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Abstract: Eco-efficiency analysis can provide useful information about sustainability in the tourism
industry, which has an important role in both global economy recovery and Sustainable Development
Goals (SDGs), generating considerable indirect carbon emissions with respect to the supply chain
due to its significant connections to other industries. This study, from the perspective of tourism
sectors, including tourism hotels, travel agencies, and scenic spots, integrated the environmentally
extended input–output analysis (EEIO) and data envelopment analysis (DEA) models to develop a
research framework, analyzing the indirect carbon emissions of the tourism supply chain, evaluating
eco-efficiency with respect to both direct carbon emissions and total carbon emissions (including
direct and indirect parts), and exploring the driving factors of eco-efficiency of tourism sectors using
Tobit regression models. This study took Gansu as a case, a province in China characterized by higher
carbon intensity, an underdeveloped economy, and rapid tourism growth. The results demonstrate
that (1) tourism hotels contribute the most carbon emissions in tourism sectors, especially indirectly
due to the supply chain, with carbon emissions mainly resulting from the manufacturing of food
and tobacco; (2) the eco-efficiency of tourism sectors in Gansu presents a U-shaped curve, which is
consistent with Kuznets’ theory; and (3) energy technology is key to improving the eco-efficiency
of tourism sectors. The research results provide a clear path for the reduction of carbon emissions
and the improvement of eco-efficiency in Gansu tourism sectors. Against the backdrop of global
climate change and the post-COVID-19 era, our research framework and findings provide a reference
for similar regions and countries who are in urgent need of rapid tourism development to effect
economic recovery.

Keywords: eco-efficiency; tourism sector; carbon emissions; supply chain; environmentally extended
input–output analysis (EEIO); data envelopment analysis (DEA)

1. Introduction

Facing a post-COVID-19 era, tourism, which contributes over 10% to global economic
growth [1], may play a significant role in economic recovery. However, over the past several
years, the tourism industry has seen an increase in the consumption of natural resources
and energy [2] as well as significant increases in carbon emissions and the disposal of
other types of waste [3]. Because the tourism industry has an extremely complex input–
output relationship and involves a large number of intermediate input sectors on its supply
chain [4], some scholars have begun to use the input–output method to evaluate carbon
emissions in the supply chain of tourism [5,6]; furthermore, scholars have found that global
carbon emissions, including indirect emissions from the supply chain, are four times higher
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than the direct carbon emissions of tourism [7]. At present, the input–output method
based on supply chain is a popular tool in the evaluation of carbon emissions and carbon
footprints, especially within economic sectors. The supply chain here refers to all the supply
sectors of intermediate inputs needed in the production of goods and the provision of
services [8]. For different tourism sectors, there is a wide range of related inputs, such as the
intermediate input of tourism hotels, including the food and tobacco needed by catering
services, the textile and furniture needed to provide accommodation services, and so on.
Hence, assessing tourism carbon emissions from a supply chain perspective is necessary to
provide a clear path for the reduction of carbon emissions against the backdrop of global
climate change [9]. Some scholars have begun to focus on a more comprehensive accounting
of carbon emissions. Sun [10] presents an environmentally extended input–output (EEIO)
model to assess the distribution of tourism’s economic and carbon emission effects on
bilateral travel between Taiwan and Japan. However, because the tourism industry plays a
vital role in achieving all 17 SDGs, specifically, ending poverty (SDG 1), decent work and
economic growth (SDG 8) [11], and responsible consumption and protection (SDG 12) [12],
only assessing its carbon emissions is inherently biased [13,14], especially due to the
urgent demand for economic recovery in the post-COVID-19 era. In sum, facing economic
recovery and global carbon emission mitigation pressure, the tourism industry needs to
focus on seeking more precise emission reduction objectives—tracking indirect carbon
emission sources by using the input–output method, and, moreover, exploring driving
factors that will improve the comprehensive benefits of the tourism economy and carbon
emission mitigation. Therefore, it is important to comprehensively assess tourism’s dual
impacts both on economic growth and global climate change in order to find a path to
sustainable development.

Eco-efficiency analysis, as proposed by the World Business Council for Sustainable
Development (WBCSD) [15], can provide useful information about the sustainability of
the tourism industry. Eco-efficiency in the tourism industry is defined as determining the
environmental ecology impact per unit of tourism value and developing a carbon dioxide
assessment method [16]. The core concept of eco-efficiency is an optimization scheme,
which is a path to achieving economic growth while mitigating the environmental impact of
tourism [17]. Against the backdrop of global climate change, carbon emissions are usually
selected as the environmental ecology indicator in order to analyze tourism eco-efficiency,
combined with data envelopment analysis (DEA), which can include multi-input and
-output indicators [17,18]. Pan (2021) calculated tourism carbon emission efficiency based
on the super-efficiency Slacks Based Measure (SBM-DEA), which is defined as a compound
system that consists of tourism carbon emissions, tourism economic development, and
tourism regional innovation [19]. However, there is little existing research integrating
EEIO and DEA to analyze the eco-efficiency of tourism using direct and indirect carbon
emissions. Zha (2020) used the EEIO method to calculate the carbon emissions of tourism
in China and used data envelopment analysis (DEA) to examine the sources of change
in tourism CO2 emissions [20]. However, in Zha’s paper, tourism was taken as a whole
industry, despite the fact that the carbon emission process and the economic operation
laws of different tourism sectors, such as hotels, tourism agencies, and scenic spots, are
significantly different.

Based on the above tourism development background and relevant research progress,
this research tries to fill the knowledge gaps with the following hypotheses. The first is
in regard to Gansu province, where tourism is developing rapidly: What are the time
trajectories and development differences between direct and indirect carbon emissions
within different tourism sectors? The second considers the input–output relationship
between different tourism sectors and other relevant economic sectors: What are the main
sources of indirect carbon emissions? The third is considers the two scenarios of direct
carbon emissions and total carbon emissions, including indirect carbon emissions: What
is the evolutionary trajectory of eco-efficiency in different tourism sectors? The fourth is:
What are the driving factors of eco-efficiency in the tourism sector under different carbon
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emission scenarios? The innovations of this research are as follows: the first is integrating
EEIO and DEA in order to analyze carbon emissions, including direct and indirect parts
of the supply chain in different tourism sectors, and to fully consider their economic
growth; the second is analyzing from the perspective of specific tourism sectors, including
travel agencies, scenic spots, and hotels, which supply the most tourist production and
services in China; the third is putting forward more targeted suggestions with respect to
the main, indirect carbon emission contributors in the supply chain and the driving forces
of eco-efficiency in specific tourism sectors.

This research built a widely used research framework for the comparative evaluation
of carbon emissions and eco-efficiency in different sectors of tourism. It did so in order to
apply scientific guidance to the targeting of carbon emission mitigation within the supply
chain of various tourism sectors, while also keeping the economy growing as much as
possible. The rest of this paper is organized as follows: Section 2 reviews the relevant
literature and constructs the research framework, including the research boundary and
roadmap and the study area; Section 3 discusses the research methods, including the model
and data source; Section 4 presents the research findings, including results and analysis;
Section 5 presents discussions and implementations; and conclusions are presented in
Section 6.

2. Literature Review and Research Framework
2.1. Literature for Carbon Emissions Evaluation of Tourism

Against the backdrop of global climate change, carbon emissions from the tourism
industry have become a hot topic in the increasing number of countries that are experiencing
rapid tourism development [21,22], such as China [23], New Zealand [9], Portugal [24],
Spain [25,26], Italy [27], Turkey [28], Brazil [29], and so on. Carbon emissions, including
within direct and indirect parts of the supply chain, are a topic of discussion among many
scholars, who sometimes also include carbon footprint within this subject by incorporating
direct and indirect domestic and imported virtual carbon, which are required to satisfy
the demand for products by different tourism consumers [30]. Carbon footprint is a part
of the ecological footprint concept, which quantifies the consumption and occupation of
the ecological environment by human society [31]. In this research, the concept of carbon
emission is selected for the comparative analysis of tourism eco-efficiency, including with
respect to direct carbon emissions and complete carbon emissions.

