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Abstract: As the most important driving force for ensuring the effective supply of grain in the country,
the production stability of the major grain-producing areas directly concerns the national security of
China. In this paper, considering the “water–soil–energy–carbon” correlation, water, soil and energy
resource factors, and carbon emission constraints were included in an index system, and the global
common frontier boundary three-stage super-efficient EBM–GML model was used to measure the
grain production resource utilization efficiency of the major grain-producing areas in China from
2000 to 2019. This paper also analyzed the static and dynamic spatiotemporal characteristics and the
restrictions of utilization efficiency. The results showed that, under the measurement of the traditional
data envelopment analysis model, the grain production resource utilization efficiency in the major
producing areas is relatively high, but there is still room to improve by more than 20%, and grain
production still has enormous growth potential. After excluding external environmental and random
factors, it was found that the utilization efficiency of grain production resources in the major pro-
ducing areas decreased, and the efficiency and ranking of provinces changed significantly. External
factors inhibit pure technical efficiency and expand the scale efficiency. The utilization efficiency
of Northeast China was much higher than that of the Huang-Huai-Hai region and the middle and
upper reaches of the Yangtze River region, and its grain production resource allocation management
had obvious advantages. The total factor productivity index of food production resources showed
an upward trend as a whole, and its change was affected by both technological efficiency and tech-
nological progress, of which technological progress had the greater impact. Therefore, reducing the
differences in the external environment of different regions while making adjustments in accordance
with their own potential is an effective way to further improve the utilization efficiency of food
production resources.

Keywords: grain production; three-stage super-efficiency EBM; major producing areas; external
environmental factors; utilization efficiency

1. Introduction

Since ancient times, food has always been a top priority in China’s governance and
national security. As a country with a large population and a relative shortage of water
and soil resources, China uses merely 7% of the world’s total freshwater resources and
8% of the world’s arable land resources to produce 1/4 of the food and feed about 1/5 of
the population of the world. This is no mean feat. In other words, resolving China’s food
problems is equivalent to resolving the world’s food security difficulties [1]. It has been
over 70 years since the founding of the People’s Republic of China. Over the past seven
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decades, grain output has increased nearly fivefold, and the per capita grain supply has
doubled. In addition, serving as the main driving force that guarantees effective national
grain supplies, the major producing areas have long been responsible for more than 75%
of the national grain output and more than 90% of the increase in output. However, the
negative externalities brought about by the “Three High” mode of agriculture, such as
tightening restraints on resources, low efficiency of inputs, and ecological environment
degradation, have become intractable problems for increasing grain production, which
seriously discourages the development of the food industry in China. The resource uti-
lization efficiency of grain production is an important index with which to measure the
input–output relationship in production. Guided by green development, we should imple-
ment the rural revitalization strategy and the national food security strategy. It is necessary
to adjust and optimize the existing production resource elements. We need to achieve
the goal of increasing grain production by improving the efficiency of resource allocation.
Therefore, in order to scientifically and accurately measure the utilization efficiency of grain
production resources in major grain-producing areas, we should explain its characteristics
and identify the existing problems. We need to devise effective ways of improving grain
productivity and to further develop the food security theory.

Resource allocation is a hot issue in the field of food or agricultural security, which is
the reason why numerous agricultural resources and environmental studies are based on
this. There are many choices in the methods of measuring resource utilization efficiency.
These methods include the life cycle method, the ratio analysis method, the index system
method, the production function method (C-D), stochastic frontier analysis (SFA), and
data envelopment analysis (DEA). Most studies focus on agricultural allocative efficiency.
For example, Reddy [2] used Malmquist productivity indices (MI) to examine regional
differences in agricultural productivity growth in Andhra Pradesh from 1956 to 2007 and
found that there was convergence in total factor productivity growth between developed
coastal areas and less developed areas. Total irrigated area, fertilizer use, and labor supply
were the limiting factors for increasing yield. Additionally, market infrastructure and the
availability of credit are critical for improving efficiency. Ferreira and Feres [3] adopted
the stochastic production frontier model to measure farm scale and land use efficiency in
the Amazon region of Brazil in order to explore their relationship. They found that land
use intensification still has room to expand and that there was a u-shaped relationship
between these two factors. Toma et al. [4] used data envelopment analysis to measure
agricultural efficiency in EU countries from 1993 to 2013. It was found that all EU coun-
tries have experienced the process of increasing or decreasing economies of scale. It was
pointed out that European countries have the potential to improve production efficiency
by adjusting inputs, and the reason for efficiency improvement is the implementation
of the common agricultural policy. Most studies in the literature involve the stochastic
forward edge method and the data envelopment analysis method [5]. As a parameter
method, the stochastic frontier analysis method sets the production function based on
economic theory and identifies calculation errors to facilitate statistical inference. Studies
on agricultural allocative efficiency are mainly carried out using efficiency measurements
and their influencing factors [6,7], spatial effect [8,9], and coordinated economic develop-
ment [10]. However, data envelopment analysis has become the mainstream method in
agricultural allocative efficiency research because it is a non-parametric method and has
many advantages, such as avoiding constructing production functions, the dimension of
input–output index has no influence, there is no subjective empowerment, and there are
improved relaxation variables. Most researchers use the DEA method to measure allocative
efficiency evaluation [11–13] and identify influencing factors and spatial effects [14–16].

