
Citation: Lou, T.; Ma, J.; Liu, Y.; Yu,

L.; Guo, Z.; He, Y. A Heterogeneity

Study of Carbon Emissions Driving

Factors in Beijing-Tianjin-Hebei

Region, China, Based on PGTWR

Model. Int. J. Environ. Res. Public

Health 2022, 19, 6644. https://

doi.org/10.3390/ijerph19116644

Academic Editors: Kevin W. Li,

Xuemei Li and Zhi Liu

Received: 16 April 2022

Accepted: 27 May 2022

Published: 29 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

A Heterogeneity Study of Carbon Emissions Driving Factors in
Beijing-Tianjin-Hebei Region, China, Based on PGTWR Model
Ting Lou 1,2, Jianhui Ma 1,2,3,*, Yu Liu 1,2, Lei Yu 1,2, Zhaopeng Guo 1,2 and Yan He 1,2

1 School of Economics, Hebei University, Baoding 071002, China; louting15103313558@126.com (T.L.);
liuyu13910108397@163.com (Y.L.); 18734829093@163.com (L.Y.); guozp_student@126.com (Z.G.);
heyan17366522806@163.com (Y.H.)

2 Research Center of Resources Utilization and Environmental Conservation, Hebei University,
Baoding 071002, China

3 School of Management and Economics, Tianjin University, Tianjin 300072, China
* Correspondence: jianhuima@hbu.edu.cn; Tel.: +86-13933897627

Abstract: The Beijing–Tianjin–Hebei region is an important economic growth pole in China and
achieving carbon emission reduction in the region is of great practical significance. Studying the
heterogeneity of the influencing factors of carbon emission in this region contributes to formulating
targeted regional carbon emission reduction policies. Therefore, this paper adopted thirteen cities
as individuals of cross-section and conducted spatial and temporal heterogeneity analysis of the
influencing factors of converted carbon emissions in the region with panel data from 2013 to 2018
based on the PGTWR model. From a space-time perspective, the regression coefficient of each
influencing factor in this region has obvious heterogeneity, which is mainly reflected in the time
dimension. In the study period, the impact of industrial structure, the level of urbanization, energy
intensity, and the level of economic growth on carbon emission showed a decline curve, while the
impact of the level of opening up and the size of population was on the rise, indicating that more
attention should be paid to the latter two factors for the time to come. In terms of space, the differences
in the influence of industrial structure and energy intensity on carbon emission vary significantly.

Keywords: carbon emission; Beijing–Tianjin–Hebei region; PGTWR model; heterogeneity; driving
factors; city; econometrics

1. Introduction

Global warming has become a serious concern to all countries in the world. Special
Report on Global Warming of 1.5 ◦C, issued on IPCC, pointed out that the space of global
carbon emission has been very limited and that it is quite urgent to cope with climate
change and achieve the goal of the temperature control of 1.5 ◦C or 2 ◦C [1]. Emissions
Gap Report 2020, issued on UNEP, indicated that as the largest carbon emitter, China’s
greenhouse gas emissions accounted for 26.7% of the global total in 2019. Hence, great
emphasis should be laid on carbon emission reduction. On 22 September 2020, President
Xi Jinping stated for the first time that China will “strive to achieve carbon peaking by 2030
and carbon neutrality by 2060”.

As a significant economic growth pole in northern China and a region with a high con-
centration of high-carbon-emission industries represented by the steel and petrochemical
industry, the Beijing–Tianjin–Hebei metropolitan Economic Circle withstands enormous
pressure of the regional carbon emission reduction. Xi stressed that the cooperative de-
velopment of the Beijing–Tianjin–Hebei region, which serves as a major national strategy
of China, should persist in mutual benefit and solid advancement while accelerating in
finding a scientific and sustainable path of coordinated development. Carbon emission and
economic development are a complex and comprehensive system. Regional coordinated
development should not only realize coordinated economic development, but also consider
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ecological environment and attain regional carbon emission reduction. The influencing
factors of carbon emissions usually possess geographical-temporal heterogeneity [2–5].
Geographically, there are differences in economic development, industrial structure, and
other factors among regions. Temporally, there are also inevitably differences in the degree
of development of regions in the past and at present. Therefore, when we investigate carbon
emissions driving factors, its temporal and spatial heterogeneity should be fully considered
to obtain a more accurate result. Heterogeneity studies on influencing factors of carbon
emissions in China are mainly focused on eastern developed regions such as Shanghai and
Zhejiang, and little attention is paid to the Beijing–Tianjin–Hebei region. Hence, in-depth
exploration of driving factors of carbon emissions in the Beijing–Tianjin–Hebei region from
the perspective of the spatial and temporal heterogeneity, accurate identification of the
direction and degree of influence of each driving factor on carbon emissions in different
times and space, and provision of carbon emission targeted strategies of differentiation and
inter-district joint governance is of great realistic significance to the realization of the goals
of carbon peaking and carbon emission reduction at a regional and national scale.