Carbon emission assessments are mainly based on a “top-down” perspective on
the energy supply side [32] and a “bottom-up” perspective on the energy consumption
side [33]. Research on carbon emissions in the tourism industry using the “bottom-up”
approach focuses on the consumption side and assesses emissions by studying the energy
consumption coefficient per unit of the output of various transportation modes [34], travel
hotels [35], and tourist activities [36]. However, as tourism development is closely related
to a range of economic sectors, including transportation, trade, food and beverage, and
wholesale and retail, only measuring carbon emissions by assessing consumption in tourism
will not enable researchers to understand the real situation with regard to tourism’s impact
on climate change. Furthermore, using this approach entails a large amount of work, and it
is difficult to conduct a timeseries analysis.

As EEIO accounts for interindustry connections, and considering the characteristics
of input–output tables, as well as multiple timeseries [37,38], EEIO is an important tool
for the assessment of carbon emissions [39,40]. This method has even more advantages in
regard to assessing emissions in the tourism industry, and it is able to present a complete
scope of direct and indirect greenhouse gas emissions [41]. The approach covers direct
emissions produced by tourism sectors and all aspects of indirect effects throughout the
supply chain within and outside the destination country [42]. There are three generally
agreed upon views within carbon emissions research among existing scholars. First, the
carbon emissions of tourism, including indirect carbon emissions, are higher than what is
known, a subject that requires attention. Second, although the carbon emissions of tourism
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are high, the industry brings great social and economic benefits; thus, it is necessary to
explore the coordinated development model of tourism ecology and economy. Third, EEIO
is considered to be an effective and comprehensive assessment method to measure carbon
emissions in macro tourism sectors.

2.2. Literature for Eco-Efficiency Evaluation of Tourism

Separate carbon emission accounting of tourism sectors has limited policy support and
practical guidance for the low-carbon development of the industry; e.g., studies have shown
that holiday tourists have far higher carbon emissions than sightseeing tourists (due to
increased accommodation emissions) [43], and another study showed that the carbon emis-
sions of long-distance tourists are far higher than short-distance travelers due to increased
traffic emissions [44]. However, from the perspective of the tourism economy, holiday
tourists and long-distance tourists make more contributions to their destination’s econ-
omy than sightseeing tourists and short-distance tourists. Therefore, research on tourism
eco-efficiency based on carbon emissions has expanded into the field of tourism carbon
emissions, and, furthermore, has become the hot spot of tourism eco-efficiency research.

Gossling proposed a way to measure the eco-efficiency of tourism based on carbon
emissions [16]. He used a single ratio method to compare the eco-efficiency of tourist
destinations in France, Amsterdam in Denmark, Seychelles, Siena in Italy, and the Rocky
Mountain National Park in the United States, and he found that there were great differences
in carbon emissions efficiency between different sectors of tourism. Besides the single
ratio method [45], the indicator method [46] and data envelopment analysis (DEA) method
have been widely applied to measure eco-efficiency [47], especially the undesirable output
model of a slack-based model (undesirable-SBM) [48].

In the post-COVID-19 era and against the backdrop of aggravating global climate
change, scholars have found that building prosperous and resilient low-carbon tourism
needs a tool that can estimate the balance between economic benefits and eco-environmental
impact [49], such as eco-efficiency [9]. A reduction in tourism carbon emissions is necessary
in consideration of tourism’s value to the economy and the SDGs, thus, formulate targeted
policies will help coordinate economic growth and carbon emission reduction.

2.3. The Research Boundary of Carbon Emissions and the Eco-Efficiency of Tourism

Existing research on carbon emissions and the eco-efficiency of the tourism industry
mainly treats the industry as a whole [7,16]. The tourism industry comprises sectors that
provide various types of consumption to tourists [4]. Based on the definition of the World
Tourism Organization of the United Nations (UNWTO), the tourism industry consists of
five major sectors related to travel, including transportation, leisure and entertainment,
accommodation, food and beverage, and travel agencies. The products and services
supplied by each sector are significantly different. Thus, analyzing the carbon emissions
and eco-efficiency of tourism as a whole makes it difficult to identify mechanisms for the
reduction of carbon emissions and the improvement of eco-efficiency.

Scenic spots, hotels, and travel agencies—based on the operating and management
data collected continuously by the statistics department of China’s government [50]—are
separate sectors and highly representative of the production and service processes of the
tourism industry: Scenic spots are a spatial aggregation form of tourism attractions where
tourist activities and carbon emissions occur [51,52]; as a sector that provides packaged
tourism products and services, travel agencies almost represent the entire consumption
process in tourism [53]; and accommodation and food and beverage services usually
represent the most energy consumption and carbon emissions in the tourism industry [54],
if not including traffic.

The above three tourism sectors differ significantly from each other in terms of their
services, the mode in which they provide services and operate businesses, and their carbon
emission processes. As such, this article focuses on scenic spots, hotels, and travel agencies
as the main tourism sectors, comparing and analyzing their carbon emissions and eco-
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efficiency, as well as the drivers of these three sectors in the comprehensive EEIO and DEA,
in order to provide a reference and a research framework for tourism in similar regions.

2.4. The Research Framework

Based on the existing research, it has been found that direct carbon emission estimates
obviously underestimate the carbon emissions of tourism. Input–output analysis can
measure the carbon emissions of tourism, including the supply chain, and it can even
overcome the heavy work of timeseries data due to bottom-up analysis. Furthermore, data
envelopment analysis is a more comprehensive evaluation method of eco-efficiency, with
multiple inputs and multiple outputs. In the post-COVID-19 era and against the backdrop
of increasing global climate change, the study of carbon emissions in tourism is necessary
to search for a coordinated development model, balancing carbon emissions and tourism’s
economic benefits. Therefore, this article analyzes the eco-efficiency of tourism sectors with
respect to direct carbon emissions and total carbon emissions, considering interindustry
input–output relationships by integrating data envelopment analysis and input–output
analysis. Moreover, considering the differences in economic operation laws and carbon
emission paths among different sectors of tourism, this article focuses on the comparative
analysis of direct carbon emissions and the indirect carbon emissions of tourism hotels,
travel agencies, and scenic spots, as well as eco-efficiency and its drivers both with respect
to direct and total carbon emissions.

The specific research framework is as follows (Figure 1):

Step 1: To calculate the direct and total carbon emissions of the three tourism sectors
through input–output analysis.
Step 2: To analyze the main sources of indirect carbon emissions in the three tourism sectors
through input–output analysis.
Step 3: To estimate eco-efficiency with respect to direct and total carbon emissions in the
three tourism sectors through the use of DEA.
Step 4: To reveal the main drivers of the three tourism sectors through the Tobit timeseries
regression model.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 5 of 27 
 

 

represent the most energy consumption and carbon emissions in the tourism industry 

[54], if not including traffic. 

The above three tourism sectors differ significantly from each other in terms of their 

services, the mode in which they provide services and operate businesses, and their car-

bon emission processes. As such, this article focuses on scenic spots, hotels, and travel 

agencies as the main tourism sectors, comparing and analyzing their carbon emissions 

and eco-efficiency, as well as the drivers of these three sectors in the comprehensive EEIO 

and DEA, in order to provide a reference and a research framework for tourism in similar 

regions. 

2.4. The Research Framework 

Based on the existing research, it has been found that direct carbon emission esti-

mates obviously underestimate the carbon emissions of tourism. Input–output analysis 

can measure the carbon emissions of tourism, including the supply chain, and it can even 

overcome the heavy work of timeseries data due to bottom-up analysis. Furthermore, data 

envelopment analysis is a more comprehensive evaluation method of eco-efficiency, with 

multiple inputs and multiple outputs. In the post-COVID-19 era and against the backdrop 

of increasing global climate change, the study of carbon emissions in tourism is necessary 

to search for a coordinated development model, balancing carbon emissions and tourism’s 

economic benefits. Therefore, this article analyzes the eco-efficiency of tourism sectors 

with respect to direct carbon emissions and total carbon emissions, considering interin-

dustry input–output relationships by integrating data envelopment analysis and input–

output analysis. Moreover, considering the differences in economic operation laws and 

carbon emission paths among different sectors of tourism, this article focuses on the com-

parative analysis of direct carbon emissions and the indirect carbon emissions of tourism 

hotels, travel agencies, and scenic spots, as well as eco-efficiency and its drivers both with 

respect to direct and total carbon emissions. 

The specific research framework is as follows (Figure 1): 

Step 1: To calculate the direct and total carbon emissions of the three tourism sectors 

through input–output analysis. 

Step 2: To analyze the main sources of indirect carbon emissions in the three tourism sec-

tors through input–output analysis. 

Step 3: To estimate eco-efficiency with respect to direct and total carbon emissions in the 

three tourism sectors through the use of DEA. 

