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Abstract: This paper analyzes the environmental performance, spatial and temporal characteristics,
and optimization paths of key polluting industries, represented here by the power industry, using
the super-efficient MinDS model. The study shows that the environmental performance as a whole
presents the characteristics of an inverted U-shaped and then a U-shaped trend; each region presents
an asymmetric state of convergent development followed by differentiated development, with 2014
as the structural change point; the development trend of environmental performance in each region
is divided into three categories (rising, falling, and stable) and four types of spatial clustering (ultra-
high, high, medium, and low levels); and input–output indicators of environmental performance in
China and across regions have varying degrees of redundancy, with labor input redundancy being
the greatest, followed by capital input, technology input, and pollution emissions. On this basis,
we propose to improve the monitoring and inspection mechanism of the implementation process of
pollution control in key polluting industries and to improve the level of environmental performance
of key polluting industries by optimizing the combination of labor, capital, and technology input
factors in each region according to local conditions and adopting differentiated strategies. The
main contributions of this paper are threefold: first, we incorporate technological inputs into the
environmental performance evaluation index system of the electric power industry, which can
better reflect the real inputs of the electric power industry and measure the results more accurately;
second, we adopt the MinDS model for measuring the environmental performance level, which can
quantitatively analyze the gap between each indicator and the optimal level; and third, we propose
a redundancy index, which can be used to compare the redundancy of each indicator and then judge
the main efficiency levels of the different factors.

Keywords: key polluting industries; power industry; environmental performance; optimization path;
super-efficient MinDS model

1. Introduction

At present, China’s economy is in the transition stage from stable growth to high-
quality development, and the coordinated development of the economy and the environ-
ment is an inevitable requirement for high-quality development. However, the problem of
carbon emissions in China is still serious, and environmental problems have seriously re-
stricted the high-quality development of China’s economy. According to relevant statistics,
industries with large energy consumption, such as electricity, transportation, construction,
and industry, are the main sources of carbon emissions in China, and the sum of their carbon
emissions exceeds 74% of the total national carbon emissions [1–4]. In 2016, the National
Development and Reform Commission and the National Energy Administration jointly
issued the Energy Production and Consumption Revolution Strategy (2016–2030), which
proposed actively controlling carbon emissions and implementing supply-side energy. In
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the United Nations General Assembly in 2020, China made a solemn commitment to the
international community that its CO2 emissions would peak in 2030 and that it would
strive to achieve carbon neutrality by 2060 [5–7]. In fact, in the carbon emission structure
of the energy sector, carbon emissions from the power industry are predominant [8–10].
According to the latest data published by the International Energy Agency (IEA), global
energy-related CO2 emissions reached a record high of 33.1 billion tons in 2018, an increase
of 1.70% over the previous year and the highest growth rate since 2013. Among them,
global CO2 emissions from the power sector reached 13 billion tons, accounting for 38% of
total energy-related CO2 emissions. China is the world’s largest producer of electricity and
the country with the largest increase, accounting for 26.70% of the world’s total power gen-
eration capacity. According to the data provided by the 13th Five-Year Plan for Electricity
Development (2016–2020), the carbon emissions of coal-fired units in China are as high as
890 g/kWh, while those of the United States and Japan are 433 g/kWh and 544 g/kWh,
respectively. Thus, it can be seen that there is some room for decarbonization in China’s
electric power and that it is the “front-runner” in terms of controlling carbon emission
reduction [11–14]. Although the power industry is actively committed to the development
of new energy sources, it still uses coal as the main raw material, which is highly polluting
and highly emitting; therefore, the power industry has the most difficult task and the
greatest responsibility when it comes to reducing carbon emissions, and as such it plays
a major role in the realization of the dual carbon goal. Therefore, this paper takes the electric
power industry as an example; constructs an environmental performance evaluation index
system; evaluates the environmental performance levels of key polluting industries in
China; explores the spatial and temporal characteristics of the environmental performance
level of each province, autonomous region, and municipality under the direct control the
central government in China; and further quantitatively analyzes the gap between the
current environmental performance level and the optimal level, and on this basis proposes
a path to improve the environmental performance level of key polluting industries in China.
The research contained in this paper provides important theoretical value and practical
guidance for improving the environmental efficiency level of key polluting industries in
China and promoting sustainable economic development and deep green development
in China.

2. Literature Review

Environmental performance, also known as environmental efficiency or eco-efficiency,
was first introduced by Schaltegger and Sturm in 1990 [15]. Environmental performance
was defined as “the ratio of the value added of an economy to its environmental impact”; in
1998, The Organization for Economic Cooperation and Development (OECD) expanded the
meaning of environmental performance. The OECD considers environmental performance
as the efficiency of ecological resources to meet human needs and as an input–output
relationship. Output refers to the value of goods and services provided by economic
activities, and input refers to the resources consumed by economic activities and the
resulting environmental load. This is the most commonly applied definition.

In recent years, with the increase in public concern about the environment and the
successive introduction of government policies, people have been paying more and more
attention to the environmental effects of enterprise production activities. Many scholars
have started to pay attention to the environmental governance of heavily polluting indus-
tries [16–18]. Two ideas were mainly used to carry out these kinds of studies. One is to
select representative industries, such as electricity, cement, and steel, for the study, and the
other is to select the most polluting power industry as a representative for the study. The
measures of environmental performance are also mostly represented simply by the impact
of production activities on the environment. The two methods of research are relatively
similar, but the second one is more common. Therefore, in this paper, we only review the
literature on environmental performance in the power industry.
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Looking at the previous literature on the selection of environmental performance
indicators in the power industry, it is difficult to find studies with identical indicators.
Peng selected sulfur dioxide emissions [19], nitrogen oxide emissions, and soot emissions
from the thermal power industry as input indicators and gross regional product as output
indicators based on the definition of eco-efficiency. The dynamic trend of the environmental
performance of China’s power industry during the period from 2006 to 2009 was measured.
The study concluded that the environmental performance of the electric power industry
in China as a whole and in all regions has improved significantly, but the degree of
improvement varies greatly between provinces, with the greatest improvement in the
environmental performance of the electric power industry being found in northern China.
Most scholars selected the number of employed persons, power generation equipment
capacity, and fuel consumption as input indicators, power generation as desired output
indicators, and environmental pollution emissions as non-desired output indicators to
measure environmental performance [20–24]. The research shows that the ecological
efficiency, technical efficiency, and energy efficiency of China’s power industry have been
significantly improved, and there are large regional differences; Qu et al. (2012) and
Zhu (2015) added plant electricity consumption as an input indicator to these indicators to
measure the technical input level of electricity [25,26]. The research shows that there are
large spatial and industrial differences in the ecological efficiency of the power industry, and
the production efficiency of thermal power enterprises is higher than that of hydropower
enterprises. Wang and Zhu [27] and Wang et al. [28] added equipment utilization hours
to the input indicators. The research shows that the coordination degree of the energy
and environmental development of the power industry in the eastern region is higher
than that in the central and western regions; Fan and Yuan [29] added transmission line
length as an input indicator of the grid link and increased the proportion of clean energy
generation as the expected output indicator of grid link. The research shows that the
economic and technical efficiency of China’s power industry is significantly higher than
the environmental and social technical efficiency. In general, for input indicators, most
of the literature considers asset inputs, labor inputs, and fuel consumption inputs; for
output indicators, most of the literature takes power generation as the desired output and
pollution emissions as the non-desired output.