At present, domestic and foreign scholars’ research on the influencing factors of
carbon emissions was carried out based on four types of quantitative methods. The first
is based on the factor decomposition method [6–8]. The second type is the STIRPAT
model-based research [9,10]. Most of the above research are the global econometric models
based on time series data without considering the spatial effect among variables, namely
geographic dependence and geographic heterogeneity. From the perspective of the former,
scholars have carried out the third category of studies, which adds spatial lag variables
or lag error terms into the model. The models adopted mainly encompass the spatial
error model (SEM), spatial lag model (SLM), and spatial Durbin model (SDM) [11,12],
which still fall into global econometric models. The fourth type of research, from the
perspective of the heterogeneity, uses the Geographically Weighted Regression (GWR)
model, Geographically and Temporally Weighted Regression (GTWR) model, and Panel
Geographically and Temporally Weighted Regression (PGTWR) model to describe the
differences of the influence coefficients of these driving factors in different time and space,
thus reflecting the reality more scientifically, realistically and accurately [2,3]. The research
in this paper also belongs to the fourth category in which more detailed literature review
is conducted.

The earliest model which was used to analyze the spatial heterogeneity of variable
relations is GWR model. Brunsdon et al. and Pavlov [13,14] initially analyzed the influence
of spatial heterogeneity of various factors on housing price and most of the current GWR
model-based applications also fall into the same category [15,16]. In addition, GWR model
is widely used in the following research including regional economic development [17–19],
spatial difference of Income Distribution and Influence Factors [20,21], spatial pattern
of regional innovation [22,23], urban economy and ecology [24,25], ecological environ-
ment [26,27], and spatial heterogeneity of carbon emissions [27,28]. The disadvantage of
the GWR model is that it is only applicable to large-sample cross-sectional data and can
only analyze geographic heterogeneity and fail to reflect temporal heterogeneity of variable
relationships. In view of the defects of GWR, Huang et al. [29] extended GWR model to
GTWR model by embedding the time factor into the spatial weight matrix, which is based
on the Gaussian kernel function and Euclidean distance while comparing the regression
results of Temporally Weighted Regression (TWR) model. Thus, the conclusion that GTWR
was better was drawn.

After that, GTWR has been widely used in research on temporal and spatial hetero-
geneity, e.g., influencing factors of housing price [29,30], influencing factors of provincial
economic development [31], temporal and spatial characteristics of hydrology [32,33],
atmospheric pollutant emission driving factors [34–36], and driving forces of urban ex-
pansion [37]. Some scholars analyzed the temporal and spatial heterogeneity of different
influencing factors of carbon emissions by means of the GTWR model [2,3]. However, the
GTWR model only did a cross-section processing of panel data, which does not meet the
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need for local analysis and modelling of panel data. Meanwhile, these models also ignore
the indirect path of the mapping process from the information of the sample region to the
target analysis region and also ignore the temporal transfer and conducting effect of the
spatial spillover effect of the sample region.

Given the defects of the GTWR model, Fan and Guo [38] proposed the holographic
mapping-based approach, which structures the unified framework and analytical paradigm
of the panel geographic-temporal weighted regression model applicable to the local analysis
of panel data space. The model not only reflects the characteristics of the panel data model,
but also comprehensively analyzes the direct path and indirect path of influence between
local points in space. Thus, the GTWR model is fundamentally improved by including
optimal spatial bandwidth and optimal temporal bandwidth into the effective nearest
neighbor local points, which analyzes regularity and heterogeneity of spatial dependence
of local points more accurately.

The paper starts off studying the gap and focuses on using the PGTWR model to ana-
lyze the temporal and spatial heterogeneity of the influencing factors of carbon emissions
in the Beijing–Tianjin–Hebei region. The objective of our research is to propose targeted
policy recommendations for low-carbon transformation development and attainment of
carbon neutrality in this region.

The paper mainly answers the following research questions:

i. Which of the eight model estimation results of the PGWTR model reflects superior
overall statistics properties?

ii. Degree and characteristics of spatial and temporal heterogeneity of carbon emissions
in the Beijing–Tianjin–Hebei region

iii. How do governments at all levels in the region formulate carbon emission reduction
policies?

The structure of the paper is as follows: The second chapter is an introduction of the
process of model construction and data source. The third one is about the model numerical
results and analysis of the spatial and temporal heterogeneity. The fourth one is conclusions
and policy recommendations.

2. Materials and Methods
2.1. PGTWR Model

This article adopted the PGTWR model proposed by Fan and Guo [38] as benchmark
model. It is a local linear regression model based on the concept of holographic mapping,
which reflects the characteristics of panel data model and can simultaneously consider the
all-round and spatially-temporally dimensional effect of neighboring and local points on
the target analysis region. An overview of the PGTWR model is showed below (Figure 1).
Its basic model is displayed in Equation (1):

y{i,t} = β0(i, t) + β1(i, t)X1,{i,t} + β2(i, t)X2,{i,t} + · · ·+ βk(i, t)Xk,{i,t} + µ{i,t} (1)

y denotes the explained variable, X represents the explanatory variable, β denotes the
regression coefficient, i denotes individuals of cross-section, t denotes time, and µ denotes
stochastic disturbance term to satisfy the classical assumption.

The modeling steps are as follows:
1. Select samples, arrange the data according to certain rules, thus forming the matrix

of variable explained and of explanatory variable.
2. Based on the location information of the sample region’s time–space dimension and

by means of the kernel function, the paper converted the information of the sample region’s
temporal and spatial location to spatial effect level which finally serves as the element of
the temporal and spatial weighted matrix. As shown in Equation (2):

STW{∈l} = STWl,direct +
[
STWl,spilloverdiag(STWl,direct)

]
. ∗ INum{∈l} (2)
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STWl,direct is spatial and temporal weighted matrix of direct impact of sample area on
target area.

Int. J. Environ. Res. Public Health 2022, 19, 6644 5 of 19 
 

 

(3) The bandwidth ℎ𝑑 𝑎𝑛𝑑 ℎ𝑙  are adjusted and the adjusted adaptive space band-

width is finally obtained, which is shown in Equation (9). 