Step 4: To reveal the main drivers of the three tourism sectors through the Tobit timeseries 

regression model. 

 

Figure 1. Research framework. 

  

Figure 1. Research framework.

2.5. Study Area

Gansu Province is located in northwest China, where the Mongolian Plateau meets the
Qinghai–Tibet Plateau (Figure 2), and is vulnerable to climate change [55]. This area was the
core of the ancient Silk Road. The marginalized, transitional geographic location bestows
the province with abundant, diversified natural attractions and a cultural heritage that
constitute significant, innate advantages for tourism development. In 2012, high-speed train
services became available in Gansu, triggering a massive surge in tourism development.
From 1997 to 2016, the average growth in total tourism revenue in the province ranked first
in China (Figure 2). Tourism has become a new industry that drives regional economic
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growth and green development in Gansu, a province that traditionally relied on resources
for its economy. Wang et al. (2019) estimated the carbon emissions of each province’s
tourism industry between 2001 and 2016 and found that tourism in Gansu generated the
highest carbon intensity level across China [56]. Therefore, as a typical province where
the tourism industry is facing the dual pressures of economic growth and climate change,
Gansu is illustrative for tourism sectors exploring a path to low-carbon, green development
with respect to carbon emissions constraints. Herein, tourism hotels, travel agencies, and
scenic spots in Gansu Province are taken as study subjects in order to be references to
inform the low-carbon development of the tourism industry under the dual pressures of
economic recovery and carbon emission reduction.
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3. Methods
3.1. Calculation of Direct Carbon Emissions

The calculation of direct carbon emissions in tourism sectors is mainly based on the
standards set by the Intergovernmental Panel on Climate Change (IPCC). Under these
standards, emissions are calculated based on each sector’s revenue and energy emission
coefficient, as follows:

ηth =
∑r

k=1 δk × ECac
k

lac (1)

ηta =
∑r

k=1 δk × ECos
k

los (2)
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ηts =
∑r

k=1 δk × ECos
k

los (3)

where ηth, ηta and ηts denote the energy emission coefficient of hotels, travel agencies,
and scenic spots, respectively; δk is the total consumption of energy k in Gansu Province
(k = 1, 2, . . . r); ECos

k and ECac
k represent the total consumption of energy k by other eco-

nomic sectors and the food and beverage sector in Gansu, respectively; and lac and los

denote the value added from other economic sectors and the food and beverage sector,
respectively. Direct carbon emissions of hotels are calculated as follows:

CEth
direct = µ× ηth × TRth (4)

CEta
direct = µ× ηta × TRta (5)

CEts
direct = µ× ηts × TRts (6)

where CEth
direct , CEta

direct, and CEts
direct represent the direct carbon emissions of hotels, travel

agencies, and scenic spots, respectively, and TRth, TRta, and TRts denote the total revenue
of hotels, travel agencies, and scenic spots, respectively.

3.2. Calculation of the Total Carbon Emissions of Tourism Sectors Based on EEIO

The structure of the input–output tables for Gansu Province for the years 1997, 2002,
2007, and 2012 is presented in Table 1. The second quadrant where the background is
yellow and zij is denoted represents intermediate inputs and outputs; the first quadrant
where the background is blue and f i is denoted represents final use; and the third quadrant
where the background is green l j is denoted represents value added. The column in red
where z1j to znj are denoted represents the supply chain of sector j (Sj). Specifically, the
input–output table includes n production sectors; f i denotes the final use of sector i; Xi

denotes the total output of sector i; l j denotes the value added of sector j; and Y j denotes
the total input of sector j.

Table 1. Input–output table.

F Intermediate Use
Industrial Sector S1 . . . Sj . . . Sn Final Use Total Output

Intermediate input IS1 z11 . . . z1j . . . z1n f 1 x1

...
...

... ... . . . . . .

ISi zi1 . . . zij . . . zin f i xi

...
...

... ... . . . . . .

ISn zn1 . . . znj . . . znn f n xn

Value added l1 . . . l j . . . ln

Total input x′1 . . . x′j . . . x′n

Note: The part of table in yellow denotes intermediate inputs and outputs, the part of table in bule denotes final
use, the part of table in green denotes value added, and the column in red border denote supply chain.

Within the study period, hotels, travel agencies, and scenic spots belong to different
sectors in the input–output table. The proportions that the operating revenues of the above
key sectors account for in final use are used to calculate the intermediate use of other sectors
using these three sectors, as well as the intermediate input of these three sectors into other
sectors. Tourism sector supply chains are represented by the column vectors zi∼th, zi∼ta,
and zi∼ts, and can be calculated as follows:

zi∼th =
TRth

f ac zi∼ac (7)
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zi∼ta =
TRta

f os zi∼os (8)

zi∼ts =
TRts

f os zi∼os (9)

where zi∼th, zi∼ta, and zi∼ts represent the intermediate use of sector j by sector i in hotels,
travel agencies, and scenic spots, respectively; zi∼ac denotes the intermediate use of sector i
by the food and beverage sector, to which hotels belong in the input–output table; zi∼os

denotes the intermediate use of sector i by “other sectors,” to which travel agencies and
scenic spots belong in the input–output table; and f ac and f os denote final use of the food
and beverage sector and “other sectors.” The intermediate inputs made by hotels, travel
agencies, and scenic spots into sector j, and the value added for each sector is obtained in
the same manner. The tourism supply chain is column vector zi∼th.

Data for input–output tables are only prepared every five years. To obtain continuous
data, based on total carbon emissions calculations, the existing input–output tables were
consolidated in accordance with the classification of value added for industries prepared
by the National Bureau of Statistics of China.

Based on the input–output tables, the relationship between the total economic output
and the total amount of final use can be derived:

X = (I − A)−1Y (10)

where X denotes the total output matrix of all sectors; Y denotes the final use matrix of all
sectors; A denotes the direct consumption coefficient matrix of all sectors; and (I − A)−1 is
the Leontief inverse matrix.

By replacing Y with the value added matrix denoted by L and transposing the
Leontief inverse matrix, the right side of the equation represents the total input for
producing a product.

X = [(I − A)−1]
T

L (11)

Let L be the value added matrix of all sectors in a given year; then, X is a 1 × n′ matrix,
where n′ denotes the total number of sectors in the input–output tables. Each of the three
tourism sectors—tourism hotels, travel agencies, and scenic spots—belongs to one line
in the equation and is denoted by Xth

t , Xta
t , and Xts

t , respectively. Total carbon emissions,
including indirect emissions by star-rated hotels, travel agencies, and scenic spots, which
are denoted by CEth

total , CEta
total , and CEts

total , respectively, are calculated as follows:

CEth
total = µ× ηth × Xth (12)

CEta
total = µ× ηta × Xta (13)

CEts
total = µ× ηts × Xts (14)

3.3. Calculation of Indirect Carbon Emissions of Tourism Sectors

According to the input–output tables for 1997 and 2012, the indirect carbon emis-
sions of each sector from other supply chain sectors are calculated according to input
proportion. The indirect carbon emissions of each sector are calculated according to the
input proportion.

CEi∼th= (CEth
total − CEth

direct) ×
zi∼th

l j (15)

CEi∼ta= (CEta
total − CEta

direct) ×
zi∼ta

l j (16)

CEi∼ts= (CEts
total − CEts

direct) ×
zi∼ts

l j (17)
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3.4. Assessment of the Eco-Efficiency of Tourism Sectors of Gansu Province

DEA has distinct advantages in sustainable development assessments and has been
a popular tool in recent years for analyzing eco-efficiency [57]. We built a slack-based
measure (SBM) model that includes undesirable outputs [58] in order to estimate the
annual eco-efficiency of each sector in Gansu’s tourism industry between 1997 and 2016,
and using each sector in each year of this period as a decision-making unit, relative
efficiency analysis was performed. Each decision-making unit includes three vectors—
input, desirable output, and undesired output—and they are denoted as xx ∈ Rp, yyg ∈ Rs1 ,
and yyb ∈ Rs2 , respectively. Matrices W, Wg, and Wb are defined as follows: [XX] =[
x1, · · · , xq

]T ∈ Rp×q, [YYg] =
[
yyg

1 , · · · , yyg
q

]T
∈ Rs1×q, and

[
YYb

]
=
[
yyb

1, · · · , yyb
q

]T
∈

Rs2×t, where XX > 0, YYg > 0, and YYb > 0. The production possibility set P is defined as
P =

{(
xx, yyg, yyb

)∣∣∣xx ≥ XXλ, yyg ≤ YYgλ, yyb ≥ YYbλ, λ ≥ 0
}

. The undesirable-SBM
model, which varies with returns to scale, is expressed as follows [59]:

EE = min
1− 1

p ∑
p
d=1

s−i
xxi0

1 + 1
s1+s2

[
∑s1

r=1
sg

r
yyg

r0
+ ∑s2

r=1
sb

r
yyb

r0

]
St. x0 = XXλ + s−

yyg
0 = YYgλ− sg

yyb
0 = YYb + sb

λ ≥ 0, s− ≥ 0, sg ≥ 0, sb ≥ 0 (18)

where s denotes the input and output slack variables and λ is the intensity vector. The
objective function, EE, strictly decreases with s− ∈ Rp, sg ∈ Rs1 , and sb ∈ Rs2 and
0 ≤ EE ≤ 1.