It can be found that, although the conventional DEA model can solve the practical dif-
ferences in efficiency in the process of agricultural production, the evaluation of efficiency
in each region does not consider the impact of external environmental factors. In particular,
the real agricultural resource allocation level, production and utilization efficiency, man-
agement level evaluation, and other aspects are unfair. Therefore, a few scholars have tried
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to explore a more comprehensive and accurate efficiency evaluation method by applying
the three-stage DEA model proposed by Fried et al. [17,18]. The model is a combination
of the data envelopment analysis method and the stochastic frontier production function
method. While retaining the advantages of the non-parametric method, the influences
of environmental factors and random error on the efficiency of decision unit are fully
considered. This method makes up for the disadvantages of the previous DEA evaluation
of being interfered with by external factors. On this basis, some researchers have studied
agricultural productivity in different years or regions. Among them, Guo et al. [19] and He
and Liu [20] evaluated and classified China’s agricultural production efficiency in 2008 and
2012, respectively. Pan et al. [21] used macro data to analyze the changes in agricultural
production efficiency in 11 provinces of the Yangtze River Economic Belt over a decade.
A few researchers have analyzed the agricultural production efficiency of the adopters
of conservation tillage using micro-survey data and discussed the influence of environ-
mental factors on agricultural production efficiency [22]. In addition, some scholars have
refined the second stage and analyzed the difference in agricultural production efficiency
from the perspectives of the environmental effect and luck difference of efficiency [23,24].
Wang et al. [25] pointed out that the difference in external environment was due to different
agricultural policies. Chen et al. [24] and Zhang et al. [26] conducted internal regional eval-
uations of the production efficiency from functional grain areas and major producing areas
during the same period. However, it was found that the conclusions about the changing
direction of efficiency of major producing areas and the influence of the external environ-
ment are contradictory. It can be found that studies on agricultural allocation efficiency
do not consider regional heterogeneity, and the same categories can be compared to each
other as the basic premise of DEA measurement. In particular, the agricultural production
objectives, endowments, and characteristics of different regions are not the same, and the
measurement results analyzed in the unified model may not accurately reflect reality [27,28].
Additionally, the choice of input and output index building is relatively constant, mainly
in production input elements (labor, land, fertilizers, pesticides, machinery, etc.) or the
idea of constructing total factor productivity. Most studies have failed to take into account
the large statistical deviations of agricultural labor force indicators in different regions.
With the rapid development of urbanization in China, farmers have become part-time
farmers, and most of them are not engaged in agricultural production [29–31]. Therefore,
it is difficult to determine the size of the labor force truly participating in agricultural
production from the panel data of the National Bureau of Statistics; thus, it is better to
reflect on the accurate situation of the resource allocation level of grain production by
excluding labor force indicators in index construction. Water, soil, energy, and carbon
are important resource elements in the agricultural production process, which have long
received due academic attention [32–35]. Some of them are studied from the perspective
of a single factor, for example, carbon emissions, water footprints, arable land use, and
energy analysis [36–39]. A few studies have been carried out in terms of two or more
factors, for example, from the perspective of soil and water resource loss [40], utilization
and matching [33,41], or expansion from the perspective of carbon emission of water and
soil [42,43]. Additionally, some have considered the water, soil, and carbon correlation
perspective to study agricultural efficiency [44–47]. Therefore, on the basis of previous
research results, it is worth further analyzing the utilization efficiency of food production
resources considering the water–soil–energy–carbon relationship as an indicator.

To sum up, it is a mature and effective method to study the allocation efficiency of
grain production resources using a data envelopment analysis. However, in the design
of input–output indicators, the separation of environmental factors and random errors
is still difficult in academic circles but important for forming the basis of policy for the
design of agricultural resource allocation in major grain-producing areas. Therefore, this
paper considered water, soil, energy, and carbon as important input–output indicators in
the process of grain production and applied the global common frontier three-stage super-
efficiency EBM–GML model to scientifically measure the utilization efficiency of grain
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production resources in major grain-producing areas in China from 2000 to 2019 to identify
the impact of the external environment on efficiency. The research significance of this paper
lies in identifying the impact of various external environments on grain resource allocation
efficiency, finding out the intensity and direction of the impact, evaluating the resource allo-
cation efficiency level of each main grain producing area, analyzing its dynamic and static
spatiotemporal characteristics and constraints, and theoretically analyzing the potential of
grain production in each region. It provides policy reference for the improvement of grain
production efficiency in major grain producing areas.