For the measurement methods of environmental performance, researchers have mainly
used life cycle analysis (LCA), stochastic frontier analysis (SFA), and data envelopment
analysis (DEA) methods. The LCA method mainly focuses on a specific product and
measures the environmental efficiency of the product throughout its life cycle, which
makes it difficult to evaluate the environmental efficiency of enterprises or industries.
The SFA method is a parametric method that requires the determination of efficiency
when setting a specific production function and using statistical methods to estimate the
parameters, which may result in large errors. Fare and Lovell [30] first proposed the
environmental efficiency evaluation method based on DEA. DEA is a non-parametric
method that can overcome the shortcomings and errors caused by the subjective setting of
functions and weights by parametric methods because it does not utilize any functional
form of assumptions [31–34]. Additionally, it can effectively evaluate the efficiency of
decision units with multiple inputs and multiple outputs; so, DEA is the most widely
used environmental efficiency evaluation method at present [35–40]. For studies on the
environmental performance of the power industry, there is little literature dedicated to
the environmental performance of the power industry; most of the literature incorporates
environmental constraints and conducts studies in terms of the production efficiency,
operational efficiency, and technical efficiency of the power industry. Korhonen and
Luptacik [41] evaluated the eco-efficiency of 24 power plants in European countries using
an extended DEA model. Bai and Song [42] and Sueyoshi et al. [43] used a three-stage
DEA model. The research shows that the ecological efficiency, technical efficiency, and
energy efficiency of China’s power industry have been significantly improved and that
there are large regional differences. Arabi et al. [44] and Munisamy and Arabi [45] similarly
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used the SBM model to measure the Malmquist–Luenberger productivity of the power
industry under ecological and environmental constraints. Wang and Yang [46] used the
NSBM model to study the environmental technical efficiency and total factor productivity
of the power industry in China. Halkos and Polemis [47] estimated the efficiency of the
U.S. power generation industry using a window DEA model.

Previous studies on the construction and measurement of environmental performance
index systems in the power industry have provided us with many insights, but there are
also certain problems. First, there is no uniform standard for the selection of environmen-
tal performance indicators. For the input indicators, previous scholars have considered
three aspects: asset input, labor input, and fuel consumption input; in addition, there are
a large number of technical inputs in the power industry, such as power plant consumption
rate, line loss rate, and transmission line length [48–52]. Although a few scholars consider
these indicators, they are rather one-sided and do not include all aspects of power gener-
ation, transmission, and distribution. Therefore, we add three technical input indicators,
such as power plant consumption rate, line loss rate, and transmission line length, and
downscale these three indicators using the entropy method with objective weighting to
reflect the technical input of the power industry in a comprehensive manner. Second,
regarding the measurement methods of environmental performance in the electric power
industry, previous scholars mainly used the traditional DEA model, super-efficient DEA
model, three-stage DEA model, SBM model, and NSBM model to measure the environmen-
tal performance of the electric power industry, but all of them have certain defects; namely,
the projection point of the inefficient decision unit on the frontier surface is always the
farthest point from the evaluated DMU, resulting in the improvement path of inefficient
DMUs being more difficult to implement. Moreover, previous scholars have not quantified
the input redundancy or output deficiency of inefficient DMUs; so, the input and output
indicators affecting inefficient DMUs cannot be found at the root [53–57]. Additionally,
the nearest distance to the strong efficient frontier (MinDS) model uses the shortest dis-
tance from the frontier surface to evaluate the efficiency value of the DMU, so that the
environmental performance takes the shortest path from inefficient to efficient, making the
proposed improvement plan easier to achieve and more conducive to the formulation of
policy recommendations. Based on the above considerations, we intend to add technical
input indicators to the traditional index system of environmental performance in the power
industry, select the super-efficient MinDS model to evaluate and analyze the environmental
performance of China’s power industry, and the spatial and temporal differences, and
explore the improvement paths of environmental performance in the power industry in
inefficient provinces.

3. Methodological Description and Selection of Indicators
3.1. Methodological Description

The super-efficient MinDS model combines the super-efficiency model and the mini-
mum distance to strong efficient frontier (MinDS) model. Andersen and Petersen [58] first
proposed the super-efficiency model in 1993, which yielded practical DMU efficiency values
greater than 1; so, this model can further distinguish the efficiency of the effective DMU.
Then, the Tobit regression model, which deals with truncated data, is also not required to
analyze the factors influencing efficiency. The core idea of the super-efficiency model is
to remove the evaluated DMU from the reference set and derive the efficiency value of
the evaluated DMU by referring to the frontier composed of other DMUs. Aparicio [59]
first proposed the MinDS model in 2007, which is an improvement on the frontier furthest
distance model (SBM) and uses the shortest distance from the frontier surface to rate the
efficiency value of the DMU. The MinDS model uses the shortest distance from the frontier
plane to evaluate the efficiency values of the DMUs. This model applies a mixed-integer
linear programming approach by adding constraints to restrict all evaluated DMUs to the
same hyperplane and then determines all efficient DMUs by the SBM model and solves
the planning model with an efficient subset as its reference set [60–63]. Compared with the
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traditional DEA model and SBM model, the MinDS model has the following advantages:
(1) it addresses the problem of slackness of variables not considered in traditional DEA
models; and (2) it overcomes the problem that the objective function of the SBM model
minimizes the efficiency value. Based on the above theory, we establish the super-efficient
MinDS model in two steps.