3.5. Input–Output Indicators for Eco-Efficiency Assessments Based on Carbon Emissions

In a traditional economic system, such as in the Cobb–Douglas production function,
the input productive factors mainly include labor and capital. As such, in this article, the
number of employees, original cost of fixed assets, and operating revenue are taken as the
input–output indicators for the economic system, and the direct and total carbon emissions
are taken as the undesirable output in order to measure the ecology and climate change
impact of tourism sectors (Table 2).

Table 2. Input–output indicators for assessing the eco-efficiency of tourism sectors in Gansu Province
based on carbon emissions.

Indicator Data Source Unit

Input Number of employees Yearbook of China
Tourism Statistics Count

Original cost of fixed assets Yearbook of China
Tourism Statistics 10,000 Yuan

Output Operating revenue Yearbook of China
Tourism Statistics 10,000 Yuan

Undesirable output
Direct carbon

emissions/Total carbon
emissions

Calculation 10,000 tons
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3.6. Analysis of Drivers

The Tobit regression model is proposed by Tobin [60]. It belongs to a regression
model with limited dependent variables. It can solve the problem of modeling restricted or
truncated dependent variables. The Tobit model has been widely used to investigate the
influencing factors of eco-efficiency. Because eco-efficiency evaluated by undesirable-SBM
always has a value from 0 to 1, it is not suitable to use ordinary least squares (OLS) for
coefficient estimation [61]. Therefore, we selected a timeseries Tobit regression model to
identify the driving factors of tourism sector eco-efficiency in Gansu. The model expression
is as follows [62]:

ee∗t = αzzt + εt

eet =

{
ee∗t , ee∗t ≥ 0

0, ee∗t ≤ 0
t = 1, · · · , NN (19)

εt ∼ NN
(

0, σ2
)

where t denotes the year, zzt is an independent variable, α is a regression coefficient, and εt
represents a disturbance term.

For eco-economic theory and existing research, industry scale, capita, structure, and
low-carbon technology are the main factors that influence the eco-efficiency [63]. Based
on the existing research and the characteristics of the tourism sectors of Gansu, indicators
that measure scale effect, structure effect, capital effect, and technological effect were
selected for econometric regression analysis, and the drivers of tourism sector eco-efficiency
were explored.

Scale effect: In the tourism economic system, according to the theory of returns to
scale, with an increase in tourist reception, the production scale continues to expand, and
the marginal cost may also decrease [64]. Therefore, the scale effect can improve the eco-
efficiency of tourism sectors throughout the economic system. With rapid tourist reception
expansion, however, a decline in tourism sectors in Gansu with respect to the marginal
production costs, driven by scale effect, may not be able to offset rapidly increasing carbon
emissions and eco-environmental pressure. Therefore, further discussion is needed via the
regression model. The scale effect is presented by each sector’s total revenue from tourism
and the number of tourists served; the indicators in this category include the revenue
of star-rated hotels (HTI), revenue of travel agencies (TTI), revenue of scenic spots (STI),
number of guests served by star-rated hotels (HTP), number of tourists served by travel
agencies (TTP), and number of visitors to scenic spots (STP).

Structure effect: The optimization of industrial structure can reduce the consumption
of resources and energy, improve energy utilization efficiency, reduce carbon emissions,
and promote the stability and coordination of the ecological economic system [65]. With
the tourism industry structure changed, new linkages will be established between tourism
sectors, which might affect carbon emission levels and the eco-efficiency of each sector.
As such, in this article, the structure effect is mainly measured by the proportion that
each sector’s revenue accounts for in the total revenue among the three tourism sectors,
including the proportion of the revenue of star-rated hotels (HS), the proportion of travel
agency revenue (TS), and the proportion of scenic spot revenue (SS).

Capital effect: As an economic system, the impact of capital input on tourism economic
growth is apparent. However, the impact of capital input on the eco-efficiency, or even
production efficiency, of tourism is not clear [66]. Whether higher capital input could
improve tourism eco-efficiency needs to be further verified. The capital-driven effect is
mainly measured using capital input per unit of tourism revenue. This article chooses
the original value of fixed capital per unit income in its analysis in order to measure the
capital-driven effects of capital investments. The indicators for star-rated hotels, travel
agencies, and scenic spots are HRI, TRI, and SRI, respectively.

Technological effect: Low-carbon technology can improve the eco-efficiency of tourism
by reducing carbon emissions. The energy efficiency can reflect the carbon efficiency, and
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it has been a key index to measure low-carbon technology [67]. The technology effect
is mainly measured with energy input per unit of tourism revenue in this article. The
indicators for star-rated hotels, travel agencies, and scenic spots are as follows: HEI, TEI,
and SEI, respectively.

Meanwhile, based on the drivers of eco-efficiency in the industry, this article selects
GDP [68], industry structure [65], urbanization [69], civilization [70], open policy [71], and
traffic conditions [72] as control variables outside the tourism eco-economic system. The
above control variables are represented by per GDP (PGDP), proportion of tertiary industry
(THI), proportion of urban population (UR), number of students in colleges and universities
(ED), total investment of foreign enterprises (FR), and road mileage (RO), respectively.

The driver analysis examines direct carbon emission eco-efficiency (HDE, TDE, and
SDE) and total carbon emission eco-efficiency (THE, TTE, and STE) for each tourism sector.
To avoid data issues brought about by variables of different dimensions, and to reduce
the heteroscedasticity of variables and enhance data stability, except for ratios and data
results less than 1, all other data are taken as their logarithm. The revenue of each sector
is adjusted for inflation based on the consumer price index of Gansu Province, with 1997
being the base year. An ADF unit root test was performed for each variable, and differential
processing was performed for variables that did not pass the unit root test. Tobit regression
was then conducted based on the processed data. The description of variables is motioned
above in Table 3.

Table 3. Description of variables for the analysis of the drivers of tourism sector eco-efficiency in
Gansu Province.

Variable Mean Standard
Deviation Minimum Maximum

HDE 0.7936 0.1882 0.3619 1.0000
HTE 0.6014 0.2972 0.2581 1.0000
HS 0.5755 0.0990 0.3243 0.8449
HEI 0.3139 0.0561 0.2464 0.4089

lnHTI 11.5222 0.5330 10.4293 12.1225
lnHTP 9.8961 0.5825 8.7744 10.4335
lnHRI 1.1084 0.3276 0.0000 1.5056
TDE 0.6592 0.2500 0.3227 1.0000
TTE 0.5870 0.2556 0.2835 1.0000
TS 0.2691 0.0631 0.0873 0.3545
TEI 0.2310 0.0419 0.1704 0.3016

lnTTI 10.7397 0.5922 9.5321 11.5509
lnTTP 13.3644 0.5396 12.1093 14.1544

TRI 0.9485 1.2501 0.0680 6.0133
SDE 0.7771 0.2777 0.2175 1.0000
STE 0.6993 0.3128 0.1977 1.0000
SS 0.1554 0.0981 0.0536 0.4709
SEI 0.2310 0.0419 0.1704 0.3016

lnSTI 10.0833 0.9741 8.6770 12.3838
lnSTP 16.3363 1.2287 14.6281 18.3264

SRI 3.2302 2.0131 0.5775 8.1709
lnPGDP 9.0238 0.6053 8.0706 9.8162

THI 0.4075 0.0417 0.3347 0.5141
UR 0.3177 0.0789 0.1839 0.4467

lnED 3.0698 0.7644 1.6233 3.8225
lnRO 1.9817 0.5917 1.2698 2.6603
lnFR 8.1080 0.7943 5.4972 8.9434