ℎ = 𝑀𝑎𝑥(𝑑{∈𝑙}→𝑙 , 𝑑𝑛𝑜→𝑛𝑑
)/√−

1

𝑛
𝑙𝑛 (𝑠𝑒𝑣𝑐) (9) 

In Equation (9), the empirical constant 𝑛 is 0.5, and the critical value of spatial effect 

is 0.05. 

3. Based on the spatial and temporal weighted matrix and multiplication criterion, 

the data information of the sample region is mapped to the target analysis region so as to 

analyze the data information of the region, that is: 𝑦𝑙 → 𝑆𝑇𝑊{∈𝑙}𝑦{∈𝑙}, 𝑋𝑙 → 𝑆𝑇𝑊{∈𝑙}𝑋{∈𝑙}. 

4. Finally, in combination with the Ordinary Least Square, the paper completed the 

parameter estimation process. 

 

Figure 1. An overview of the PGTWR model. 

2.2. Construction of the Empirical Model 

Based on modeling theory of STIRPAT model established by Dietz and Rosa [39], this 

paper expanded the STIRPAT model and conducted an empirical study by consulting the 

reference literature.  
The full name of STIRPAT is Stochastic Impacts by Regression on Population, Afflu-

ence, and Technology, and it was used to analyze the influence of the three independent 

variables of population, affluence, and technology on the dependent variable of environ-

mental stress. Its basic model is demonstrated in Equation (10). When building the econ-

ometric model, the paper transformed the models by using the logarithms of both sides 

of the Equation (10), as shown in Equation (11): 

𝐼𝑖 = 𝑎 ∗ 𝑝𝑖
𝑏 ∗ 𝐴𝑖

𝑐 ∗ 𝑇𝑖
𝑑 ∗ 𝑒𝑖 (10) 

𝐿𝑛𝐼𝑖 = 𝑎 + 𝑏(𝑙𝑛𝑝𝑖) + 𝑐(𝑙𝑛𝐴𝑖) + 𝑑(𝑙𝑛𝐴𝑖) + 𝑒𝑖 (11) 

Equation (10) is the basic form of STIRPAT model in which 𝐼  stands for variable of 

environmental stress, 𝑝 is variable of population, 𝐴 is variable of affluence, 𝑇 is variable 

of technology, 𝑖 is individual of cross-section, 𝑎 is a constant term, 𝑏, 𝑐, 𝑑 represent, re-

spectively, the coefficient of the three variables of population, affluence, technology, 𝑒 is 

stochastic disturbance which meets the classic assumption. 

This paper used carbon emission to represent the variable of environmental stress, 

and the original variables b, c, d are defined as population, economic development level, 

and energy intensity. From the perspective of the studies on influencing factors of carbon 

emissions, most scholars believe that population size, industrial structure, and foreign 

Figure 1. An overview of the PGTWR model.[
STWl,spilloverdiag(STWl,direct)

]
. ∗ INum{∈l} is spatial and temporal weighted matrix

of indirect impact of sample area on target area. Among them, STWl,spillover is spatial
and temporal weighted matrix of spillover effects of time and space in the sample area;
diag (STWl,direct) is the new vector formed by extracting the main diagonal elements from
the matrix in brackets; INum{∈l} is the phase identity matrix of Num{∈l}, the symbol.
∗ denotes the dot product between matrix.

(1) The calculating method of indirect effect of spatial and temporal weighted matrix
is shown in Equations (3)–(6)

STWl,spillover = TWl,spillover ⊗ SWl,spillover (3)

In Equation (3), TWl,spillover, SWl,spillover are the initial spatial and temporal weight
matrices of the spatial spillover effect relationship between two sample areas after stan-
dardization, the values of the matrix elements are from Equations (4) and (6), respectively,
⊗ is the Kronecker product.

swl,spillover =

{
f
(
dno→nd , hd

)
, no 6= nd

0, no = nd
(4)

f (.) = exp[−1
2
× (

dij

h

2

)] (5)

In Equation (4), swl,spillover is the element value of the initial spatial weight matrix of
the sample region and the spatial weight matrix is formed after standardized processing
to represent the spatial distance between the starting region no and the destination region
nd; hd represents the adaptive space bandwidth corresponding to the destination region
nd; in Equation (5), f (.) is the kernel function.

twl,spillover

{
MItd
MIto

, td − to

0, td − to < 0
(6)

In Equation (6), twl,spillover is the element value of the initial time weight matrix of the
sample region and it is formed to TWl,spillover after a standardized processing, td, to repre-
sent the period numbers corresponding to the starting and destination regions, respectively,
MItd , MIto represent the global Moran’s I calculated on the basis of all the region cross
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sections with the period numbers corresponding to the starting region and the destination
region, respectively.

(2) The calculation of spatial and temporal weighted matrix of direct impact is shown
in Equations (7) and (8).

STWl,direct = {diag(TWl,spillover). ∗ IT{∈l}} ⊗ SWl,direct (7)

In Equation (7), STWl,direct is the spatial weight matrix of sample region’s direct spatial
effect on target region, and the value of matrix element comes from Equation (8);

swl,direct = f (dn{∈l}→l,hl) (8)

In Equation (8), hl is the adaptive spatial bandwidth corresponding to target region
l; dn{∈l}→l is the spatial distance between the area cross section n{∈ l} and target region l.
The kernel f (.) is shown in Equation (5).