The first step is to establish the super efficiency SBM model and determine the effective
DMU set, which is composed of a DMU with an efficiency level greater than 1; that is,
E =

{
j
∣∣∣ρ′j ≥ 1

}
, where ρ′ represents the efficiency value of the evaluated DMU and j

represents the first DMU. The objective function and constraints of solving the effective
DMU set are as follows:

Minρ′ =

1− 1
m

m
∑

i=1
s−i /xik

1 + 1
q

q
∑

r=1
s+r /yrk

(1)

s.t.
n

∑
j=1,j 6=k

xijλj + si
− = xik, i = 1, 2, · · · , m (1a)

n

∑
j=1,j 6=k

yrjλj − sr
+ = yrk, r = 1, 2, · · · , q (1b)

n

∑
j=1,j 6=k

λj = 1, j = 1, 2, · · · , n(j 6= k) (1c)

In the above equation, (1) represents the objective function, and (1a)–(1c) represent
constraints. s−i and s+r represent the relaxation variables of input indicators and output
indicators, respectively; xij denotes the i-th input indicator of the k-th DMU; yrk denotes
the r-th output indicator of the k-th DMU; m denotes the number of input indicators; q
denotes the number of output indicators; xij denotes the i-th input indicator of the j-th
DMU other than k; yrj denotes the r-th output indicator of the j-th DMU other than k; and
λj is the weight vector. When ρ′ ≥ 1, the evaluated DMU is relatively effective. When
ρ′ ≤ 1, the evaluated DMU is relatively ineffective, so the input–output indicators need to
be improved.

The second step is to establish a mixed integer linear programming model under the
constraints of the effective DMU set, calculate the super efficiency minds value, and solve
the objective function and constraints of the super efficiency minds value model as follows:

maxρ =

1
m

m
∑

i=1

(
1− s−i /xik

)
1
q

q
∑

r=1

(
1 + s+r /yrk

) (2)

s.t. ∑
j∈E,j 6=k

xijλj + s−i = xik, i = 1, 2, . . . , m (2a)

∑
j∈E,j 6=k

yrjλj − s+r = yrk, r = 1, 2, . . . , q (2b)

s−i > 0, i = 1, 2, . . . , m (2c)

s+r > 0, r = 1, 2, . . . , q (2d)

λj > 0, j ∈ E, j 6= k (2e)

−
m

∑
i=1

vixij +
q

∑
r=1

µryrj + dj = 0, j ∈ E, j 6= k (2f)

vi ≥ 1, i = 1, 2, · · · , m (2g)
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µr ≥ 1, r = 1, 2, · · · , q (2h)

dj ≤ Mbj, j ∈ E, j 6= k (2i)

λj ≤ M(1− bj), j ∈ E, j 6= k (2j)

bj ∈ {0, 1}, j ∈ E, j 6= k (2k)

dj ≥ 0, j ∈ E, j 6= k (2l)

It can be seen from Equation (2) that the minds model is composed of three parts:
objective function (1), constraint b, constraint c, and constraint d. In the above equation, the
meanings of s−i s+r , xik, yrk, m, q, xij, yrj, i, j, k, r, n, and λ are the same as those mentioned
above. M is a sufficiently large positive number and vi and µr represent the weight of the
input index and the output index, respectively. It can be seen from the above equation that
if the evaluated DMU wants to achieve the optimal efficiency, the necessary and sufficient
condition is that all relaxation variables are 0. Equations (2a) and (2b) have the same
meaning as Equations (1a) and (1b), except that they are limited to the effective DMU set.
The common goal of constraints c and d is to ensure that the reference posts are located
in the same hyperplane. Equation (2f) is a mixed integer linear constraint. The feasible
solution is the hyperplane where all reference benchmarks are located. It can make the
programming model automatically take the effective subset as its reference set, avoiding
the process of testing all subsets. Equations (2i)–(2l) are the constraints.

3.2. The Construction of the Index System

We comprehensively consider the ISO14031 environmental performance evaluation
system and WBCSD eco-efficiency index system to select the input–output indicators, and
the selection of the index system follows the principles of scientificity, validity, measurability,
comparability, and systematization. Since the electric power industry is mainly divided into
three sectors—the power generation sector, the transmission sector, and the distribution
and sales sector—we should include each of them as much as possible in the selection of
indicators in order to reflect the environmental performance of the whole electric power
industry comprehensively. The basis for the selection of the input and output indicators of
the power industry is shown below, and we summarize all the input and output indicators
into a table to constitute the environmental performance indicator system of the power
industry, as shown in Table 1.

Table 1. Construction of the environmental performance index system in the power industry.

Category Primary Indicator Secondary Indicators Unit

Input indicators

Capital investment Installed capacity million kilowatts

Fuel input
Consumption of
standard coal for
power generation

million tons

Labor input Number of workers million people

Technical input

The electricity
consumption rate of

power plants
%

Line Loss Rate %
Length of power

transmission lines Kilometers

Output indicators

normal product Electricity generation Kilowatt-hour
GDP Billion Yuan

Environmental
Pollution Emissions

CO2 emissions million tons
SO2 emissions million tons

Nitrogen oxides million tons
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Capital input: This reflects the resource input of electric power enterprises. Since it is
difficult to measure the input capital of the power industry, this paper selects the installed
capacity indicator, i.e., the overall power of the enterprise’s generating units, to reflect the
scale of production capacity input in each region.

Labor input: We usually use three methods to measure labor input in the power
generation industry: labor time, labor income, and labor headcount. However, due to the
residual administrative monopoly in China’s power generation industry, the labor income
of employees in the power industry is not a reflection of the value of labor under market
conditions. As we do not count the labor time data, we finally chose the number of laborers
to represent the labor input. Since it is difficult to obtain the number of employees in the
electric power industry in each province, city, and autonomous region directly, we used
the number of employees in the heat and power production and supply industry, which is
highly related to the electric power industry, to represent the number of employees.

Fuel input: This refers to the fuel consumed by power industry enterprises in the
process of power generation, which can reflect the degree of fuel utilization. At present,
China mainly focuses on thermal power generation, and the energy input required for
thermal power generation is mainly coal and fossil energy such as oil, natural gas, and
coke. In order to make these energy inputs comparable with each other, we need to convert
these energy sources into standard coal consumption uniformly, and finally we express the
energy inputs in terms of standard coal consumption for power generation.

Technical input: We measure the technical input of the region through power con-
sumption rate in the power plant, line loss rate, and transmission line length. The power
consumption rate in the power plant refers to the percentage of electrical energy consumed
by the power plant in producing electrical energy of the total amount of electrical energy
generated, which reflects the rate of power consumption in the generation chain. The line
loss rate refers to the percentage of electrical energy lost in the transmission and distribution
process to the electrical energy supplied by the power network and measures the economy
of power system operation. The length of transmission lines is directly proportional to the
voltage, so there is also a particular influence on line losses.

Electricity generation: This refers to the amount of electrical energy produced by
a power plant, which is the value of the main product or service of the power industry.

Gross regional product: Electric energy, as an essential secondary energy source,
provides power for all fields of social production, and electricity consumption shows
a strong positive correlation with economic growth; therefore, it is feasible to measure the
economic output of the regional power industry using the regional GDP.

Environmental pollution: According to the principle of conservation of matter, fuel
consumption causes environmental pollution. The pollutants produced by the power
industry are mainly CO2 emissions, SO2 emissions, and nitrogen oxides; so, we chose these
three environmental pollution indicators.