Based on the above analyses and assumptions, eco-efficiency models under the direct
carbon emission scenario and total carbon emission scenario are constructed for star-rated
hotels, travel agencies, and scenic spots as follows:
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Model 1: Regression model for the eco-efficiency of star-rated hotels:

HDE = α10 + α11HS + α12HEI + α13lnHTI + α14lnHTP + α15lnHRI
+ α16lnPGDPcontrol + α17THIcontrol + α18URcontrol
+ α19lnEDcontrol + α110lnROcontrol + α111lnFRcontrol + ε

(20)

Model 2: Regression model for the eco-efficiency of star-rated hotels with respect to
the direct carbon emission scenario:

HTE = α20 + α21HS + α22HEI + α23lnHTI + α24lnHTP + α25lnHRI
+ α26lnPGDPcontrol + α27THIcontrol + α28URcontrol
+ α29lnEDcontrol + α210lnROcontrol + α211lnFRcontrol + ε

(21)

Model 3: Regression model for the eco-efficiency of travel agencies:

TDE = α30 + α31TS + α32TEI + α33lnTTI + α34lnTTP + α35TRI
+ α36lnPGDPcontrol + α37THIcontrol + α38URcontrol
+ α39lnEDcontrol + α310lnROcontrol + α311lnFRcontrol + ε

(22)

Model 4: Regression model for the eco-efficiency of travel agencies with respect to the
direct carbon emission scenario:

TTE = α40 + α41TS + α42TEI + α43lnTTI + α44lnTTP + α45TRI
+ α46lnPGDPcontrol + α47THIcontrol + α48URcontrol
+ α49lnEDcontrol + α410lnROcontrol + α411lnFRcontrol + ε

(23)

Model 5: Regression model for the eco-efficiency of tourist agencies:

SDE = α50 + α51SS + α52SEI + α53lnSTI + α54lnSTP + α55SRI
+ α56lnPGDPcontrol + α57THIcontrol + α58URcontrol
+ α59lnEDcontrol + α510lnROcontrol + α511lnFRcontrol + ε

(24)

Model 6: Regression model for the eco-efficiency of scenic spots with respect to the
direct carbon emission scenario:

STE = α60 + α61SS + α62SEI + α63lnSTI + α64lnSTP + α65SRI
+α66lnPGDPcontrol + α67THIcontrol + α68URcontrol
+α69lnEDcontrol + α610lnROcontrol + α611lnFRcontrol + ε

(25)

3.7. Data Sources

Data on the number of employees, original cost of fixed assets, operating revenue,
and number of tourists receipted were obtained from the Yearbook of China Tourism
Statistics. The input–output data for calculating total carbon emissions were obtained from
input–output tables in the Statistical Yearbook of Gansu Province for the years 1997, 2002,
2007, and 2012. Data on the value added by industry for each year were obtained from
the Statistical Yearbook of Gansu Province for the years 1997 to 2017. Per GDP, proportion
of tertiary industry, proportion of urban population, number of students in colleges and
universities, total investment of foreign enterprises, and road mileage were obtained from
the Statistical Yearbook of Gansu Province from 1998 to 2017. Fixed assets, operating
revenue, per GDP, and total investment of foreign enterprises were all adjusted for inflation
based on the consumer price index of Gansu Province, with 1997 being the base year.

4. Results and Discussion
4.1. The Carbon Emissions of Tourism Sectors’ in Gansu Province

The total carbon emissions of the three tourism sectors in Gansu increased from
50.6 kilotons in 1997 to 229 kilotons in 2016, with an average growth of 18.25%, a little
higher than that of the 16.01% in China’s tourism industry, as evaluated by Zha [73]. The
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indirect part of carbon emissions increased from 55.7 kilotons in 1997 to 173.3 kilotons in
2016. Indirect carbon emissions account for 65.9% of total carbon emissions, an increase
of 1.93 times more due to direct carbon emissions from tourism industry in 2016. The
average ratio of indirect emissions within total carbon emissions has similarities to data
in related research. This ratio was 57.5%, 64%, and 52% in China [74], New Zealand [75]
and Australia [76], respectively. The growth of indirect emissions was faster than that
of direct emissions. The carbon emissions of tourism hotels in Gansu were more than
travel agencies and scenic spots; this result is consist with the situation in China [74] and
globally [7]. By 2016, the amount of indirect carbon emissions from tourism hotels was 6.13
times and 14.54 times those of travel agencies and scenic spots, respectively. Scenic spots
saw relatively fast growth in direct emissions, slightly higher than those of tourism hotels
and travel agencies (Figure 3).
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Figure 3. Carbon emissions of tourism sectors in Gansu Province during the 1997–2016 period.

Indirect carbon emissions from tourism hotels grew rapidly during the 1997–2016
period. The evolution of the composition of carbon emissions indicates that a growing
number of emissions from tourism hotels were indirect emissions caused by related indus-
tries, and that incremental emissions mainly stemmed from intermediate production steps
(Figure 3, top right). From 1997 to 2016, the direct carbon emissions of tourism hotels in
Gansu increased from 10,200 tons to 39,500 tons, representing an annual growth of 7.4%,
which was lower than the average rate of the economic growth (operating revenue), similar
to that of Chinese accommodation and food in general with 7.5% [74]. From 1997 to 2016,
indirect carbon emissions increased from 13,100 tons to 111,600 tons, representing a growth
of 8.5 times across the period, with an annual increase of 11.3%, which was higher than
that of China’s general increase of 7.5% [74]. The proportion of indirect carbon emissions
from tourism hotels in the total indirect carbon emissions increased from 57.19% in 1997 to
73.84% in 2016. Although carbon emissions from tourism hotels with respect to providing
final products did not increase substantially during the study period, emissions from inter-
mediate inputs and outputs increased significantly. In 1997, Gansu Province had 38 tourism
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hotels, increasing to 299 as of 2016, six times more than it had in 1997. The scale growth
was fast during this period. However, the development of higher tourism hotels was slow.
As of 2016, Gansu only had three five-star hotels, and they were all in the provincial capital
city of Lanzhou. The lagging development of high-standard hotels may be a main factor
leading to high carbon emissions from tourism hotels in Gansu. The high indirect carbon
emissions indicate that industries related to hotels had high carbon emissions, and that
this phenomenon was related to low-carbon and energy efficiency in Gansu Province being
backward [77]. In summary, there is considerable room for hotels and related industries in
Gansu to reduce carbon emissions, and there is also a need to comprehensively regulate
related industries.

Both direct and indirect carbon emissions from travel agencies in Gansu Province were
high and showed a fluctuating pattern. Direct carbon emissions increased from 4000 tons
in 1997 to 19,900 tons in 2016, representing an annual growth of 8.8%, which was higher
than the annual growth rate of direct carbon emissions from tourism hotels. Indirect carbon
emissions increased from 5100 tons in 1997 to 18,100 tons in 2016, an annual increase of
6.5%; this growth was lower than that of the direct emissions of travel agencies and far
below the annual growth in the indirect emissions of tourism hotels. The contribution of
indirect emissions to the total emissions of travel agencies declined annually. The impact
of intermediate production steps on carbon emissions decreased annually, and carbon
emissions were increasingly attributed to the production of final products (Figure 3, middle
right). Travel agencies in Gansu lagged in terms of developing online services, and they
focused on employing traditional offline sale channels to promote local tourist routes.
This led to considerably more tourism activities related to traveling to other provinces or
countries than those involving coming to Gansu. Therefore, Gansu’s travel agencies did not
have a high demand for other related industries locally, and they did not require significant
local input in their operations. As a result, the carbon emissions of travel agencies via
intermediate production steps were not high.