(3) The bandwidth hd and hl are adjusted and the adjusted adaptive space bandwidth
is finally obtained, which is shown in Equation (9).

h = Max(d{∈l}→l , dno→nd)/

√
− 1

n
ln(sevc) (9)

In Equation (9), the empirical constant n is 0.5, and the critical value of spatial effect
is 0.05.

3. Based on the spatial and temporal weighted matrix and multiplication criterion, the
data information of the sample region is mapped to the target analysis region so as to ana-
lyze the data information of the region, that is: yl → STW{∈l}y{∈l}, Xl → STW{∈l}X{∈l} .

4. Finally, in combination with the Ordinary Least Square, the paper completed the
parameter estimation process.

2.2. Construction of the Empirical Model

Based on modeling theory of STIRPAT model established by Dietz and Rosa [39], this
paper expanded the STIRPAT model and conducted an empirical study by consulting the
reference literature.

The full name of STIRPAT is Stochastic Impacts by Regression on Population, Afflu-
ence, and Technology, and it was used to analyze the influence of the three independent
variables of population, affluence, and technology on the dependent variable of envi-
ronmental stress. Its basic model is demonstrated in Equation (10). When building the
econometric model, the paper transformed the models by using the logarithms of both
sides of the Equation (10), as shown in Equation (11):

Ii = a ∗ pb
i ∗ Ac

i ∗ Td
i ∗ ei (10)

LnIi = a + b(lnpi) + c(lnAi) + d(lnAi) + ei (11)

Equation (10) is the basic form of STIRPAT model in which I stands for variable of
environmental stress, p is variable of population, A is variable of affluence, T is variable of
technology, i is individual of cross-section, a is a constant term, b, c, d represent, respectively,
the coefficient of the three variables of population, affluence, technology, e is stochastic
disturbance which meets the classic assumption.

This paper used carbon emission to represent the variable of environmental stress,
and the original variables b, c, d are defined as population, economic development level,
and energy intensity. From the perspective of the studies on influencing factors of carbon
emissions, most scholars believe that population size, industrial structure, and foreign trade
are important influencing factors of carbon emissions [40,41], so the above three factors are
introduced into the model.
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According to Equations (1) and (11), the empirical model of this paper is constructed
in Equation (12)

lnc{i,t} = lnβ0(i, t) + β1(i, t)lnX1,{i,t} + β2(i, t)lnX2,{i,t} + β3(i, t)lnX3,{i,t}
+β4(i, t)lnX4,{i,t} + β5(i, t)lnX5,{i,t} + β6(i, t)lnX6,{i,t} + µ{i,t}

(12)

In Equation (12), C stands for the total amount of regional carbon emissions, X1,
X2, X3, X4, X5, and X6 are industrial structure, land area of urban construction, energy
intensity, per capita GDP, population size, and foreign investment utilized, respectively.
Definition and sources of relevant variables are shown in Table 1. Definition and sources of
relevant variables.

Table 1. Definition and sources of relevant variables.

Variable Variable Meaning Unit Data Source

Carbon emissions CO2 emissions from fossil fuels 10,000 ton See Section 2.3

Industrial structure Proportion of output value of
secondary industry % Local Statistical Yearbook

Urbanization level Land area of urban construction Square kilometers China City Statistical Yearbook

Energy intensity Energy consumption per unit
of GDP Tons of standard/100 million yuan Local Statistical Yearbook

Level of economic development GDP One hundred million yuan Chinese Statistical yearbook

Population size Population of permanent
residents Ten thousand people Local Statistical Yearbook

Opening up Amount of foreign investment
actually utilized Thousands of dollars Local Statistical Yearbook

2.3. Methods of Carbon Accounting

The level of carbon emission in a region can be generally typified by the carbon
emission generated by the combustion of fossil energy [42]. Based on the guidance of
IPCC [43], the paper calculated the carbon emissions in Beijing and Tianjin by using the
coefficient of carbon emission [44]. As is shown in Equations (13) and (14).

Qco2 =
10

∑
i=1

Ki·Ei (13)

Ki = NCVi × CEFi × COFi ×
44
12

(14)

Among them, Ei is the energy consumption of energy type i, which can be converted
into standard coal according to some criterion. The coefficient Ki represents the specific net
calorific value of energy type i. CEF is the content of carbon of each fossil fuel per calorific
value and COF stands for carbon oxidation rate of each fossil fuel. The reference coefficient
by which various energy is converted into standard coal and the emission coefficient of
CO2 is shown in Table 2. Among them, the average low calorific value and conversion
coefficient of standard coal are mainly derived from The General Rules for Calculation
of Comprehensive Energy Consumption (GB/2589-2008); the content of carbon of each
fossil fuel per calorific value and carbon oxidation rate are derived from The Preparation
Guide for Provincial Greenhouse Gas List (Office of NDRC: Climate Volume 1041, 2011).
Considering that most parts of China use coal-generated power and a few areas are based
on hydropower, natural gas power, and wind power, and that CO2 generated by such clean
energy as hydropower, wind power, and natural gas power can be omitted, the specific net
calorific value consumed by electricity [45], specific net calorific value, carbon content per
calorific value, and carbon oxidation rate consumed by electricity are therefore believed to
be the same as those consumed by coal.