3.3. Data Sources and Processing

Since data from Tibet, Hong Kong, Macau, and Taiwan are difficult to obtain, this paper
analyzes data from the remaining 30 provinces, autonomous regions, and municipalities
under the direct control of the central government in China. According to the availability
of data, we selected the data of the last ten years, i.e., 2010–2019, for the study. The data on
labor force and gross regional product were obtained from the China Statistical Yearbook
and all other data were obtained from the China Electricity Yearbook. For the few missing
values, interpolation and extrapolation methods were used to obtain them. In order to
eliminate the influence of price factors, the data of gross regional product were calculated
in constant prices with 2010 as the base period.

We obtained data on fuel coal consumption and nitrogen oxide emissions in the ther-
mal power industry from the Annual Report of China Environmental Statistics. Currently,
the Chinese Yearbook does not contain data on pollution emissions in the power industry
by region for all years. Some literature directly uses industrial emissions instead of power
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industry emissions, which is likely to affect the accuracy of the results. To make up for
this deficiency, we based this analysis on the results of the first national pollution source
survey of the State Council in 2008 and the emission coefficient of major pollutants in the
thermal power industry calculated by the State Grid Group of China and the State Grid
Institute of Environmental Protection of China. The determination methods of pollutant
emissions of thermal power plants include the measurement method, material balance
algorithm, element balance method, production and emission coefficient method, etc. The
production and discharge coefficient method has the advantages of simplicity, clarity, and
easy operation. Therefore, this method is the most general and effective technical means
of determination at present. We estimated the carbon dioxide emissions based on the
changes in three driving factors, namely, power generation, coal consumption for power
supply, and carbon emission intensity, as shown in Equation (3). We estimated the sulfur
dioxide emissions based on the power generation, the sulfur content of coal combustion,
the emission factors of different combustion equipment, and the efficiency of pollutant
treatment, as shown in Equation (4).

CO2 = Q× E× δi (3)

SO2 = 1.6×Q×ω× (1− η) (4)

In Equations (3) and (4), CO2 is the carbon emissions, Q is the electricity generation,
E is the coal consumption for the electricity supply, δ is the carbon emission factor for
standard coal, SO2 is the sulfur dioxide emission, Q is the power generation, ω is the coal
consumption per unit of power generation, and η is the desulfurization efficiency of the
desulfurization facility.

Considering that the DEA model should make the input–output indicators as concise
as possible when it is applied in practice, we use the entropy value method to downscale the
three indicators of technological inputs and the three indicators of environmental pollution
emissions and synthesize a total input technology indicator and a total environmental
pollution emission indicator, respectively. The descriptive statistical results of the input–
output index system of environmental performance of the power industry are shown
in Table 2.

Table 2. Descriptive statistics of environmental performance indicator variables in the power industry.

Statistical Quantities Average Standard Deviation Minimum Maximum Median

Installed power generation capacity 4713 3079 66 14,044 4196.46
Standard coal consumption 5594 3796 66.42 17,043 4805.236

Employment 11.94 6.701 0.740 32.18 11.43
Electricity consumption rate of

power plants 4.915 1.732 0.500 8.400 5.15

Line loss rate 6.443 1.926 2.230 13.80 6.4
Length of transmission line 52,394 26,904 6507 118,665 55,994.5

Electricity generation 1872 1283 21.02 5897 1614.7
GDP 20,272 17,314 512.9 90,788 15,442

CO2 emissions 18,317 13,758 199.4 66,759 14,376.74
SO2 emissions 551.2 414.0 6 2009 432.6

Nitrogen oxides 275.6 207.0 3 1004 216.3

4. Analysis of Empirical Results
4.1. Measurement of Environmental Performance in China’s Power Industry
4.1.1. Time-Series Characteristics of the Power Industry

The software used in this study was MaxDEA 8 Ultra. The first version of MaxDEA was
developed by ChengGang in 2009, and then ChengGang released more versions of MaxDEA
one after another, including MaxDEA Basic, MaxDEA Pro, and MaxDEA Ultra. MaxDEA
Ultra is an optimization of MaxDEA Basic and MaxDEA Pro. MaxDEA Ultra contains
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all the functions of MaxDEA Basic and MaxDEA Pro, and the measurable DEA models
included in this version are more comprehensive, faster, and support multi-core CPU
parallel computing; so, this paper uses MaxDEA 8 Ultra software for measurement [59].
In this paper, we use the super-efficient MinDS model to measure the environmental
performance values of the electric power industry in 30 provinces, autonomous regions,
and municipalities under the direct control of the central government in China, and the
results are shown in Table 3. The following is an analysis of the time-series characteristics of
the environmental performance of China’s electric power industry from two perspectives:
national and provincial (including autonomous regions and municipalities under the direct
control of the central government), respectively.

Table 3. Environmental performance values of the power industry by region from the year 2010
to 2019.

