF and Unmix models, the regression coefficient
and residual were used to estimate the fitting goodness of the model (Table 6). For the
regression coefficient, the closer the r2 and slope are to 1 and the intercept is to 0, the better
the fitting effect is. For the residual, the closer the mean is to 0 and the smaller the range is,
the better the fitting effect is.

Table 6. Goodness of fit of the PMF model and the UNMIX model.

Goodness of Fit Model Parameter As Hg Cr Cd Pb Cu Zn Ni

Regression
coefficient

PMF
r2 0.913 0.399 0.883 0.970 0.982 0.948 0.981 0.931

Slope 0.993 0.085 0.842 0.015 2.557 5.089 9.698 3.913
Intercept 0.845 0.067 0.980 0.923 0.938 0.846 0.910 0.858

UNMIX
r2 0.998 0.999 0.925 1.000 0.960 0.949 0.841 0.972

Slope 1.000 1.002 0.982 0.998 0.973 0.977 1.068 1.018
Intercept −0.001 −0.001 0.004 0.000 0.003 0.002 −0.009 −0.005

Residual

PMF
Mean 0.000 0.090 0.012 −0.001 0.001 0.001 0.001 0.000
Min −0.063 −0.666 −2.187 −0.027 −0.325 −0.396 −0.440 −0.536
Max 0.247 0.336 1.857 0.097 1.178 1.081 1.154 1.096

UNMIX
Mean 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.003
Min −0.011 −0.050 −0.452 −0.010 −0.107 −0.122 −0.365 −0.133
Max 0.037 0.030 0.294 0.017 0.225 0.218 0.218 0.202

The fitting effect of Hg in the UNMIX model (r2 = 0.999) was better than the PMF
model (r2 = 0.399), which might be related to the large quantities of polluted samples, high
variation coefficient and great fluctuation of original Hg samples. Although Hg pollution
was mainly caused by industrial discharge, the specific sources were probably more diverse
and complex, which needs further exploration in future works. The fitting effects of Pb,
Cd and Zn in the PMF model were satisfactory, with r2 all exceeding 0.97. It is generally
considered that the fitting goodness of model being over 0.8 is relatively high. Although the
r2 of Cr was slightly lower than other potential toxic elements (0.8834), the fitting goodness
was satisfactory. Similarly, although the r2 of Zn was 0.8406 in the UNMIX model, the
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fitting goodness was satisfactory. The r2 of other potential toxic elements (i.e., Cd, As and
Ni) were even all greater than 0.97. In addition, the residuals of the two models ranged
from −3 to +3. Moreover, the range of the UNMIX model appeared smaller, falling between
−1 and +1, which indicated that the fitting effect of the UNMIX model was better to some
extent.

4.1.2. Source Components and Contributions

Both the PMF model and the Unmix model identified six sources that could be cate-
gorized into anthropogenic and natural sources (Table 7). The former included industrial
discharge, traffic emissions and agricultural inputs, and the latter included soil parent
material and soil formation processes. Although composite sources existed in source appor-
tionment based on both models, the source components composition was not completely
consistent. Overall, industrial discharge was the main source heavy metal pollution in the
study region, and the influence of anthropogenic sources on the study region was more
significant than that of natural sources.

Table 7. Source components and contributions based on the PMF model and the Unmix model.

Model Components Identification Contributions

PMF

Factor 1 Composite source of soil parent material and agricultural inputs 12.50%
Factor 2 Single source of traffic emissions 13.10%
Factor 3 Composite source of industrial discharge and traffic emissions 22.69%
Factor 4 Single source of agricultural inputs 16.48%
Factor 5 Composite source of nature and industry 21.30%
Factor 6 Composite source of nature, industrial discharge and traffic emissions 13.93%

Unmix

Source 1 Industrial discharge source 30.39%
Source 2 Natural source of soil pH and soil formation forming process 10.94%
Source 3 Industrial discharge source 5.99%
Source 4 Traffic emissions source 7.47%
Source 5 Natural source of soil parent material 10.52%

Source 6 Natural source of soil parent material and industrial discharge source
of human activities 34.70%