Due to incomplete disclosure of energy consumption data of prefecture-level cities
in Hebei Province, the above method cannot be used for carbon conversion. The paper
borrowed Li ’s and Yang’s [46,47] principles of calculating the total amount of urban
energy consumption (as is seen in Equations (15) and (16)), namely, the proportion of
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consumption of each energy in the total energy consumption of cities is the same as that of
provinces. Assuming that the proportion of carbon emission from each energy consumption
in carbon emission from the total of city is the same as that of the provincial level, the
paper used Equations (16)–(18) to calculate the total carbon emission of each city. The
specific calculation steps are as follows: Step 1: calculate the carbon emission of provincial
energy type i (Equation (15)) Step 2: calculate the conversion coefficient of provincial
carbon emission (Equation (16)) and take it as the conversion coefficient of municipal
carbon emission (Equation (17)) Step 3: calculate the total carbon emission of each city
(Equation (18)).

Qco2i = Ki·Ei (15)

CEEIit =
PEit + PGit + PLit

COit + CKit + PEit + PGit + PLit + PTit + KRit + DSit + FOit + CQit
(16)

CEEIit = CEEKit (17)

COEit =
CEit + CGit + CLit

CEEKit
(18)

In the equation, i is city, t is year, Qco2i represents the carbon emission from energy
consumption of energy i, CEEKit stands for conversion coefficient of carbon emission of
Province i, COEit stands for the total carbon emission of city i, COit is coal consumption
of Province i, CKit is coke consumption of Province i, PTit is petroleum consumption of
Province i, KRit is kerosene consumption of Province i, DSit for diesel consumption of
Province i, FOit is fuel oil consumption of Province i, CQit is crude oil consumption of
Province i, CEit is consumption of electricity of city i, CGit for consumption of natural gas
of city i, CLit is consumption of liquefied petroleum gas of city i. Energy carbon emissions
of each province are from China’s Energy Yearbook, and energy carbon emissions of each
city are from China City Statistical Yearbook. An overview of Materials and Methods is
shown below (Figure 2).

Figure 2. An overview of Materials and Methods.

Table 2. Calculation of CO2 emission coefficient.

Energy Average Low
Emission

Standard Coal
Coefficient

Carbon Content Per
Calorific Value

Carbon
Oxidation Rate

CO2 Emission
Coefficient

Coke 28,435 KJ/kg 0.7143 kgce/kg 26.37 tons of carbon/TJ 0.93% 1.9003 kg-CO2/kg
Natural gas of oil field 38.931 kg/m3 1.3300 kgce/m3 15.3 tons of carbon/TJ 0.99% 2.1622 kg-CO2/m3

Raw coal 20,908 KJ/kg 0.7143 kgce/kg 26.37 tons of carbon/TJ 0.94% 1.9003 kg-CO2/kg
Crude oil 41,816 KJ/kg 1.4286 kgce/kg 20.1 tons of carbon/TJ 0.98% 3.0202 kg-CO2/kg
Fuel oil 41,816 KJ/kg 1.4286 kgce/kg 21.1 tons of carbon/TJ 0.98% 3.1705 kg-CO2/kg

petroleum 43,070 KJ/kg 1.4714 kgce/kg 18.9 tons of carbon /TJ 0.98% 2.9251 kg-CO2/kg
kerosene 43,070 KJ/kg 1.4714 kgce/kg 19.5 tons of carbon/TJ 0.98% 3.0179 kg-CO2/kg

diesel 42,652 KJ/kg 1.4571 kgce/kg 20.2 tons of carbon/TJ 0.98% 3.0959 kg-CO2/kg
Liquefied petroleum gas 50,179 KJ/kg 1.7143 kgce/kg 17.2 tons of carbon/TJ 0.98% 3.1013 kg-CO2/kg



Int. J. Environ. Res. Public Health 2022, 19, 6644 8 of 18

3. Results
3.1. PGTWR Estimation of Results

By using the standardized program complied in MATLABR 2020a by Fan and Guo [38],
the paper estimated the regression equation of Equation (6), and the optimal spatial and
temporal bandwidths based on AICc criteria were 13 and 6, respectively, which means that
carbon emissions of a city in the Beijing–Tianjin–Hebei region are affected by the spatial
influence from other 13 cities and the temporal influence of carbon emissions values of
6 years. The optimal spatial and temporal bandwidths based on the GCV criterion and RSS
criterion are 7 and 6, respectively, which means that the spatial influence from the other
seven cities and the temporal influence of the carbon emission values of 6 years have had
an influence on the carbon emissions of one city in the Beijing–Tianjin–Hebei region. Since
the selection result of optimal bandwidth based on the GCV criterion is basically equivalent
in value to optimal bandwidth based on the CV criterion, the optimization of optimal
spatial or temporal bandwidth based on CV criterion is not considered in this paper. The
inconsistent optimal spatial and temporal bandwidths derived from AICc, GCC, and RSS
criteria led to two different panel data which are produced by the effective neighboring
local points included in the two optimal bandwidth dimensions. Consequently, based
on the two optimal spatial and temporal bandwidths, respectively, this paper conducted
an estimation on the PGTWR model, including the mixing effect, individual fixed effect,
period fixed effect, and individual–period fixed effect. The result is shown in Table 3

Table 3. Overall statistical properties of the example model under the two bandwidth dimensions
and four kinds of effects.