DMU 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Standard
Deviation

Anhui 1.032 1.054 1.041 1.027 1.028 1.017 1.009 1.011 1.017 1.010 0.014

Beijing 1.351 1.474 1.430 1.391 1.376 1.401 1.445 1.505 1.456 1.399 0.045

Fujian 1.001 1.006 1.005 1.004 0.991 0.998 0.999 1.008 1.019 1.029 0.010

Gansu 0.796 0.791 0.851 0.905 0.859 0.735 0.719 0.726 0.773 0.800 0.058

Guangdong 1.058 1.069 1.052 1.044 1.040 1.054 1.052 1.041 1.060 1.040 0.009

Guangxi 0.867 0.854 0.860 0.816 0.883 0.835 0.861 0.787 0.901 0.865 0.031

Guizhou 1.025 0.848 1.015 1.003 1.101 0.832 0.712 0.899 0.901 0.915 0.108

Hainan 1.159 1.071 1.133 1.140 1.166 1.168 1.163 1.201 1.166 1.235 0.041

Hebei 0.757 0.732 0.764 0.794 0.833 0.839 0.826 0.816 0.852 0.824 0.038

Henan 0.836 0.864 0.860 0.893 0.870 0.854 0.864 0.842 0.848 0.789 0.026

Heilongjiang 0.769 0.778 0.768 0.759 0.786 0.800 0.798 0.771 0.779 0.802 0.014

Hubei 1.090 1.086 1.106 1.040 1.053 1.042 1.032 1.028 1.034 1.021 0.028

Hunan 0.838 0.872 0.858 0.861 0.826 0.807 1.001 1.003 0.785 0.809 0.073

Jilin 0.802 0.824 0.822 0.807 0.816 1.002 1.000 0.742 0.799 1.011 0.095

Jiangsu 1.123 1.123 1.154 1.198 1.195 1.150 1.209 1.252 1.242 1.191 0.043

Jiangxi 0.884 0.897 0.847 0.862 0.861 0.855 0.943 0.918 0.913 0.924 0.032

Liaoning 0.754 0.774 0.774 0.813 0.849 0.824 0.814 0.814 0.822 0.800 0.027

Inner Mongolia 1.043 1.061 1.055 1.072 1.076 1.068 1.041 1.063 1.065 1.081 0.012

Ningxia 1.013 1.065 1.051 1.069 1.076 1.054 1.070 1.101 1.086 1.074 0.022

Qinghai 1.513 1.363 1.266 1.221 1.206 1.192 1.135 1.079 1.108 1.135 0.125

Shandong 0.864 0.876 0.895 0.937 0.887 1.053 1.042 1.020 1.045 1.038 0.076

Shanxi 1.030 1.011 1.014 1.006 0.969 0.843 1.001 0.826 0.883 0.873 0.076

Shaanxi 0.903 0.927 1.018 1.044 1.048 1.046 1.031 1.021 0.871 0.864 0.073

Shanghai 1.177 1.209 1.211 1.266 1.290 1.304 1.307 1.325 1.364 1.652 0.127

Sichuan 0.873 0.917 0.919 1.018 1.042 1.056 1.052 1.059 1.047 1.051 0.068

Tianjin 1.052 1.045 1.039 1.045 1.015 1.034 1.025 1.017 1.028 1.013 0.013

Xinjiang 0.833 0.807 0.849 0.859 0.917 0.804 0.696 0.664 0.711 1.005 0.099

Yunnan 0.918 0.917 0.941 1.007 1.044 1.063 1.087 1.084 1.086 1.070 0.067

Zhejiang 1.024 1.014 1.017 1.005 0.934 1.019 0.920 0.923 0.924 0.936 0.045

Chongqing 0.883 0.914 0.943 0.948 0.950 0.945 0.956 0.952 0.945 0.927 0.021

Standard
deviation 0.172 0.168 0.153 0.146 0.144 0.156 0.165 0.182 0.171 0.185 0.165
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4.1.2. Trends in the Environmental Performance of the National Power Industry

From Figure 1, we can see that the overall environmental performance of China’s
electric power industry from 2010 to 2019 shows an inverted U-shaped and then a U-shaped
trend. Measuring the level of each year by the average level of each region, we can see that
the environmental performance of the electric power industry rose from 0.98 in 2010 to 1 in
2014, with an increase of 2%. From 2014 to 2017, the environmental performance of the
electric power industry showed a symmetrical decline. Starting in 2017, the environmental
efficiency value of the electric power industry showed a symmetrical rise again to reach its
highest level in 2019.
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Figure 1. Trend of environmental performance of China’s power industry from the year 2010 to 2019.

To reflect on the degree of variation in the environmental performance of the power in-
dustry in each region, we plotted the standard deviation of the environmental performance
of the power industry in each region from 2010 to 2019 in Figure 2. From Figure 2, we can
see that the regions approximate a symmetrical state of convergent development followed
by divergent development, with 2014 as the structural change point. Among them, the
discrete level of environmental performance of the electric power industry from 2010 to
2014 develops from 0.17 at a rate of 6% toward convergence to 0.14 in 2014. The same rate
shows a change in the opposite direction from 2014 to 2019.

We believe that the possible reason for the above results is that, in 2011, the State Coun-
cil issued the Opinions of the State Council on Strengthening Environmental Protection
Priorities and the Notice of the State Council on the Issuance of the National Environmental
Protection 12th Five-Year Plan, which proposed measures to control the total emissions
of sulfur dioxide and nitrogen oxides in the power industry. The State Council’s “12th
Five-Year Plan” notice proposed to control the total emissions of sulfur dioxide and nitro-
gen oxide in the power industry. Since 2011, power companies in all regions have raised
their awareness of environmental protection and environmental pollution emissions in the
power industry have been decreasing year by year; thus, environmental performance has
begun to increase. Since in the initial stage, the sensitivity to environmental regulation
was higher in regions with small power scales than in regions with large power scales,
this led to the gradual reduction of individual differences between regions and the rate of
reduction slowed down. Starting from 2014, the State Council issued the “Guidance on
Further Promoting the Pilot Program of Paid Use and Trading of Emission Rights”, which
proposed the establishment of a paid use system of emission rights. According to Wang
and Liu [64], it is known that the collection of emission fees has a single threshold effect on
the environmental performance of the power industry, i.e., the emission fees have a “cost
effect” and “crowding out effect” on the power industry in the early stage of the system’s
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implementation. The “cost effect” and the “crowding out effect” are the same. The existence
of the “cost effect” and “crowding out effect” has led to a lack of momentum in the power
industry in regions with small electricity consumption and a weakened enthusiasm for
energy conservation and emission reduction, while regions with large electricity consump-
tion have continued to develop steadily based on social responsibility, leading to a gradual
increase in individual differences between regions. The environmental performance of
the power industry has declined in the short term; in 2016, the state issued the Opinions
on the Implementation of a New Round of Rural Power Grid Renovation and Upgrading
Project during the Thirteenth Five-Year Plan, proposing the goal of full coverage of power
supply services in rural areas nationwide. Due to the expansion of the scale of electricity
and the constraints of the natural conditions in rural areas, the investment in power supply
equipment was large and costly, resulting in a decline in environmental performance. Since
2017, with the country’s emphasis on ecological environmental protection, the power in-
dustry has continued to develop and mature and the power structure has been optimized,
resulting in an increase in environmental performance again.
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Figure 2. Trends in the standard deviation of environmental performance in China’s power industry
from 2010 to 2019.

4.1.3. Trends in Environmental Performance of Electric Power Industry by Region

Considering the change and ranking of the environmental performance of the electric
power industry from 2010 to 2019 in each region, we roughly classify the trend of change in
the environmental performance of the electric power industry into three types, including
rising, falling, and smoothness. The regions and characteristics included in each type are
as follows.

(1) Rising type. This includes relatively economically developed areas such as Beijing,
Hebei, Shanghai, Jiangsu, Fujian, Shandong, Sichuan, Yunnan, Jiangxi, Liaoning, Xinjiang,
and Hainan. This is basically consistent with the conclusion reached by Peng [19]. The
better development of environmental performance in the power industry in upwardly
mobile regions is related both to the economically developed regions with a strong R&D
investment base and to national policies. Taking Shanghai and Sichuan as examples, it can
be seen from Table 3 that Shanghai’s electricity environmental performance has steadily
increased from 1.18 in 2010 to 1.65 in 2019, showing an increase of 40%, and its change
is also ranked first among all regions, which shows that Shanghai’s electricity industry
environmental performance has risen the most. As the largest economic center in China,
Shanghai follows the call of national policies, actively undertakes social responsibility,
actively carries out scientific and technological innovation, continuously increases invest-
ment in research and development, establishes a coal consumption monitoring system, and
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increases the promotion of new technologies and equipment for energy conservation and
emission reduction. Sichuan’s power environmental performance has steadily increased
from 0.87 to 1.05, showing an increase of 20.35%, ranking in the top 10 in terms of change.
Sichuan is mainly a hydroelectric power generator, and the country’s “west-to-east” strat-
egy has created favorable conditions for its hydropower development. Due to the high cost
of hydropower construction, the superiority of hydropower cannot be fully reflected in
the early stages of construction. As hydropower projects are gradually put into use, the
cost of hydropower is reduced; its advantages are thus highlighted. This, coupled with
the expansion of the hydropower outbound market in Sichuan, has promoted the further
development and utilization of hydropower. As a result, the environmental performance
of Sichuan’s power industry shows an ever-increasing trend.