2. Overview of the Study Area, Research Methods, and Data Selection
2.1. Overview of the Study Area

According to the proposals of the State Council on deepening the reform of the
grain circulation system in 2001, 31 provinces (autonomous regions and municipalities
directly under the Central Government) were divided into 13 major producing areas,
7 major marketing areas, and 11 balanced production and marketing areas. Among the
major grain-producing areas (green parts in Figure 1), Heilongjiang, Jilin, Neimenggu,
Henan, and Anhui are net grain-transferring provinces, while Jiangsu, Shandong, Jiangxi,
Hunan, and Hebei are rich in grain production and demand. The other three provinces,
Liaoning, Hubei, and Sichuan, have relatively low grain production and demand. With the
continuous advancement of industrialization and urbanization, the former Beidahuang (the
Great Northern Wilderness in Northern China) has now become the northern warehouse,
with abundant grain, and the transportation of grain from the south to the north has also
been transformed into the other way round. As the major grain supply base in China, its
strategic significance is self-evident. According to the Statistical Yearbook of China, China’s
total grain output in 2021 was 682.85 million tons, and it has remained above 650 million
tons for seven consecutive years. The grain output of the 13 major grain-producing areas
was 536.03 million tons, accounting for 78.55% of the total, and the unit yield was about
5621 kg per hectare. In particular, the five largest grain-producing areas accounted for 99%
of the country’s grain transfers. As China’s demand for food continues to rise, the amount
of organic matter in arable land is only 43% of the world average. In such an environment,
China has begun to pay attention to green and low-carbon development, especially as the
pure fertilization intensity decreased from 370 kg/ha in 2015 to 313 kg/ha in 2021. It can be
said that stable grain production in major grain-producing areas directly concerns national
food security. Therefore, it is of great value to research the major grain-producing areas.
Due to the relativity of the envelope analysis method and the homogeneity required to
enable its application, this paper selected 13 provinces in the major producing areas as the
research subject.

2.2. The Research Methods

Data envelopment analysis is an efficiency evaluation and analysis method based
on the principle of linear programming that is described by the distance function. The
measurement result was based on the relative efficiency value of the input and output,
reflecting whether the resource allocation can achieve the relative optimal state. With the
continuous development of the data envelopment analysis method in theoretical research
and practical applications, dozens of improved methods have emerged. Among them, Tone
and Tsutsui [48,49] proposed the super-efficient SBM model by combining the SBM model
with the super-efficient method to realize the optimization of non-expected value, exclude
the decision unit from the participation, and remove the constraint that the efficiency
value of effective decision unit is below 1, but it is still difficult to avoid the loss of the
original proportion information of the projected value of the efficiency frontier. In this
regard, Tone and Tsutsui [50] proposed a mixed EBM model containing radial and SBM
distance functions. The GML index is also known as the total factor productivity index
with global reference, which avoids the defects of non-transitivity and linearity existing
in the traditional ML index by constructing a global production possibility set [51]. As a
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large number of studies have found that heterogeneity is not considered in DEA models,
common frontier analysis DEA models are gradually proposed and applied. The super-
efficiency EBM model can eliminate the evaluated DMU from the reference set, so the
efficiency value of the evaluated decision-making unit (DMU) is obtained by referring to
the front surface formed by other DMU so that the effective DMU value is not limited by 1
so that the effective DMU can be distinguished. The GML index was developed on the basis
of the Malmquist–Luenberger (ML) index. This method can effectively avoid the problem
of the ML index having no linear solution, and the GML index has the characteristics of
transitivity and multiplicativity. The GML index can be decomposed into the efficiency
change (GEFC) and technology change (GETC). GEFC can be further decomposed into
the pure efficiency change (GPEC) and scale efficiency change (GSEC), and GETC can
be further decomposed into the pure technology change (GPTC) and technology scale
change (GSTC).
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Therefore, the EBM–GML model can avoid failing to estimate the efficiency loss be-
cause the time of research and DMU are in the same production frontier. In terms of the
agricultural DEA efficiency study, part of the factors contributing to the improvement of
agricultural production efficiency include the roles of external environment and random
interference, which is not entirely caused by the improvement of technological level and
production scale. The three-stage DEA model can identify the influences of various external
environments on the evaluation of agricultural efficiency, including the external differences
of agricultural policy, agricultural investment, and agricultural natural endowment. By
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eliminating these external differences in agricultural production, the production efficiency
of each region or farmer can be reasonably evaluated theoretically, and the technical level
of agricultural resource allocation can be reflected. Therefore, based on previous studies
and the above analysis, the author put forward the research hypothesis of this paper ac-
cording to the relationship between the allocation efficiency of food production resources,
relaxation variables, and the external environment. Research hypothesis H1: The exter-
nal environment significantly affects the relaxation variables of various food production
resources. Research hypothesis H2: The difference in external environment reduces the
overall allocation efficiency of food production resources in major grain-producing areas.
Research hypothesis H3: Under the influence of the external environment, the direction
and intensity of grain production resource allocation efficiency in different regions are
different. Based on the characteristics of the above model, this paper constructed the
global common frontier boundary three-stage super-efficient EBM–GML model. The main
purpose was to combine the common foreword super-efficiency EBM model with the SFA
model and to use the external environmental factors to strip the slack variables of the input
index and obtain all the slack variables caused by the management factors. The processed
variables are re-calculated to obtain more accurate relative effective values. At present, this
paradigm method has become relatively common for measuring and breaking down the
dynamic changes in TFP. It can effectively avoid the lack of clearly vertical comparison
benchmarks due to the differences in production fronts during different periods. The
method is as follows:

The first stage and the third stage: Phase one and phase three had the same approach.
The first stage was the traditional DEA model. It used the principle of mathematical
programming to obtain efficiency according to multiple groups of input–output data. The
total efficiency value obtained was the product of the allot efficiency and technical efficiency.
Subsequently, the assumption of fixed return to scale was changed to variable return to
scale by the scholars′ constant revision so that the technical efficiency was decomposed
into scale efficiency and pure technical efficiency; technical efficiency = scale efficiency ×
pure technical efficiency, total efficiency = technical efficiency × allot efficiency. In this way,
the low scale and low efficiency of production technology were identified, and the two
reasons for the low efficiency of technology were also found.