AICc Criterion
(Optimal Spatial Bandwidth = 13, Optimal Temporal

Bandwidth = 6)

GCV\RSS Criterion
(Optimal Spatial Bandwidth = 7, Optimal Temporal

Bandwidth = 6)

Mixing
Effect

Individual
Fixed Effect

Period Fixed
Effect

Individual–
Period Fixed

Effect
Mixing
Effect

Individual
Fixed Effect

Period Fixed
Effect

Individual–
Period Fixed

Effect

significance ratio of the
estimate of local

coefficient
0.8919 0.3397 0.9679 0.4423 0.6703 0.2885 0.6688 0.3376

Sample size 78 78 78 78 78 78 78 78
Degree of freedom 31 32 31 32 15 15 15 15

Estimate of Variance of
stochastic disturbance 13.835 0.538 1.928 16.832 28.157 1.087 2.956 32.830

Value of CV criterion 428.9 17.2 59.8 538.6 422.4 16.3 44.3 492.4
Value of GCV criterion 0.0851 0.0034 0.0119 0.1069 0.0838 0.0032 0.0088 0.0977
Value of AICc criterion 448.1 192.2 291.7 461.2 501.7 245.2 323.5 511.3

Modified
goodness of fit 0.9996 0.9814 0.9952 0.9999 0.9998 0.9319 0.9880 0.9999

F statistical value 48,378 1035 4521 3,822,745 80,040 264 1581 244,461
F probability of

statistics 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Modified critical value
of probability

(α = 0.01, 0.05, 0.1)

0.0169
0.0844
0.1688

0.0171
0.0853
0.1706

0.0202
0.1012
0.2024

0.0185
0.0924
0.1849

0.0149
0.0745
0.1489

0.0159
0.0796
0.1592

0.0178
0.0888
0.1775

0.0166
0.0829
0.1658

logarithmic
likelihood values −213.1 −86.5 −136.3 −220.8 −240.9 −113.9 −152.9 −246.8

Table 3 shows that F statistics estimated in the eight models all passed the hypothesis
test of the significance level of 0.01, the goodness of fit was greater than 90%. Based on
the significance ratio of the estimated value of local coefficient, CV, GCV, AIC, logarithmic
likelihood value, and the estimate of variance of stochastic disturbance, the paper made
a comprehensive evaluation of the result of models with the following judging criteria:
the bigger the significance ratio of the estimate of local coefficient and the logarithmic
likelihood ratio, the better; the smaller CV, GCV, AIC, and the estimate of the variance of
stochastic disturbance, the better.

The significance ratio of the regression coefficients of the individual fixed effect and
the individual–period double fixed effect under the two bandwidths were lower than 50%.
The significance ratio of the regression coefficients of mixed effect and period fixed effect
under bandwidth determined by GCV/RSS criterion is about 65%, and the significance
ratio of the regression coefficients of period fixed effect and mixed effect under bandwidth
determined by AICC criterion is 90%. After making further analysis and comparison of
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the statistical property of model results of the mixed effect and the period fixed effect
under AICC criterion, the paper found (1) that significance ratio of the estimate of local
coefficient of the period fixed effect was 0.9679, higher than 89.19% of the mixed effect,
and (2) that estimated value of variance of stochastic disturbance, value of CV criterion,
value of GCV criterion, and value of AICC criterion of the model as a whole were all lower
than the mixed effect, and (3) that the logarithmic likelihood value is closer to 1 than the
mixed effect. In conclusion, when the optimal spatial and temporal bandwidths were 13
and 6, respectively, the period fixed effect showed superior overall statistical properties.
Table 4 and Figure 3 provide the descriptive statistics of the estimated results of PGTWR
parameters from which we can see there are different degrees of variation in regression
coefficients of each influencing factor of carbon emissions.

Table 4. PGTWR model’s descriptive statistics of regression coefficient of various explanatory
variables.

Variable Minimum Maximum Average Upper
Quartile

Lower
Quartile

Quartile
Range

Standard
Deviation

X1 1.07 1.90 1.51 1.38 1.62 0.23 0.18
X2 0.76 1.12 0.90 0.84 0.94 0.10 0.09
X3 1.65 2.47 1.90 1.78 1.98 0.19 0.16
X4 0.35 0.62 0.50 0.43 0.55 0.12 0.07
X5 −0.81 −0.42 −0.63 −0.71 −0.52 0.19 0.11
X6 0.08 0.15 0.11 0.09 0.13 0.04 0.02
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Figure 3. Box plot of regression coefficient of various explanatory variables of PGTWR model.

3.2. Temporal Heterogeneity Analysis of the Regression Coefficient of Influencing Factors of
Carbon Emission

The paper did box plots of regression coefficient of various influencing factors of
carbon emission in the cities of Beijing–Tianjin–Hebei according to years, respectively
(Figure 4).
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Figure 4. (a) Temporal heterogeneity of PGTWR regression coefficients of industrial structure;
(b) Temporal heterogeneity of PGTWR regression coefficients of urbanization level; (c) Temporal
heterogeneity of PGTWR regression coefficients of energy intensity; (d) Temporal heterogeneity of
PGTWR regression coefficients of level of economic development; (e) Temporal heterogeneity of
PGTWR regression coefficients of population size; (f) Temporal heterogeneity of PGTWR regression
coefficients of opening up.

3.2.1. Temporal Heterogeneity Analysis of the Influence of Industrial Structure on
Carbon Emission

During the period of study, the industrial structure made a forward impact on car-
bon emissions. The degree of influence rose after falling first with a general downward
trend, which is closely related to Beijing–Tianjin–Hebei Region’s efforts in elevating tra-
ditional manufacturing levels, promoting the added value of second industry products,
strictly controlling the capacity of highly energy-consuming and high emission indus-
tries and developing low-carbon industries by means of high technology. The trend also
suggests that the economy of Beijing–Tianjin–Hebei region is moving toward quality devel-
opment. Meanwhile, the dispersion degree of the box plot tends to converge, indicating
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that the difference in economic development between the Beijing–Tianjin–Hebei region is
gradually decreasing.