The total carbon emissions of scenic spots were lower than those of tourism hotels
and travel agencies, but the growth rate was far above those for the other two sectors,
especially with respect to direct carbon emissions. Direct carbon emissions from scenic
spots increased from 1200 tons in 1997 to 11,700 tons in 2016, with an annual growth rate
of 12.7%. The total carbon emissions of scenic spots increased from 2800 tons in 1997 to
19,400 tons in 2016, representing an annual growth rate of 10.7%. The direct and indirect
carbon emissions were both higher than sightseeing carbon emissions in China from
2002 to 2010, with 3.8% and 3%, respectively [74]. In terms of the evolutionary trajectory,
carbon emissions from scenic spots peaked in 2008 and 2009 and increased rapidly again in
recent years. This was correlated with a significant increase in the number of visitors to
Gansu’s scenic spots as a result of the development of major scenic spots and high-speed
train services; it is also an indication that there was a stronger correlation between the
level of carbon emissions and the scale of the tourism industry in the development of
scenic spots than in the development of tourism hotels or travel agencies (Figure 3, bottom
right). Gansu has few large-scale, high-quality, national scenic spots (e.g., 5A attractions).
Coordinated development between scenic spots and other industries is also low. As a
result, scenic spots have low indirect carbon emissions. The continuous, rapid increase in
direct emissions indicates that, currently, the final products and services of Gansu’s scenic
spots are provided to visitors without low-carbon technology. In comparison to vacation-
oriented tourist destinations that have a strong supply chain effect, for example, Jamaica [8],
sightseeing is the major tourist activity in Gansu, and few visitors stay overnight. With
the rapid increase in the number of visitors, scenic spots in Gansu had not developed an
economic influence on the surrounding regions, and their connections with other industries
are weak; this explains why these scenic spots had low indirect emissions but a rapid
growth in direct emissions.
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4.2. The Sources of Indirect Carbon Emissions from the Supply Chain of Tourism Sectors

Via Equations (15)–(17), the sources of indirect carbon emissions can be obtained. The
manufacturing of food and tobacco was the main source of the indirect carbon emissions of
tourism hotels in Gansu; furthermore, the contribution of renting, leasing, and business
services to the indirect carbon emissions of tourism hotels has increased more obviously in
recent years, and they have become the main contribution sectors to the increase in indirect
carbon emissions from tourism hotels in Gansu. In 2007, the main source of indirect carbon
emissions from tourism hotels in Gansu was from the manufacturing of food and tobacco,
accounting for 50%. In 2012, the main source of indirect carbon emissions from tourism
hotels was the manufacturing of foods and tobacco, accounting for 34.5% (Figure 4a). From
2007 to 2012, the contribution of indirect carbon emissions from tourism hotels in Gansu
mainly came from renting, leasing, and business services; the manufacturing of foods
and tobacco; wholesale; retail trade; catering; agriculture; forestry; animal husbandry and
fishery; and supplying electric and heat power, contributing increments of 10.1, 9.8, 8.1, 5.4,
and 2.5 kilotons, respectively (Figure 4d).

Metal products were the main source of the indirect carbon emissions of travel agencies
in Gansu. The contribution of finance has increased in recent years, which became the main
contribution sector with respect to the increase in the carbon emissions of travel agencies
in Gansu. In 2007, the main source of indirect carbon emissions from travel agencies in
Gansu was metal products, accounting for 23.8%. In 2012, the main source of indirect
carbon emissions from Gansu travel agencies was metal products, accounting for 31.7%
(Figure 4b). From 2007 to 2012, the contribution to the increase in carbon emissions from
travel agencies in Gansu mainly came from finance, metal products, wholesale, retail trade,
catering, agriculture, forestry, animal husbandry and fishery, and the supplying of water,
contributing increments of 1.1 kilotons, 1 kilotons, 0.9 kilotons, 0.8 kilotons, and 0.3 kilotons
of indirect carbon emission, respectively (Figure 4e).

Agriculture, forestry, animal husbandry and fishery, and supplying electric and heat
power were the main sources of indirect carbon emissions from scenic areas in Gansu,
and carbon emissions from supplying electric and heat power have increased obviously in
recent years, and have become the main contribution sector with respect to the increase
in carbon emissions from scenic areas in Gansu. In 2007, the main sources of indirect
carbon emissions in scenic spots in Gansu were agriculture, forestry, and animal husbandry
and fishery, accounting for 25%. In 2012, the main source of indirect carbon emissions
from scenic spots in Gansu was from supplying electric and heat power, accounting for
30% (Figure 4c). For the years 2007–2012, the indirect carbon emissions increased in
Gansu scenic spots mainly due to supplying electric and heat power; household services,
repair and other services; renting, leasing, and business services; and other manufacturing
industries, transportation, storage, and post, contributing increments of 1.2, 0.3, 0.2, 0.1,
and 0.1 kilotons, respectively (Figure 4f).

4.3. Analysis of the Eco-Efficiency of Tourism Sectors in Gansu

During the study period, with the increase in revenue, the eco-efficiency of tourism sec-
tors in Gansu demonstrated a U-shaped development pattern in which eco-efficiency first
decreased and then increased. This pattern coincides with the environmental Kuznets curve
theory [18]. Some scholars have also found similar results between tourism development
and environmental impact [18,78], or in the eco-efficiency of urban [79] and regional [80]
development. Considering both the direct carbon emission and total emission scenarios,
the ranking of the eco-efficiency of the three sectors is as follows: tourism hotels > travel
agencies > scenic spots. The eco-efficiency of these tourism sectors entered an evident
trough period from 2002 to 2006. Between 2007 and 2011, the eco-efficiency of tourism
hotels, travel agencies, and scenic spots started to recover. After 2012, as a result of the
latest round of the province’s policy stimulus and high-level infrastructure development,
including the construction of a high-speed rail, the eco-efficiency of tourism hotels, travel
agencies, and scenic spots returned to a high level (Figure 5).
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The eco-efficiency of tourism hotels with respect to total carbon emissions demon-
strated a distinct U-shaped pattern. In most years during the study period, eco-efficiency
with respect to the direct emission scenario was higher than that of the total emission
scenario. In 2003 and 2008, eco-efficiency in both scenarios was at the bottom, indicating
low eco-efficiency. During these periods, tourism hotels did not experience an evident
increase in either direct or total carbon emissions, indicating that carbon emissions did
were not constrained, which did not improve the eco-efficiency of tourism hotels. However,
in the early stage of tourism development in Gansu, during which tourism hotels had a
limited number of guests and, therefore, low economic efficiency, eco-efficiency was low. As
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of 2012, the eco-efficiency of tourism hotels with respect to both the direct carbon emission
and indirect emission scenarios peaked. At the same time, both direct and total carbon
emissions increased somewhat but did not have a major impact on eco-efficiency. As such,
the economic contributions of tourism hotels may have compensated for the increase in
carbon emissions.
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The eco-efficiency of travel agencies with respect to total carbon emissions displayed a
U-shaped development pattern and was at the trough of the U shape during the 2003–2009
period. By 2009, eco-efficiency with respect to the direct and total emission scenarios
demonstrated recovering yet fluctuating trends; the two types of eco-efficiency, however,
fell into a trough again in both 2011 and 2015. Although the eco-efficiency of travel agencies
also peaked in 2012, compared to tourism hotels, travel agencies exhibited more eco-
efficiency fluctuations after 2012. This means that the interactive relationship between
carbon emissions from travel agencies and economic development is less stable and more
complex. The evolutionary trajectory of eco-efficiency with respect to both the direct and
total emission scenarios was relatively consistent, and the increase in total carbon emissions
did not lead to reduced eco-efficiency for travel agencies. This indicates that travel agencies
operated with higher efficiency when they considered their connections to other industries;
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that is, with an open strategy, travel agencies may better balance economic growth and
carbon emission reduction.

The evolutionary trajectory of scenic spot eco-efficiency with respect to direct and
total carbon emissions was consistent and mostly increased after 2007. Between 2002 and
2006, the eco-efficiency of scenic spots under the direct emission scenario was significantly
higher than that of the total emission scenario. In comparison with those of tourism hotels
and travel agencies, the eco-efficiency of scenic spots was even lower. The development of
scenic spots in Gansu lags behind the national level. After 2000, scenic spot development
in Gansu gained momentum, because scenic spots that were previously public agencies
underwent a systematic transformation, and the reform constituted a rare opportunity to
spur economic growth in scenic spots. Moreover, since 2012, due to construction of the high-
speed railway, scenic spots in Gansu experienced a growth spurt, especially in the Hexi
Corridor area. The abrupt increase in the number of tourists created more economic benefit
but also led to increased carbon emissions. As a result, the eco-efficiency of scenic spots
with respect to both direct and indirect carbon emissions declined. Moreover, after 2012,
the continuous growth of direct carbon emissions instead brought a higher eco-efficiency,
which indicates that the provision of scenic spots as a product of the entire tourism industry
supply chain is conducive to improvements in eco-efficiency.