The most polluted potential toxic elements, Hg and Cd, had a consistent pollution
source in two models. Hg pollution was mainly caused by three industrial wastes of
enterprises or factories. Cd pollution was related to traffic emissions such as automobile
exhausts, wear and settlement of automobile parts. Both of the models showed that the
pollution source of As was mainly soil parent material. However, the PMF model also
apportioned the pollution source of inappropriate agricultural inputs. Due to the high
fitting goodness of As in the PMF model (r2 = 0.9128), as well as the existence of a few
slightly polluted samples in the study region, it was necessary to consider the input of
fertilizers and pesticides as the source of As pollution. The difference between the source
apportionment results of Cr and Ni was whether they were affected by soil parent material
source, except for industrial sources. Since the UNMIX model had a higher goodness of
fit for Cr and Ni, as well as their CV reached moderate and severe variations respectively,
Cr and Ni pollution were more subject to human interference. Therefore, the pollution
source apportioned by the UNMIX model was more reasonable, namely a single source of
industrial discharge. In terms of Cu and Zn, they had their own pollution source in the PMF
model, but they were characteristic elements of Source 3. These two potential toxic elements
showed an extremely significant positive correlation at the 0.01 level, indicating that they
were very likely to have similar or even the same sources. According to the goodness of fit
for Cu and Zn, the PMF model appeared better. Thus, the pollution source apportioned
by the PMF model was more referential, namely composite sources of soil parent material,
industrial discharge and traffic emissions. The source contribution of Pb distributed
variously based on the PMF model and the UNMIX model, whose main difference was
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whether high contributions aggregated in urban areas. Pb had a high ecological risk in the
central urban area, which might attribute to the high-density enterprise distribution there.
Therefore, Pb pollution was closely related to not only natural sources (e.g., soil pH) but
also industrial sources (e.g., industrial wastes discharge).

4.2. Comparison on Source Apportionment Studies

Nature, agricultural inputs, industrial discharge and traffic emissions are common
pollution sources of potential toxic elements in soil. Since the Yangtze River Delta of China
is a typical industrial region that has been plagued by heavy metal pollution for a long
time, many researchers were fond of conducting source apportionment studies there. In the
same case study area, Shao et al. applied the principal component analysis (PCA) and the
finite mixture distribution model (FMDM) to identify and apportion the pollution sources
of seven soil potential toxic elements (i.e., Cr, Cd, Hg, Cu, Zn, Ni and As) [51]. It was found
that Cr, As and Ni were primarily from natural source of soil parent material; Cd, Cu and
Zn were primarily from composite sources (e.g., traffic pollutants, household garbage and
agricultural inputs); and Hg was primarily from industrial discharge. Although this study
identified three sources, that comprised half of our study, both studies proved that the
industrial source was main pollution source of soil potential toxic elements. Jia et al. further
explored the different effects of polluting enterprise types on Cd and Hg, which were the
most polluted potential toxic elements and were significantly affected by human activities
in the Yangtze River Delta of China [2]. This study divided enterprises into four categories,
i.e., textile industry, chemical industry, metalwork industry and other industry. It was
revealed that different industry classes leading to soil pollution varied from both areas
and in potential toxic element types. Soil Cd pollution was chiefly affected by excessive
fertilization and coal mining, and the metalwork industry was the most seriously Cd-
polluted industry, whereas Hg pollution in soil was closely related to enterprise pollution,
on which the chemical industry had the most influence.

5. Conclusions

As an economically developed area, the eastern coast of China is highly industrialized
and urbanized. However, widespread soil pollution has become more and more serious in
eastern industrial cities. In this study, an industrialized city on the eastern coast of China
was taken as the study region, and the PMF and Unmix models were adopted to explore
the source identification and apportionment of potential toxic elements in soil. The results
showed that anthropogenic sources exerted a more significant impact on soil heavy metal
pollution than natural sources. Traffic exhausts and automobile wear, industrial wastes
discharge and excessive fertilizer and pesticide inputs were main sources of anthropogenic
sources. Soil parent material and soil formation process were typical natural sources. In
the study region, the enrichment of As in soil was subjected to soil parent material, part of
which was also affected by inappropriate agricultural inputs. The pollution of Hg and Ni
as well as the enrichment of Cr in soil were mainly caused by industrial discharge from
enterprises and factories. The Cd pollution in soil was related to traffic emissions, such
as automobile exhausts and wear and settlement of automobile parts. The sources of Pb
pollution in soil were related to not only natural sources (e.g., soil pH) but also industrial
sources (e.g., industrial wastes discharge).
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