3.2.2. Temporal Heterogeneity Analysis of the Impact of Urbanization Level on
Carbon Emission

The direct and indirect demand of city life for energy is considered to be a major
contributor to the adverse environmental impact of urbanization [48]. During the period
of study, the influence of urbanization on carbon emissions in the Beijing–Tianjin–Hebei
region decreased annually, mainly because the rise of urbanization rate and the population
agglomeration in cities have promoted scientific and technological progress, facilitated
the transition and upgrades of the industrial structure, and improved industrial efficiency
through sharing, matching, and learning effect. At the same time, it has contributed to
more intensive use of infrastructure, facilitated the agglomeration of economic activities
and production behavior, and improved the efficiency of resources and energy use, thus
effectively reducing the carbon emissions. In terms of policy, in recent years, China has
vigorously implemented a new urbanization development strategy of economy and inten-
siveness, ecological and suitable living, and harmonious development, and advocated the
idea of low-carbon living for urban residents as well. Therefore, the impact of the level of
urbanization on carbon emission has gradually weakened.

3.2.3. Temporal Heterogeneity Analysis of the Impact of Energy Intensity on
Carbon Emission

During the study period, the influence of the energy intensity on carbon emissions
has been relatively high, which is consistent with the fact that fossil energy is the main
contributor to carbon emissions. The slow decline in the impact of energy intensity on
carbon emissions indicates that the implementation of the strategy of Beijing–Tianjin–Hebei
coordinated development has promoted intensive regional development as well as the
progress of low-carbon technologies, thus improving the efficiency of energy utilization
and reducing energy consumption per GDP. It also suggests that the economic structure
of the Beijing–Tianjin–Hebei region has been constantly optimized and the proportion of
tertiary industry has increased. The high economic benefits and low energy consumption
of the tertiary industry have led to the decline in the influence of energy intensity on
carbon emissions.

3.2.4. Temporal Heterogeneity Analysis of the Impact of Level of Economic Development
on Carbon Emission

During the study period, the overall impact of GDP on carbon emissions showed
an inverted U-shape. From 2013 to 2015, the impact gradually increased, but it began to
decline after 2016. In 2018, the impact was much lower than that in 2013, which shows that
the economic aggregate increased the demand of various economic sectors for energy such
as electricity and oil. Consumption of these fossil energies produced a great deal of carbon
emissions. With the innovation of economic structure and improvement of the efficiency
of input and output, the economy has gradually decoupled from carbon emissions, and
GDP growth has mainly been fueled by consumption and scientific and technological
innovation. In addition, the formulation of low-carbon economic strategy has controlled,
and counteracted carbon emissions resulting from economic development. Therefore, the
impact of economic development on carbon emissions has been decreasing.

3.2.5. Temporal Heterogeneity Analysis of the Impact of Population Size on
Carbon Emission

The regression coefficient between population size and carbon emission was a negative
during the study period, mainly because population size has stimulated industry to grow
rapidly and promoted the technological innovation and popularity of education as well
as intensive development and application of energy-conserving technology. Meanwhile,
population size contributes to providing personnel and technical support. The data reveal,
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however, that the advantage of carbon emission reduction brought by population size has
been gradually disappearing.

3.2.6. Temporal Heterogeneity Analysis of the Impact of Opening-Up on Carbon Emission

The influence of the level of opening-up on carbon emission was positive during the
study period. With the deepening of opening up and the increase in utilization of foreign
investments, building factories with investment and expanding the scale of pro duction
will inevitably aggravate carbon emission.

To sum up, the impact of industrial structure, urbanization level, and energy intensity
on carbon emissions generally showed a downward trend, and the impact of population
size and opening-up on carbon emissions showed an upward trend. The level of economic
development increased first and then decreased. Population size had a negative impact
on carbon emissions while the other five factors presented a stable positive impact, which
was basically in line with the empirical expectation. The study also found that the status
of some influencing factors was rising, while that of others was weakening. The overall
numerical change has a certain guiding effect on policy making.

3.3. Spatial Heterogeneity Analysis of Regression Coefficient of Influencing Factors of
Carbon Emission

To explore the spatial heterogeneity of regression coefficient of influencing factors
of carbon emissions, the PGTWR model regression coefficients of influencing factors in
indifferent regions and periods were averaged. With the use of ArcGIS10.2, the mean value
was classified into five levels according to the rule of natural cutoff points and presented
in the form of geographical map (Figure 5) so as to express more directly and analyze the
spatial heterogeneity of regression coefficients.