4.4. Analysis of the Drivers of Tourism Sector Eco-Efficiency in Gansu

The regression results indicate that both the structure effect and energy technology
effect had a significantly positive effect on the eco-efficiency of tourism hotels with respect
to total carbon emissions and direct carbon emissions, respectively. An increase of 1%
in the revenue of tourism hotels increased their eco-efficiency with respect to direct and
total carbon emissions by 1.76 times and 1.84 times, respectively. A reduction of 1% in
tourists of tourism hotels increased the eco-efficiency of tourism hotels with respect to
direct and total carbon emissions by 1.2 times and 1.36 times, respectively. An increase of
1% in the unit revenue of investment increased the eco-efficiency of tourism hotels with
respect to direct and total carbon emissions by 1.68 times and 1.38 times, respectively. A
1% reduction of the unit revenue of energy consumption increased the eco-efficiency of
tourism hotels with respect to direct carbon emissions by 3.36. An increase of 1% in the
proportion of the revenue of tourism hotels in the total revenue of the three sectors increased
the eco-efficiency of tourism hotels with respect to total carbon emissions by 1.52 times
(Table 4). Tourism revenue played a more positive role in the eco-efficiency of tourism
hotels with respect to total carbon emissions than it did with respect to direct carbon
emissions. However, the number of tourist receptions in the scale effect had a significant
negative correlation with the eco-efficiency of tourism hotels. This indicates that, because
of the relatively lagging development of tourism hotels in Gansu Province, the tourist
consumption on tourism hotels was lower. The capital effect was the main driver for the
improvement of the eco-efficiency of tourism hotels with respect to both emission scenarios.
This is related to the characteristics of high capital investment in tourism hotels [50], and it
is also related to the rapid development and large-scale construction of tourism hotels in
Gansu Province during the research period.
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Table 4. Tobit regression results for factors that drive the tourism eco-efficiency of tourism hotels, travel agencies, and scenic spots in Gansu Province.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Coef. t Coef. t Coef. t Coef. t Coef. t Coef. t
HS 0.8167 1.46 1.5175 2.2 *

D1.lnHTI 1.7599 3.69 *** 1.8436 2.92 **
D1.lnHTP −1.2001 −2.77 ** −1.3645 −2.27 *

D1.HEI −3.3593 −4.48 *** −1.5378 −1.67
D1.lnHRI 1.6817 3.44 ** 1.3837 2.43 **

TS −3.1697 −2.21 * −2.2856 −2.7 **
D1.lnTTI −0.2767 -1.3 −0.2821 −1.47

lnTTP 0.7395 1.43 0.7499 1.78
TEI −5.2951 −2.62 ** −3.3253 −2.12 *
TRI −0.0118 −0.25 −0.0050 −0.13
SS 16.0436 3.26 ** 2.9920 2.39 **

D1.lnSTI −7.7122 −3.49 ** −1.3180 −2.62 **
D1.lnSTP 3.7003 3.41 ** 0.7931 2.23 *

SEI −81.4394 −3.34 ** −9.3551 −2.45 **
SRI 0.4058 −4.65 *** −0.0834 −1.72

D2.lnpgdp −1.2876 −1.65 0.5526 0.58 2.2572 1.2 0.9559 0.75 18.9987 3.22 ** −0.6318 −0.42
D1.thirdi −2.5387 −0.77 −0.7067 −0.18 −7.1938 −1.65 −8.7556 −2.89 ** 40.0462 3 ** −2.4897 −0.43
D1.urban 15.1017 1.68 15.4329 1.04 −3.4939 −0.24 5.2261 0.43 −115.4852 −2.57 ** 14.4444 0.82

lnedu 0.0667 0.49 −0.6814 −3.6 *** −1.1568 −2.63 ** −1.0686 −3.49 ** −9.7988 −3.17 ** −1.3673 −2.26 *
D1.lnroad 0.1216 0.7 0.1952 0.85 −0.3837 −1.38 −0.2979 −1.18 1.8133 3.5 ** 0.4618 1.14

lnfr 0.3104 1.83 1.1500 5.47 *** 0.7369 0.98 0.8118 1.52 8.1213 3.06 ** 1.5389 2.36 *
_cons −2.7007 −1.94 * −7.8254 −4.84 *** −9.4326 −2.44** −11.3842 −3.42 ** −14.0173 −2.25* −5.7348 −1.96 *

Log likelihood 7.8004 6.0796 4.7628 7.3352 3.5624 −1.8279

Note: *, **, and *** denote significance at the 0.1, 0.05, and 0.01 levels, respectively. D1. and D2. denote first order difference and second difference, respectively.
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The structure effect and energy technology effect influenced the eco-efficiency of travel
agencies with respect to both direct and total carbon emissions. An increase of 1% in
the proportion of the revenue of travel agencies in the total revenue of the three sectors
decreased the eco-efficiency of travel agencies with respect to direct carbon emissions and
total carbon emissions by 3.16 times and 2.29 times. A 1% reduction in the unit revenue of
energy consumption increased the eco-efficiency of travel agencies with respect to direct
carbon emissions and total carbon emissions by 5.29 times and 3.33 times (Table 4). The
structure of Gansu’s tourism industry, which has a significant negative impact on the
eco-efficiency of travel agencies, is key to improving the eco-efficiency of this sector. The
energy technology effect has a more significant impact on direct carbon emissions, and
the elasticity coefficient is also greater; that is, changes in travel agency eco-efficiency with
respect to direct carbon emissions are more sensitive to changes in energy technology. This
result also indicates that the travel agency sector in Gansu is not well developed—the
operation mechanism and processes are still backward, especially for tourists coming to
Gansu. A model that focuses on traveling abroad does not make a significant contribution
to the development of local tourism. As such, it is imperative to adjust the internal structure
of travel agencies and enhance their modernization in order to improve reception capacity
and quality. Furthermore, indirect, coordinated interindustry operations can be adopted
to increase the influence of tourism hotels and scenic spots on the tourism industry. The
energy technology effect had a significant positive impact on the eco-efficiency of travel
agencies in Gansu. The main reason is that the distribution of tourism resources in Gansu
is relatively scattered, and the mature, international tourism routes along the Silk Road
(Tianshui–Lanzhou–Zhangye–Jiayuguan–Dunhuang) have long distances, contributing to
increased energy consumption and carbon emissions.

In regard to the structure effect, the scale effect and energy technology effect influence
the eco-efficiency of scenic spots with respect to both direct and total carbon emissions.
The capital effect has a relatively significant effect on the eco-efficiency of scenic spots with
respect to total carbon emissions. An increase of 1% in the proportion of the revenue of
scenic spots in the total revenue of the three sectors decreased the eco-efficiency of scenic
spots with respect to direct carbon emissions and total carbon emissions by 16.04 times
and 2.29 times, respectively. An increase of 1% in the revenue of scenic spots decreased
the eco-efficiency of scenic spots with respect to direct and total carbon emissions by
7.71 times and 1.32 times, respectively. An increase of 1% in the tourists of scenic spots
increased the eco-efficiency of scenic spots with respect to direct and total carbon emissions
by 3.7 times and 0.79%, respectively. A 1% reduction of in the unit revenue of energy
consumption increased the eco-efficiency of scenic spots with respect to direct and total
carbon emissions by 81.44 times and 9.36 times, respectively. An increase of 1% in the unit
revenue of investment increased the eco-efficiency of scenic spots with respect to direct
carbon emissions by 19 times (Table 4). The effect of energy technology with respect to direct
carbon emissions was particularly prominent. The effect of the scale effect on scenic spots
was the opposite of its effect on tourism hotels, which shows that the current per capita
consumption level of scenic spots needs to reduced, since the increase in reception has not
improved the eco-efficiency of Gansu scenic spots. This situation should be fully considered
due to being in the left half of the environmental Kuznets curve. Therefore, attention should
be paid to the development and use of green and low-carbon technologies for tourism
products and services in scenic spots given the resilient energy technology effect in order
to build a low-carbon and high-quality scenic spot using efficient and guided investment.