The second stage: Using the method proposed by Fried et al. [17,18], in this stage,
the N independent stochastic frontier regression was estimated, and all input relaxation
variables caused by the management factors were obtained by regression stripping of the
input relaxation variables in the first stage. Furthermore, the processed variables were put
back into the super-efficiency EBM–GML model for accurate measurement. The specific
formula is as follows:

Sxy = f
(
zyi; βyi

)
+ vxy + µxy

(x = 1, 2, · · · , X; y = 1, 2, · · · , Y; i = 1, 2, · · · , I)
(1)

where Sxy in Formula (1) is the relaxation variable of the input index y of decision unit
x after the calculation of the super-efficiency EBM before adjustment. zmi is the external
environmental variable affecting efficiency change, and βyi is the coefficient of zmi. vxy
and µxy are the mixed bias terms, where vxy represents the random disturbance factors
affecting the efficiency change, and µxy is the management factor affecting the relaxation
variable. Both the random disturbance factors and the management factors follow the
normal distribution with a mean value of 0 and a variance of σ2

v . βmi, vnm, and µnm were
derived according to the separation of µxy by its predecessors, and the parameters were
substituted into Formula (2) to further adjust the input index values:

X∗nm = Xnm +
[

f (zmi; βmi)
∗ + v∗nm

]
(n = 1, 2, · · · , N; m = 1, 2, · · · , M; i = 1, 2, · · · , I)

(2)
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In Formula (2), X∗mn refers to the input quantity after removing environmental and
random factors by means of stochastic frontier analysis. F (zmi; βmi) is the maximum, and
max is the subtraction of f ( zmi; βmi) and f ( zmi; βmi). v∗mn is the maximum and max is the
subtraction of v∗mn and v∗mn.

In the third stage, the revised input index value was re-invested into the super-
efficiency EBM–GML model for measurement, and the relatively real efficiency value that
is almost immune from external influences was obtained. The first stage represents the
actual allocative efficiency of grain production (utilization efficiency), and the third stage
reflects the resource allocation and management level of grain production in each region
after the adjustment of the second stage.

2.3. Variables Selection and Data Sources
2.3.1. Input–Output Indicator

This paper was based on the panel data of 13 major grain-producing areas in China
from 2000 to 2019. The term ‘grain’ in this paper means a general term for four major
crops including rice, wheat, corn, and soybean. In terms of index selection, referring to
the existing research, it considers the water-soil-energy-carbon correlation, the grain water
footprint (water), crop planting area (soil), chemical fertilizer applied (chemical), and total
power machinery (mechanical) as input indicators. Among them, the data of fertilizer
and total power machinery need to be converted according to the proportion of the sown
area of the four grains in the sown area of agriculture. The water footprint of crops was
calculated separately for the four crops and then added together (see Tables S1 and S2). In
terms of the output index, in order to offset the impact of price changes on the grain output
value, the total output of the four major crops was taken as the desired output, and the
total carbon emissions (carbon) in the converted grain production process were taken as
the undesired output.

2.3.2. External Environmental Indicators

External factors affecting the utilization efficiency of food production resources mainly
fall into two categories: external environmental factors and random errors. As external
environmental factors are non-direct input factors in efficiency measurements and are
not controlled by decision-making units, some random errors can also be eliminated
when external environmental factors are eliminated using the stochastic frontier analysis
model. This paper referred to the research of Pan et al. [21] and Chen et al. [52]. Based
on data availability, this paper selected the urbanization level, economic development
level, affected degree, resource endowment, and agricultural financial support as indicators
of environmental variables, which are represented by urbanization rate, per capita GDP,
affected area, per capita arable land area, and the local fiscal spending on agriculture,
forestry, and water as specific indicators, respectively.