The impact of industrial structure on carbon emission decreases from the east to
the west. Tianjin, Tangshan, and Qinhuangdao are the most affected cities, followed by
Cangzhou, Chengde, and Langfang, with Handan being the least influenced city. The
influence of urbanization level on carbon emission weakens from the north to the south
with Chengde being the most affected city, followed by Zhangjiakou, Beijing, Tangshan,
and Qinhuangdao, and with Handan being the least influenced city. The influence of energy
intensity on carbon emission declines progressively from the north–south to the middle
regions, and Handan is the most influenced city, followed by Zhangjiakou, Chengde, Shiji-
azhuang, and Xingtai. The impact of economic development on carbon emission decreases
from southwest to northeast, Shijiazhuang and Baoding are the most affected cities, and
Chengde and Qinhuangdao are the least affected. The absolute value of regression coeffi-
cient of population size increases progressively from north–south to the middle regions,
and Handan, Chengde, and Qinhuangdao have the highest absolute value. The lowest
value is in Baoding. When it comes to the impact of the level of opening up on carbon
emission, Qinhuangdao, Tangshan, and Chengde are the most affected cities, followed by
Beijing and Tianjin. Among them, Qinhuangdao, Tangshan, and Tianjin are the major ports
in the Beijing–Tianjin–Hebei region, among which Tianjin port is the largest port in north
China, while Beijing, as the capital, has the capital airport with the most comprehensive
functions, and thus enjoys the remarkable geographical advantage of aviation and a high
level of opening up.
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Figure 5. (a) Geographical location map of Beijing–Tianjin–Hebei region; (b) Spatial heterogeneity of
PGTWR regression coefficient of industrial structure; (c) Spatial heterogeneity of PGTWR regression
coefficients of urbanization level; (d) Spatial heterogeneity of PGTWR regression coefficients of
energy intensity; (e) Spatial heterogeneity of PGTWR regression coefficients of level of economic de-
velopment; (f) Spatial heterogeneity of PGTWR regression coefficients of population size; (g) Spatial
heterogeneity of PGTWR.
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4. Conclusions and Policy Recommendations
4.1. Conclusions

This paper introduced the PGTWR model as the base model of the study, adopted
thirteen cities as individuals of cross-section, and conducted a temporal and spatial hetero-
geneity study of the converted influencing factors of carbon emissions in Beijing–Tianjin–
Hebei region with the time period from the year 2013 to 2018 as panel data. In terms of
time and space as a whole, the regression coefficient of each influencing factor of carbon
emission in Hebei Province has obvious heterogeneity. From the perspective of space, the
differences in the impact of industrial structure and energy intensity on carbon emission
vary significantly. As a result, these differences should attach importance when making
the policy of carbon emission reduction. Relatively speaking, the heterogeneity of the
influencing factors in Beijing–Tianjin–Hebei region is mainly reflected in the time dimen-
sion. In the period of study, the impact of industrial structure, the level of urbanization,
energy intensity, and the level of economic development on carbon emission were on a
declining curve while the impact of the level of opening up on carbon emission was on
the rise, the regression coefficient of population size and carbon emissions had a negative
impact on carbon emissions during the study period, but was gradually increasing and
approaching zero point, and may change from negative to positive in the future, which
indicates that the former four factors that reflect the level of economy and technology are
not the focus of consideration when making the policy of carbon emission reduction, which
is consistent with the conclusion that most cities in Beijing–Tianjin–Hebei region are in a
strong decoupled status [49]. Therefore, more attention should be paid to the latter two
factors for the time to come.

4.2. Policy Recommendations

The paper put forward the following recommendations. First, we should adjust the
industrial structure and decrease the proportion of secondary industries. Among the cities
in the Beijing–Tianjin–Hebei region, Tangshan’s secondary industry accounts for the highest
proportion, with an average of nearly 60% during the study period. Its main industries have
always been coal, oil, natural gas extraction, and other traditional fossil energy industries.
The secondary industries of Cangzhou, Tianjin, and Qinhuangdao accounted for nearly
50%, also at a high level. Among the three industries, the secondary industry consumes
mainly fossil energy and produces the most carbon emissions. Therefore, it is essential to
accelerate the transformation of the economic development mode, lower the proportion of
heavy industry, and develop the tertiary industry with low energy consumption and high
output level.

Second, energy intensity is one of the most important factors which affect carbon emis-
sions. We should strengthen technological innovation, develop new energy technologies,
eliminate high polluting and high energy consuming technologies, and increase the role of
science and technology in empowering industrial development. We will concentrate on
developing advanced manufacturing, new and high technology industries, and low-carbon
and low energy-consuming industries so as to lower energy consumption per GDP and
promote high-quality economic development.

Third, we should steadily promote the development of urbanization, pay attention to
ecological protection in the process of urbanization, and put an end to the expansion of
urban scale by extensive development mode. This requires reasonable planning and layout
according to the environmental self-purification capacity of different cities and towns as
well as controlling the urban size below the ecological critical scale. Meanwhile, we should
give play to the advantages of population scale to enhance infrastructure construction and
keep improving the efficiency of resource allocation.

Fourth, while strengthening the introduction of foreign investment, we should pay
attention to environmental protection, carry out environmental impact assessment on im-
ported projects, and strictly control the introduction of projects with high carbon emissions.
The Beijing–Tianjin–Hebei government should also absorb the successful experience of
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harmonious coexistence between foreign investment and environmental protection and
formulate scientific and reasonable local policies so as to reduce the carbon emissions
caused by foreign investment.

Finally, the empirical results of the study not only make theoretical contributions
to those literature of research on influencing factors and heterogeneity, but also make
contributions to the formulation of carbon emission reduction policies in the Beijing–
Tianjin–Hebei region of China. There are some shortcomings in this paper which point
out the direction of further research. First of all, the paper takes the Beijing–Tianjin–Hebei
region as its research sample, so the conclusion drawn is only applicable to the region,
and the future studies can expand their research regions. Secondly, the paper takes the
prefecture-level cities and above as its research sample, therefore, future studies can be
conducted on the heterogeneity of county territory. Finally, the paper does not consider the
influence of peripheral regions on the study region, so future studies can perform further
research by introducing spatial lag term.
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