5. Discussion

According to Kuznets’ environmental theory, the preliminary results of tourism sector
low-carbon development have been achieved in Gansu, and the aim of carbon emissions
peak is expected to be achieved soon. The growth of indirect emissions was faster than that
of direct emissions, which coincided with Gansu’s tourism development at that phase: The
industry was evolving and maturing, i.e., transitioning from supplying a single product to
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providing comprehensive and diversified tourism services [81]. Indirect carbon emissions
were 1.93 times that of direct carbon emissions with respect to Gansu tourism, lower than
that of the global tourism industry, which is four times larger [7]. Compared with the other
industries, such as agriculture and manufacturing, tourism has, relatively, the lowest direct
carbon emissions [74]. Moreover, tourism sectors have gained a high eco-efficiency with a
faster increase in economic growth compared to carbon emissionsas a result of regional
policy stimulus, high-level infrastructure development, higher management efficiency,
fairer allocation of resources [82]: specific like the construction of high-speed rails, a more
efficient and reasonable development of scenic spots. Our results show that the preliminary
fruits of each sector’s low-carbon development have been achieved, and the aim of carbon
emissions peak is expected to soon be achieved in underdeveloped areas in northwest China.
In the future, we should adhere to the concept of green development, adhere to promoting
the decoupling of tourism carbon emissions from economic growth, scientifically evaluate
the development status of tourism sectors, promote the inflection point of the Kuznets
curve of carbon emissions with respect to tourism sectors, and strengthen top-level designs.

Tourism hotels being the main contributor of indirect carbon emissions from the supply
chain confirms other scholars’ research on the increasing food consumption of tourists [83].
The structure of indirect carbon emissions with respect to the tourism sector in Gansu is
mostly consistent with the results of Lenzen’s study on low-income countries [7]. Based
on the existing research, structure changes were an important factor in offsetting indirect
carbon emissions in China during 1997–2012 [84]. Therefore, in the new era, China has
made efforts to change its economic development mode, targeting high-quality economic
growth, i.e., growth driven by higher value added and lower resource intensive inputs [84].
As an important emissions contributor in China, Gansu is taking numerous measures to
save energy and reduce carbon emissions. Therefore, industry structural changes, both in
tourism and other whole industries, are expected to continue to decrease indirect carbon
emissions from the supply chain in the future. The tourism sector should pay attention
to coordinated development in the supply chain with respect to indirect carbon emission
sources in order to promote carbon emission efficiency.

The drivers of eco-efficiency in the tourism sector are consist with Luo’s analysis of
the drivers of carbon emissions in China’s tourism industry [67]. Moreover, the world is
shifting to the use of renewable energy sources [85], and China has taken many effective
measures to improve energy efficiency [86]. The structure effect has certain positive effects
on tourism hotels and scenic spots, but it has certain negative impacts on travel agencies.
Therefore, with the increase in tourism revenue and the share of tourism hotels and scenic
spots, and the reduction in the share of travel agency income in all three industries, the
structure effect can improve the eco-efficiency of the three sectors. Due to the different
effects that the scale effect has on the three sectors, tourism hotels should be able to improve
eco-efficiency by improving their per capita income levels, while travel agencies and scenic
spots should reduce their per capita consumption levels and expand the reception capacity
in order to improve eco-efficiency. Therefore, the green development of tourism sectors in
Gansu Province in the future should be driven by improvements in product and service
quality, encourage tourism enterprises to provide low-carbon tourism products from the
supply side in order to guide green tourism consumption, and avoid blindly expanding
the market scale.

6. Conclusions

Taking tourism hotels, travel agencies, and scenic spots in Gansu, China, as study
objects, the direct and indirect carbon emissions of the three sectors were measured through
EEIO, the eco-efficiency of the three sectors with respect to the direct and total emission
scenarios was calculated using the DEA model, and the factors that drive the eco-efficiency
of each sector were analyzed. The major conclusions obtained are as follows:



Int. J. Environ. Res. Public Health 2022, 19, 6951 22 of 26

The carbon emissions of Gansu’s three tourism sectors continuously increased, espe-
cially indirect emissions. The evolution of the eco-efficiency of the three tourism sectors all
demonstrated a U-shaped pattern.

Food and tobacco production was the main contributor of indirect carbon emissions
from the supply chain of tourism hotels, which contributed the most carbon emissions in
the tourism sector, followed by unprocessed food (listed under agriculture, forestry, animal
husbandry and fishery).

Energy technology is the key driver in improving the eco-efficiency of the tourism
sectors in Gansu. Specifically, the structure effect and energy technology effect had a
significantly positive effect on the eco-efficiency of tourism hotels. The structure effect and
energy technology effect influenced the eco-efficiency of travel agencies The structure effect,
scale effect, and energy technology effect influence the eco-efficiency of scenic spots with
respect to both direct and total carbon emissions.

This research constructs a comprehensive research framework regarding tourism
sector carbon emissions and the eco-efficiency in order to evaluate carbon emissions and
their sources in the tourism sectors with respect to a supply chain with intermediate input
sectors, finding a path to accurately judge tourism sector carbon emissions. This research
evaluated eco-efficiency with respect to both the direct and total carbon emission scenarios,
applying a multiple input, multiple output model to explore the comprehensive effects
and driving factors of the tourism sector on eco-economy and to provide a widely used
decision-making analysis tool for tourism sectors facing the pressures of economic recovery
in the post-COVID-19 era and global climate change.

Limitations of this study: Gansu’s tourism industry is still dominated by mass tourism,
and a large part of the carbon emissions from the transportation sector can be reflected
through travel agencies, as well as the input–output relationship between scenic spots
and hotels. Therefore, this paper does not conduct a separate analysis on traffic carbon
emissions, and future research will be required via field work or by taking traffic carbon
emissions as a special topic.

Further research: This study takes the whole territory of Gansu as an example. In fact,
there are great differences between natural environmental conditions and tourism resource
endowments among the 14 cities in Gansu, and there might be spatial differences in tourism
carbon emissions and eco-efficiency. Future research will focus on summarizing the spatial
differentiation law of tourism eco-efficiency in Gansu, using spatial econometric analysis in
order to achieve spatial and precise policy formulation. Moreover, the analysis of direct
and indirect carbon emissions and the eco-efficiency of tourism sector at a larger spatial
scale will be the focus of future research. For example, the study of spatial differentiation
in Mainland China and various provinces will be the main direction of future research.
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Nomenclature

Acronyms
DEA data envelopment analysis XX the input matrix of eco-efficiency
IOA input–output analysis YY the output matrix of eco-efficiency
SBM slacks-based measure of efficiency NN the years of eco-efficiency analysis
EE eco-efficiency z the intermediate input/use
EC the consumption of fuel f the final use
TR the total revenue of tourist sector l the added value
CE carbon emissions x the total output
HTI the revenue of star-rated hotels x’ the total input
TTI the revenue of travel agencies η the energy consumption coefficient
STI the revenue of scenic spots δ the convert coefficient to standard coal
TTP number of tourists served by travel agencies µ the carbon emissions coefficient
STP number of visitors to scenic spots xx the input of eco-efficiency
HS the proportion of star-rated hotels’ revenue yy the output of eco-efficiency
SS the proportion of scenic spots’ revenue s the slack variable
TS the proportion of travel agencies’ revenue ee eco-efficiency
HRI the capital input per unit of star-rated hotels revenue zz the influencing indicators
TRI the capital input per unit of travel agencies’ revenue ε disturbance term
SRI the capital input per unit of scenic spots’ revenue α regression coefficient of the influencing factors
HEI the energy input per unit of star-rated hotels revenue
TEI the energy input per unit of travel agencies’ revenue Subscripts
SEI the energy input per unit of scenic spots’ revenue th star-rated hotel
HDE direct carbon emissions eco-efficiency of star-rated hotels ta travel agency
TDE direct carbon emissions eco-efficiency of travel agencies ts scenic spot
SDE direct carbon emissions eco-efficiency of scenic spots ac accommodation and catering sector
HTE total carbon emissions eco-efficiency of star-rated hotels os other services sector
TTE total carbon emissions eco-efficiency of travel agencies i the i th industry sector
STE total carbon emissions eco-efficiency of scenic spots j the j th industry sector
PGDP per GDP n the number of the industry sectors
THI proportion of tertiary industry m the number of the regions
UR proportion of urban population r the number of the types of fuel
ED number of students in colleges and universities k the k th fuel
FR total investment of foreign enterprises g the good output
RO road mileage b the bad output

p the number of the input indicators
Notations q the years of eco-efficiency analysis
X the total output matrix d the d th input indicator
Y the final use matrix r the r th output indicator
A the direct consumption coefficient matrix λ the intensity vector in SBM model
I identity matrix t the t th year
IS industrial sector direct direct carbon emissions
L the value-added matrix total total carbon emissions
P the production possibility set control control variables
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