(2) Declining type. This includes Qinghai, Shanxi, Guizhou, Zhejiang, and Hubei.
This is basically the same as the conclusion of the study by Guo et al. [23]. The declining
regions are mainly in the central and western provinces. The declining environmental
performance of the power industry in these regions is due to both their own resource
endowment and industrial structure, as well as institutional reasons. Take Shanxi and
Guizhou as examples. As can be seen from Table 3, the environmental performance of the
power industry in Shanxi Province has declined by 15.21% from 2010 to 2019. The main
reason is that Shanxi province’s power grid is “outward-oriented, transmission-oriented,
and scale-oriented”, while it is currently facing a large surplus of domestic energy. Due
to the insufficient capacity of cross-provincial and cross-regional transmission channels,
it is not possible to meet the demand for outward transmission; in addition, since the
second half of 2016, coal prices have continued to rise and downstream power generation
enterprises are struggling to operate with a loss of up to 80%, resulting in a year-on-year
decline in the environmental performance of Shanxi’s power industry. The environmental
performance of electricity in Guizhou declined from 1.025 to 0.915, showing a decline of
10.78%. Guizhou’s economic development is relatively backward, and the conflict between
supply and demand is prominent. A series of problems such as the lagging reform of the
power investment system and the tariff management system have led to a lower level of
environmental performance for its power industry.

(3) Smooth type. This includes Gansu, Guangxi, Hunan, Jilin, Shaanxi, Henan, Tianjin,
Anhui, Heilongjiang, Inner Mongolia, Chongqing, Ningxia, and Guangdong. This is
basically the same as the findings of Peng [19] and Guo et al. [23]. These regions are the
regions that are in the bottom ten of the ranking of environmental performance changes in
the electric power industry, and all of them exhibit small changes. We find that the smooth-
type regions are mainly central and western provinces. The possible reason is that most of
the smooth-type regions are still dominated by thermal power generation, which consumes
mainly coal and therefore exerts great pressure on the environment. Although these regions
have started to pay attention to energy conservation and emissions reduction in recent
years and make efforts to develop clean energy, the withdrawal from the huge coal power
system is bound to lead to high sunk costs and transition costs. At present, the reform
of the thermal power generation industry is in a period of hard work, and the efficiency
of reform has not yet significantly exceeded the efficiency of output, thus restricting the
improvement of the level of environmental performance of the power industry.

4.1.4. Spatial Characteristics of Environmental Performance in the Power Industry

The natural interruption point grading method is a map grading algorithm proposed
by Chen et al. [65]. This is a method of identifying the classification intervals based on the
natural groupings inherent in the data and grouping similar values most appropriately
so that the differences between the classes are maximized. This method uses the idea of
clustering, but while clustering does not focus on the number and range of elements in
each class, the natural interruption point method tries to ensure that the range and number
of elements between each group are as similar as possible. Therefore, we used the natural
interruption point hierarchy method to study the spatial characteristics of environmental



Int. J. Environ. Res. Public Health 2022, 19, 7295 13 of 21

performance in the electric power industry. According to the average level of environmental
performance of the power industry in each region from 2010 to 2019, we classified each
region into four levels—ultra-high level, high level, medium level, and low-level regions.
The results of the classification are shown in Table 4.

Table 4. Spatial clustering effect of environmental performance by natural interruption point grad-
ing method.

Type Region

Ultra-high level Beijing, Shanghai, Jiangsu, Hainan, Qinghai

High level Inner Mongolia, Tianjin, Anhui, Fujian, Guangdong, Yunnan, Hubei,
Sichuan, Ningxia

Medium level Shanxi, Shaanxi, Chongqing, Guizhou, Jiangxi, Zhejiang, Shandong
Low level Heilongjiang, Jilin, Liaoning, Hebei, Henan, Hunan, Gansu, Xinjiang, Guangxi

(1) Ultra-high-level regions. From Table 4, we can see that the ultra-high-level regions
mainly include two categories: one is the more developed eastern region, and the other
is the region with the advantage of PV power generation. This is roughly the same as
the findings of Fan and Yuan [66], Luo [67], Jiang [68], and others. However, the division
of high-level areas in this paper is more detailed, and this paper divides high-level areas
into ultra-high-level and high-level regions. This detailed division is more conducive
to discovering the differences in the environmental performance of the electric power
industry between different high-level regions and is more conducive to discovering the
advantages of high environmental performance in the electric power industry. We believe
that the main reasons for these results are that Beijing and Shanghai are the political and
economic centers of China, respectively, and are the main importers of electricity from
the west to the east, thus generating less pollutants in their own power generation. In
addition, these two cities have a high level of economic development and civilization
and pay more attention to investment in ecological and environmental management; so,
the environmental performance of the power industry is at a very high level; Jiangsu
Province, with the advantage of containing the Yangtze River Delta, has achieved rapid
economic development, and although the overall electricity consumption is high, it is
mainly dominated by strategic emerging industries and manufacturing industries with
high technology content, and the output efficiency per unit of electricity consumption
is much higher than average. The environmental performance of the power industry
is therefore high. Hainan Province, with a small population and a lack of industrial
clusters, consumes less electricity and therefore emits less environmental pollution and has
a higher level of environmental performance. Qinghai Province, relying on its rich natural
resources, mainly produces hydropower and photovoltaic power, supplemented by coal
and wind power, and has the world’s largest concentration of grid-connected photovoltaic
power, making it one of the provinces with a higher environmental performance in the
power industry.