2.3.3. Data Source

The research methods of Xu and Mu [53] and Cao et al. [54] were used to calculate the
water footprint of grain production in this paper. The crop growth data and meteorological
data were derived from the “study on the water demand contour map of China’s major
crops (books)”, “Cropwat Software”, the database of The United Nations Food and Agricul-
ture Organization, the China Meteorological Data Network (http://data.cma.cn, (accessed
on 15 October 2021)), provincial statistical yearbooks, and previous research [52,55]. The
calculation of carbon emissions from grain production adopted the coefficients and meth-
ods used by Cheng et al. [56] and Li Bo et al. [57], and the basic data of carbon sources
were collected from provincial statistical yearbooks. In addition to the calculation of crops’
water footprint and carbon emissions, the remaining data indicators and variables were
derived from provincial statistical yearbooks, the National Bureau of Statistics database
(https://data.stats.gov.cn, (accessed on 8 January 2022)), and the “China rural statistical
yearbook” from 2001 to 2020.

http://data.cma.cn
https://data.stats.gov.cn
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3. Results
3.1. Empirical Analysis of the First Stage of Traditional Super-Efficient EBM

In this section, by applying the MaxDEA 8 Ultra software measurement and the input-
oriented common frontier super-efficiency EBM model, considering the undesired outputs,
the grain production resource utilization efficiency of 13 major grain-producing areas in
China from 2000 to 2019 was estimated. The comprehensive technical efficiency shown in
this paper is a comprehensive measurement and evaluation of the allocation capacity or
utilization efficiency of grain production resources in each region under the assumption
of constant scale. In this paper, the technical efficiency is the technical level of effective
matching of grain production resource elements under the assumption of variable returns
to scale, while scale efficiency is the efficiency separated from both, reflecting the scale of
grain production resource allocation. The specific efficiency measurement results of the
first stage are shown in Table 1.

Table 1. The comprehensive technical efficiency, pure technical efficiency, and scale efficiency of grain
production resources allocation in the major grain-producing areas of China from 2000 to 2019 in the
first stage.

Region Comprehensive Technical Efficiency Pure Technical Efficiency Scale Efficiency

Efficiency Value Rank Efficiency Value Rank Efficiency Value Rank

Heilongjiang 0.866 3 0.894 3 0.966 9
Liaoning 0.798 7 0.913 2 0.877 12

Jilin 0.917 1 0.921 1 0.995 1
Neimenggu 0.813 6 0.871 5 0.937 11

Hebei 0.581 11 0.586 12 0.991 3
Shandong 0.594 10 0.621 11 0.959 10

Anhui 0.556 13 0.569 13 0.978 5
Henan 0.576 12 0.669 10 0.875 13
Jiangsu 0.677 9 0.694 9 0.977 6
Sichuan 0.841 5 0.857 6 0.983 4
Hubei 0.767 8 0.789 8 0.974 8
Hunan 0.849 4 0.853 7 0.994 2
Jiangxi 0.871 2 0.892 4 0.976 7

Max 0.917 0.921 0.995
Mini 0.556 0.569 0.875

Weighted average 0.733 0.767 0.957

Note: The three efficiency values of each region in the table are the average values from 2000 to 2019. The overall
efficiency is a weighted average of the total output of each region in the major producing areas.

Table 1 shows the measurement results of the traditional envelope analysis model.
Without considering various areas under the influence of external environmental factors
and random errors, Jilin, Jiangxi, and Heilongjiang provinces have the highest efficiency
level of grain resource allocation, while Shandong, Hebei, and Anhui are the lowest-level
provinces. From 2000 to 2019, the grain production resource allocation efficiency in major
producing areas varied greatly, with a weighted average of 0.733 but a total distance value
of 0.361. The weighted average of the pure technical efficiency in each region was 0.767, and
the differences between the pure technical efficiency in each region were also significant,
with the gap between extreme values being 0.352. The distribution of the pure technical
efficiency was similar to that of the comprehensive technical efficiency. The weighted
average of scale efficiency in each region was the highest, reaching 0.957, and the median
was as high as 0.977. Compared with pure technical efficiency and comprehensive technical
efficiency, the gap among extreme values was relatively low, merely 0.120. Comprehensive
technical efficiency and pure technical efficiency increased as a whole, with comprehensive
technical efficiency increasing from 0.727 to 0.798 and the pure technical efficiency increas-
ing from 0.782 to 0.871. However, after 2014, affected by the decline in scale, the synergy
degree of the two decreased year by year. As a result, the growth rate of pure technical
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efficiency was much higher than that of comprehensive technical efficiency. Meanwhile,
scale efficiency tended to be flat from 2000 to 2014 and declined slightly year by year from
2015, decreasing from 0.938 to 0.927. In conclusion, without considering the influence of
external environmental factors and random errors in major grain-producing areas, the scale
efficiency of major grain-producing areas in China is relatively high on the whole, and the
improvement of comprehensive technical efficiency is mainly restricted by the level of pure
technical efficiency.

3.2. SFA Regression Results of the Second Stage

In order to feasibly compare the utilization efficiency of grain production resources
in major grain-producing areas, it is necessary to clarify the influence degree of external
factors on the utilization efficiency of grain production resources in each region and strip
out the influence of the external environment and random errors on the utilization efficiency
of grain production resources. Therefore, in the second stage, stochastic frontier analysis
software (FRONTIER Version 4.1 (The computer program FRONTIER Version 4.1 was
written by Tim Coelli who is professor at the Centre for Efficiency and Productivity Analysis
(CEPA) in Australia.)) was used to conduct SFA regression estimation. In the regression
model, taking the relaxation variables of input indicators in the first stage as dependent
variables and taking urbanization rate, GDP per capita, agricultural disaster area, arable
land per capita area, and local government expenditure on agriculture, forestry, and water
conservancy as independent variables, if the regression coefficient is positive and significant,
an increase in the environmental variable will cause an increase in the slack variables, and
the efficiency of food production resources is thus hindered (see Table S3). The results are
shown in Table 2.