(2) High-level regions. As we can see from Table 4, there are four main categories of
high-level region. The first category is regions with complete power generation structures,
the second category is economically developed regions, the third category is regions that pay
attention to the control of carbon emissions in the power industry, and the fourth category is
the region with clean energy generation. Inner Mongolia is the leading source of electricity
in China, with a perfect power structure involving thermal power generation, wind power
generation, and solar power generation. It has ranked first in the country in terms of
outgoing power for many years, and a large amount of outgoing power transfers part of the
environmental pollution to the power input province, reducing the environmental pollution
emissions in the power output province; so, the expected output quantity of electricity in
Inner Mongolia is more and the non-expected output is less, which greatly contributes to
the environmental performance of the power industry. Tianjin, Fujian, and Guangdong
all belong to regions with high levels of economic development and high investment in
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environmental management. Additionally, they mainly house light industry, so the power
pollution emissions are lower. They therefore have a high-level industry environmental
performance. Although the Anhui province power industry has high carbon emissions, the
development of the power industry carbon emission reduction schedule has led to favorable
power industry carbon emissions reductions (for example, the Emission Standards for Air
Pollutants from Thermal Power Plants and the List of Key Emission Units in the Power
Generation Industry). Yunnan, Hubei, and Sichuan rely on abundant water resources and
mainly use hydroelectric power generation. They are thus clean energy provinces with less
environmental pollution emissions and therefore have higher environmental performance
in the power industry. Although Ningxia is mainly a thermal power generation province, it
has a photovoltaic power generation industrial park, which contributes to the “west–east
power transmission”. Therefore, the environmental performance of Ningxia’s electric
power industry is relatively high.

(3) Medium-level regions. From Table 4, we can see that these regions are generally
characterized by a high proportion of high-energy-consuming industries and low value-
added industries. For example, regions such as Shanxi, Shaanxi, Chongqing, and Shandong
have a huge share of thermal power generation and a negligible amount of clean energy
generation. In particular, Shaanxi and Shanxi, as resource-based provinces, are dominated
by high-energy industries and thus have huge electricity consumption. However, at the
same time, these industries are not high-value-added industries; so, the overall return
rate is relatively low. This eventually causes a mismatch between electricity consumption
and economic growth, leaving the environmental performance of the power industry at
a medium level.

(4) Low-level regions. As shown in Table 4, the low-level regions are mainly the central
and western provinces, which are generally characterized by the predominance of thermal
power generation and a low level of economic development. The reason for the different
results may be related to the time span of the study. In recent years, some western regions
have relied on the advantages of natural conditions to develop clean energy, and thus
the power sector has gradually moved away from low-level environmental performance.
Heilongjiang, Jilin, and Liaoning, as old industrial bases in Northeast China, have been
relying on crude heavy industry, resources, and energy as pillar industries, with high
power consumption but insufficient power capacity. Moreover, the three northeastern
provinces mainly focus on thermal power generation while the power environment is
seriously polluted and the economic development level is relatively backward, so the
environmental performance is at a low level. Henan province also mainly relies on thermal
power generation, and the power industry has more labor input, which leads to low
environmental performance. Gansu and Xinjiang are in the northwest region, and their
economic development level is relatively backward. Additionally, they rely mainly on
thermal power generation, which makes the environmental pollution worse. This has led
to more environmental pollution and lower environmental performance.

4.2. Redundancy Analysis of the Environmental Performance of China’s Power Industry

In the super-efficient MinDS model, the slack variable represents an optimization
quantity, which indicates the “distance” of the DMU from the effective frontier, which
reflects the input redundancy and output deficiency of the DMU. In order to measure
the relative redundancy level of each input–output indicator, we define the redundancy
index. The redundancy degree is expressed as the ratio of the absolute amount of the
slack scalar of each indicator to the original value of the input or output indicator. In
this study, we first screened out the regions with efficiency values less than 1 from 2010
to 2019; i.e., the inefficient regions that needed improvement. Then, the redundancy of
each indicator in these regions was calculated. Using the redundancy degrees of these
indicators, it is possible to analyze both the gap between each indicator and the optimal
level of environmental performance of the power industry nationwide and in each region,
as well as their trends. It provides a clear guiding direction for the enhancement and
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improvement of the environmental performance of the power industry nationwide and in
each region.

4.2.1. Analysis of the Redundancy Degree of the Environmental Performance of the
National Power Industry

We used the average of each indicator in the inefficient regions from 2010 to 2019 to
represent the redundancy of each input–output indicator of environmental performance
of the national power industry from 2010 to 2019. We use histograms to represent the
redundancy of each indicator of the environmental performance of the electric power
industry in China in 2010 and 2019, as shown in Figure 3.
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From Figure 3, we can see that, as a whole, the redundancy of input–output indicators
in China’s power industry is from high to low in the order of labor input, technology
input, environmental pollution emission, capital input, power generation, gross regional
product, and fuel input. Compared with 2010, the redundancy of fuel input, labor input,
and power generation in the electric power industry decreased in 2019. Of these, labor
input redundancy declined the most, by 16%, which matches the reality of the gradual shift
from a demographic dividend to a technological dividend in our economic growth. The
redundancy of capital input and technology input and the shortage of output indicators,
such as regional GDP and environmental pollution emissions, have all increased. Among
them, the redundancy of technology input has risen the most, which is more related to the
excessive consumption of plant electricity rate and line loss rate of electric power enterprises
in China. The increase in the deficiency by regional GDP indicates that electricity, as one
of the factors of production, is declining in its contribution to economic development. We
argue that the reason for this is that the pollution generated by the electric power industry
affects the health level and thus the labor productivity. Therefore, the increase in the
contribution of electricity as a factor of production to economic growth is offset by the
damage to economic growth from pollution in the electricity sector.

4.2.2. Analysis of the Redundancy of the Environmental Performance of the Power
Industry in Each Province

In order to explore the gap between each indicator and the optimal level of environ-
mental performance in the power industry in each region and the trend of change, we drew
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bubble diagrams, as shown in Figures 4 and 5. In Figures 4 and 5, the area of the bubble
indicates the redundancy of the indicator, and the larger the area the greater the redundancy
of the indicator in the region and the greater the proportion of improvement needed. From
the results, we can find that from 2010 to 2019, Guizhou, Shanxi, and Zhejiang changed
from efficient provinces to inefficient provinces, while Jilin, Shandong, Sichuan, Xinjiang,
and Yunnan changed from inefficient provinces to efficient provinces. In terms of indicator
redundancy, the majority of indicators have improved in varying degrees from 2010 to
2019, with the greatest improvements being seen in labor input redundancy. This also
confirms the phenomenon mentioned earlier in this paper. With the disappearance of
China’s demographic dividend and the improvement of labor productivity, the waste of
labor resources in each region has been significantly reduced. From the current situation,
there is redundancy of capital input in Gansu, Guizhou, and Henan, and these regions
should be limited in their installed capacity. There is redundancy of technical input in
Hebei, Henan, Heilongjiang, Hunan, Jiangxi, Shanxi, and Shaanxi, and these regions should
make efforts to reduce the consumption of plant electricity rate and line loss rate. There
is excessive undesired output of environmental pollution emission in Guangxi, Jiangxi,
Liaoning, Shaanxi, Zhejiang, and Chongqing; therefore, these regions should redouble their
efforts to promote the development of advanced power generation technologies that have
high efficiencies, low emissions, and multiple cycles.
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5. Conclusions and Insights