Table 2. Regression results of the second stage SFA.

Dependent Variable

Independent Variable Grain Water Footprint
Relaxation Variables

Grain Sown Area
Relaxation Variable

Fertilizer Relaxation
Variable

Total Dynamic
Relaxation Variable

of Machinery

Level of urbanization −0.305
(−0.77)

−5.33 × 102

(−0.65)
−0.725 ***

(−2.80)
5.08 × 103 ***

(8.83)

Disaster degree −7.21 × 10−3 ***
(−5.43)

−0.167 ***
(−9.32)

−2.28 × 10−3 **
(−2.39)

2.42 × 10−3

(6.52 × 10−2)

Level of economic
development

−7.23 × 10−4 ***
(−4.46)

−1.57 × 10−2 ***
(−7.49)

5.71 × 10−4 ***
(3.84)

−2.50 × 10−2 ***
(−5.51)

Resources endowment 1.73 × 10−3

(0.95)
8.34 × 10−2 ***

(3.91)
−4.80 × 10−3 ***

(−3.73)
−7.65 × 10−3

(−0.12)

Financial support for
agriculture

5.24 × 10−2 ***
(4.46)

0.241
(1.48)

2.44 × 10−2 **
(2.57)

−0.136
(−0.44)

Sigma-squared 1.87 × 104 ***
(1.35 × 104)

8.34 × 105 ***
(7.21 × 105)

3.05 × 103 ***
(5.88)

3.63 × 106 ***
(3.58 × 106)

Gamma 0.984 ***
(6.89 × 102)

0.937 ***
(1.72 × 102)

0.948 ***
(77.4)

0.926 ***
(131)

Log likelihood −1090 −1750 −1010 −1920

LR 735 376 452 390

Note: The t values of the corresponding coefficients are in parentheses. *** and ** are the statistical significance
levels of the corresponding system at the 0.01 and 0.05 levels, respectively.

The SFA regression results in Table 2 show that the Log Likelihood function value and
single-tailed error test value (LR) achieved better estimation effects, and the model was set
reasonably. Most of the regression coefficients can pass the significance test, and the gamma
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value of each input relaxation variable was close to 1, indicating that, in the mixed error
term, management factors play a dominant role in the influence of each input relaxation
variable, and random factors have little influence on the input relaxation variable, so it is
necessary to exclude the environmental and random factors.

(1) The regression of the relaxation variables of the urbanization level on the amount of
fertilizer application and the total power of machinery passed the significance test of
1%. The regression coefficients of the relaxation variables of the total power of chemical
fertilizer machinery were negative and positive, respectively, which indicates that the
increasing urbanization level will reduce the redundancy of the chemical fertilizer
application amount in the grain production process and increase the redundancy
of the agricultural capital investment, mainly based on the total power resources of
mechanical machinery.

(2) The regression coefficients of the three relaxation variables of the degree of disaster on
the water footprint of grain production and the sowing area of grain and the amount of
fertilizer application were all negative, and all of them passed the significance test of at
least 5%. The greater the degree of disaster, the lower the relaxation variable, indicating
that disasters have more of an impact on low-level farmland, which is consistent with
the conclusions of He and Liu et al. [20] and Zhang et al. [58]. In the wake of a natural
disaster, modern agricultural technologies are able to provide support for farmland
disaster recovery. In addition to the effective replacement of resources, the advanced
natural disaster prevention and control system and the construction of high-standard
farmland have consolidated China’s ability to ensure food security so that it can
effectively resist the influence of natural disasters on agricultural production.

(3) The regression of economic development to the four input relaxation variables all
passed the significance test of 1%. Among them, the coefficients of water footprint of
grain production, sowing areas of grain, and total mechanical power were all negative,
and the relaxation variable of fertilizer application was positive. This means that
greater economic development in each region in the major grain-producing areas can
effectively reduce the redundancy of the three inputs and, on the other hand, will
further increase the redundant input of chemical fertilizer application, which reflects
actual agricultural production.

(4) The regression of resource endowment on the relaxation variables of grain sowing
areas and fertilizer application amount passed the significance test at 1%. Resource
endowment had a positive impact on the input redundancy of the grain sowing area,
but it had a negative impact on the input redundancy of fertilizer application amount.
It indirectly suggested that, with the stimulus of grain increase policy, the more
abundant the cultivated land resources are, the more obvious the abuse of chemical
fertilizer is, which is also consistent with the current situation that the increase in grain
output in China mainly depends on the excessive input of chemical fertilizer.

(5) The regression coefficients of the relaxation variables of agricultural financial support
to the water footprint of grain production and the amount of chemical fertilizer appli-
cation were positive, and both passed the significance test of at least 5%. The regression
results proved that the support policy would increase the input of water resources
and the amount of chemical fertilizer application in grain production, resulting in
increasing redundancy.

The analysis of the above SFA regression results shows that the external environ-
mental factors affecting the utilization efficiency of food production resources are real
and have a significant impact. Therefore, it is necessary to further exclude the impact of
environmental factors on efficiency to obtain a real, comparable utilization efficiency of
food production resources.
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3.3. Empirical Analysis of Adjusted Third Stage Super-Efficiency EBM

The initial input variables were adjusted according to the analysis results of the second
stage, and the adjusted new input variables were brought into the common frontier super-
efficiency EBM model again to obtain the utilization efficiency of food production resources
in each region in the third stage (see Tables S4–S6). The specific efficiency values and
changes are shown in Table 3 and Figures 2 and 3. After comparing the first stage and the
third stage, it was found that, after excluding external environmental factors and random
errors, the three indicators of resource utilization efficiency of grain production in major
producing areas in China had changed greatly from 2000 to 2019, indicating the necessity
of the rational adjustment of input indicators.

Table 3. The comprehensive technical efficiency, pure technical efficiency, and scale efficiency of
grain production resource allocation in major grain-producing areas of China from 2000 to 2019 in
the third stage.

Region Comprehensive Technical Efficiency Pure Technical Efficiency Scale Efficiency

Efficiency Value Rank Efficiency Value Rank Efficiency Value Rank

Heilongjiang 0.807 1 (rise) 0.965 1 (rise) 0.833 3 (rise)
Liaoning 0.557 10 (fall) 0.946 4 (fall) 0.590 13 (fall)

Jilin 0.753 2 (fall) 0.952 2 (fall) 0.787 7 (fall)
Neimenggu 0.541 12 (fall) 0.901 6 (fall) 0.606 12 (fall)

Hebei 0.553 11 (same) 0.682 11 (rise) 0.806 4 (fall)
Shandong 0.618 6 (rise) 0.681 12 (fall) 0.904 1 (rise)

Anhui 0.525 13 (same) 0.665 13 (same) 0.788 6 (fall)
Henan 0.622 5 (rise) 0.692 10 (same) 0.902 2 (rise)
Jiangsu 0.615 7 (rise) 0.765 9 (same) 0.804 5 (rise)
Sichuan 0.663 4 (rise) 0.899 7 (fall) 0.737 9 (fall)
Hubei 0.569 9 (fall) 0.825 8 (same) 0.692 10 (fall)
Hunan 0.686 3 (rise) 0.907 5 (rise) 0.757 8 (fall)
Jiangxi 0.596 8 (fall) 0.952 3 (rise) 0.627 11 (fall)

Max 0.807 0.965 0.904
Mini 0.525 0.665 0.590

Weighted average 0.639 0.822 0.785

Note: The three efficiency values of each region in the table are the average values from 2000 to 2019. The overall
efficiency is a weighted average of the total output of each region in the major producing areas.
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Figure 3. The ranking changes in grain production resource allocation efficiency (comprehensive
technical efficiency) in the main grain-producing areas in China after adjustment.

In terms of the overall characteristics of comparison, before and after excluding the
environmental variables and random factors, the weighted average of comprehensive
technical efficiency and scale efficiency of grain production resource allocation efficiency
in the major grain-producing areas in China from 2000 to 2019 during the study period
decreased as a whole. The comprehensive technical efficiency decreased from 0.733 to
0.639, the scale efficiency decreased from 0.957 to 0.785, and the weighted average of pure
technical efficiency increased from 0.767 to 0.822. The changes in the three indicators
indicate that the external factors inhibited the pure technical efficiency and expanded
the scale efficiency, and finally, the comprehensive technical efficiency was exaggerated
with scale efficiency in place. As is shown in Figure 4 and Table 4, the changes in the
comprehensive technical efficiency gap before and after adjustment during the study
period consisted of two periods, with 2017 as the turning point. From 2000 to 2017, the
overall trend of comprehensive technical efficiency before and after adjustment showed
synergistic changes, and efficiency gradually increased with time. The efficiency difference
decreased from 0.20 to 0.02, and the efficiency gap shows an expanding trend for two
consecutive years thereafter. The main reason was the decrease in scale efficiency, especially
the scale efficiency after adjustment. Similarly, we can see from the efficiency trend in the
figure that external environmental factors were more important in influencing the scale
effect of food production resource allocation.
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Table 4. Grain production resource allocation efficiency in the major grain-producing areas in China
from 2000 to 2019.

Years

The Grain Production Resource Allocation Efficiency in
the Major Grain-Producing Areas in China From 2000 to

2019 (In the First and Third Stages)

The First and Third Stages of the Three Regional
Comprehensive Technical Efficiencies