Based on previous studies, this paper constructs an environmental performance eval-
uation index system based on the electric power industry as an example, by which the
environmental performance level of key polluting industries in China is evaluated, the
spatial and temporal characteristics of the environmental performance level of each region
in China are explored, the gap between the current environmental performance level and
the optimal level is quantitatively analyzed, and the path to improve the environmental
performance level of key polluting industries in China is proposed. The main contributions
of this paper are threefold. First, we incorporate technological inputs into the environmen-
tal performance evaluation index system of the electric power industry, which can better
reflect the real inputs of the electric power industry and measure the results more accurately.
Second, we adopt the MinDS model for measuring the environmental performance level,
which can quantitatively analyze the gap between each indicator and the optimal level.
Third, we propose a redundancy index, which can be used to compare the redundancy
of each indicator and then judge the main efficiency levels of different factors. The main
conclusions drawn in this paper are as follows.

(1) The overall environmental performance of China’s electric power industry shows
the characteristics of an inverted U-shaped first and then a U-shaped trend. The environ-
mental performance of the electric power industry in each region presents an asymmetrical
state with 2014 as the structural change point, with convergence development coming first
followed by differentiation development.

(2) The trend of environmental performance changes in the electric power industry in
each region can be roughly divided into three categories: rising, falling, and stable. The
rising type includes Beijing, Hebei, Shanghai, Jiangsu, Fujian, Shandong, Sichuan, Yunnan,
Jiangxi, Liaoning, Xinjiang, and Hainan. The falling type mainly includes Qinghai, Shanxi,
Guizhou, Zhejiang, and Hubei. The stable type mainly includes Gansu, Guangxi, Hunan,
Jilin, Shaanxi, Henan, Tianjin, Anhui, Heilongjiang, Inner Mongolia, Chongqing, Ningxia,
and Guangdong.

(3) The spatial clustering effect of the environmental performance of the power indus-
try in each region is divided into four types: ultra-high level, high level, medium level, and
low level. The ultra-high-level regions are Beijing, Shanghai, Jiangsu, Hainan, and Qinghai.
The high-level regions are Inner Mongolia, Tianjin, Anhui, Fujian, Guangdong, Yunnan,
Hubei, Sichuan, and Ningxia The medium-level regions are Shanxi, Shaanxi, Chongqing,
Guizhou, Jiangxi, Zhejiang, and Shandong. The low-level regions are Heilongjiang, Jilin,
Liaoning, Hebei, Henan, Hunan, Gansu, Xinjiang, and Guangxi.

(4) The input–output indicators of environmental performance in China’s power
industry have different degrees of redundancy. The redundancy of labor input is the largest,
followed by capital input, and finally technology input, power generation, regional GDP,
and fuel input. There is redundancy in capital inputs in Gansu, Guizhou, and Henan;
redundancy in technology inputs in Hebei, Henan, Heilongjiang, Hunan, Jiangxi, Shanxi,
and Shaanxi; and excessive non-desired outputs of environmental pollution emissions in
Guangxi, Jiangxi, Liaoning, Shaanxi, Zhejiang, and Chongqing.

(5) The inefficient provinces are not invariant across regions. During the analysis
period, Guizhou, Shanxi, and Zhejiang moved from efficient provinces to the ranks of
inefficient provinces, and Jilin, Shandong, Sichuan, Xinjiang, and Yunnan moved from
inefficient provinces to the ranks of efficient provinces; the redundancy degree of most
indicators in each inefficient province has improved to different degrees, among which the
labor input redundancy has improved the most.

This paper argues that efforts should be made in the following aspects to promote the
improvement of the environmental performance level of key polluting industries in China.

(1) Improve the supervision and inspection mechanism of the implementation process
of pollution control in key polluting industries. From the previous analysis, it can be
seen that the release of environmental pollution control-related documents can greatly
enhance the environmental awareness of environmental pollution subjects, but the results
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of the implementation process vary greatly from region to region. The implementation pro-
cess should be concretized and involve the development of emission reduction standards,
regular publication of the list of exceedances, proposed corrective measures, and track-
ing implementation. This is the only way to fundamentally improve the environmental
performance of key polluting industries.

(2) Each region should adopt differentiated strategies to improve the environmental
performance of key polluting industries according to local conditions. Regions with a high
level of economic development should make full use of their economic base to develop car-
bon emission reduction technologies and actively export them to maximize the technology
spillover effect. For western regions with inherent advantages, they should make full use
of their own advantages to build photovoltaic power parks to serve the national strategy
of “west–east power transmission”. For areas with mainly thermal power generation, it
is difficult to realize the transformation of the power industry structure in a short period
of time; so, the production efficiency of the original power generation method should
be improved. In short, the whole country should play to the strengths of each region to
complement each other’s weaknesses and optimize the environmental performance of key
polluting industries as a whole.

(3) Optimize the combination of labor, capital, and technology input factors and im-
prove the efficiency of factor inputs. Labor, capital, and technology inputs are important
factors that limit the level of environmental performance of key polluting industries in
China and in each region. Today, when the demographic dividend no longer exists, improv-
ing labor efficiency is a necessity. The excessive redundancy of labor should be reduced by
streamlining personnel, improving the intellectual quality and skill quality of labor, and
establishing an effective wage-restraint mechanism. Key polluting industries tend to invest
more, and the excessive investment of capital is a serious waste of resources, which should
be eliminated by replacing outdated equipment, accurate measurements, and updating as
needed. The excessive investment of technology is mainly caused by high plant electricity
rates and excessive consumption of line loss rates, which should be vigorously targeted
via research on and development of low energy consumption wind and smoke systems,
desulfurization systems and powder making systems, power grid transformations, and
sound line loss management systems. The inputs of labor, capital, and technology cannot
be considered in isolation; only by optimizing the quantity and quality of labor, capital,
and technology can we fundamentally improve the environmental performance of key
polluting industries in China and its regions.

This paper analyzes the environmental performance, spatial and temporal characteris-
tics, and optimization paths of key polluting industries, represented here by the electric
power industry, using the super-efficient MinDS model. In the future, we can use the
super-efficient MinDS–Malmquist combination model to further analyze the changes in
environmental technology in the electric power industry and reveal the sources of environ-
mental performance changes. According to our analysis, the environmental performance
of China’s electric power industry shows a rising–declining–rising trend, and the standard
deviation shows a declining–rising trend, indicating that the individual differences between
different regions first decreased and then expanded, which may be related to the scale of
the electric power industry and environmental regulation. There may be a threshold effect,
which should further be explored in the future.
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