Comprehensive
Technical Efficiency

Pure Technical
Efficiency

Scale
Efficiency

In the
Northeast

Huang-Huai-
Hai

The Middle and
Upper Reaches of
the Yangtze River

2000 0.727 (0.528) 0.782 (0.828) 0.938 (0.660) 0.583 (0.375) 0.454 (0.409) 0.807 (0.496)
2001 0.715 (0.533) 0.756 (0.826) 0.950 (0.666) 0.598 (0.399) 0.454 (0.413) 0.740 (0.470)
2002 0.772 (0.551) 0.790 (0.837) 0.977 (0.679) 0.762 (0.452) 0.445 (0.407) 0.713 (0.465)
2003 0.688 (0.508) 0.734 (0.794) 0.946 (0.657) 0.621 (0.409) 0.412 (0.370) 0.692 (0.452)
2004 0.719 (0.568) 0.755 (0.817) 0.957 (0.708) 0.635 (0.455) 0.454 (0.424) 0.695 (0.486)
2005 0.705 (0.574) 0.734 (0.805) 0.963 (0.725) 0.628 (0.468) 0.451 (0.428) 0.665 (0.480)
2006 0.712 (0.601) 0.740 (0.807) 0.963 (0.755) 0.656 (0.511) 0.464 (0.452) 0.618 (0.462)
2007 0.688 (0.587) 0.717 (0.780) 0.960 (0.763) 0.600 (0.470) 0.464 (0.456) 0.616 (0.469)
2008 0.726 (0.635) 0.754 (0.818) 0.963 (0.785) 0.675 (0.556) 0.472 (0.474) 0.625 (0.474)
2009 0.683 (0.607) 0.712 (0.774) 0.959 (0.791) 0.586 (0.488) 0.466 (0.465) 0.617 (0.493)
2010 0.703 (0.654) 0.728 (0.794) 0.965 (0.824) 0.652 (0.607) 0.460 (0.466) 0.599 (0.480)
2011 0.734 (0.684) 0.762 (0.810) 0.962 (0.845) 0.710 (0.650) 0.468 (0.477) 0.608 (0.498)
2012 0.739 (0.689) 0.763 (0.813) 0.966 (0.851) 0.712 (0.636) 0.475 (0.490) 0.609 (0.513)
2013 0.759 (0.709) 0.784 (0.825) 0.966 (0.862) 0.749 (0.681) 0.473 (0.491) 0.627 (0.515)
2014 0.745 (0.708) 0.767 (0.818) 0.968 (0.867) 0.711 (0.658) 0.477 (0.498) 0.629 (0.532)
2015 0.760 (0.737) 0.795 (0.842) 0.954 (0.875) 0.730 (0.685) 0.487 (0.520) 0.635 (0.549)
2016 0.773 (0.743) 0.812 (0.846) 0.950 (0.881) 0.746 (0.686) 0.496 (0.533) 0.636 (0.543)
2017 0.784 (0.761) 0.837 (0.870) 0.936 (0.875) 0.746 (0.702) 0.508 (0.547) 0.649 (0.554)
2018 0.791 (0.756) 0.855 (0.907) 0.931 (0.839) 0.742 (0.670) 0.512 (0.556) 0.673 (0.568)
2019 0.798 (0.761) 0.871 (0.911) 0.927 (0.836) 0.746 (0.701) 0.519 (0.561) 0.687 (0.578)

Weighted
average 0.733 (0.63) 0.767 (0.822) 0.957 (0.785) 0.679 (0.563) 0.471 (0.472) 0.657 (0.504)

Note: In the table, the values of comprehensive technical efficiency, pure technical efficiency, and scale efficiency
are the weighted average values of grain output in the total output of major grain-producing areas, and the values
in brackets are the efficiency values of the third stage after adjustment.
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In terms of the spatiotemporal characteristics after adjustment, from 2000 to 2019,
the evolution of grain production resource allocation efficiency in China’s major grain-
producing areas showed the characteristics of the two periods mentioned above, in which
the comprehensive technical efficiency increased from 0.528 to 0.761 with an annual growth
rate of 1.94%, the pure technical efficiency increased from 0.828 to 0.911 with an annual
growth rate of 0.51%, and the scale efficiency increased from 0.660 to 0.836 with an annual
growth rate of 1.26%. The overall data show that the improvement rate of grain production
technology was not as fast as that of production scale, and the improvement of utilization
efficiency of grain production resources in the major producing areas over the past 20
years mainly depended on the expansion of scale. By observing the changing trend of
the three types of efficiency in Figure 4, it can be found that pure technical efficiency
fluctuated gently from 2000 to 2009, gradually rose from 2009 to 2017, and then declined
continuously from 2018 to 2019. By looking at the scale efficiency, it can be seen that
before 2009 the improvement in comprehensive technology efficiency was mainly driven by
scale efficiency, and from 2009 to 2017 it was driven by scale efficiency and pure technical
efficiency. Meanwhile, from 2018 to 2019, it was mainly driven by pure technical efficiency.
In terms of regional distribution (Table 3 and Figure 5), the weighted average of grain
production resource utilization efficiency (comprehensive technical efficiency) in the major
producing areas was 0.639, and the regions above the average were Heilongjiang, Jilin,
Hunan, and Sichuan (in this order), demonstrating that only four provinces have high
comprehensive management levels of resource allocation. The weighted mean value of pure
technical efficiency was 0.822, and the regions above the mean value were Heilongjiang,
Jilin, Jiangxi, Liaoning, Hunan, Neimenggu, Sichuan, and Hubei. More than half of the
regions improved their resource allocation purely using technology. The weighted mean
value of scale efficiency was 0.785, and the regions above the mean value were Shandong,
Henan, Heilongjiang, Hebei, Jiangsu, Anhui, and Jilin, in that order. Likewise, more than
half of the regions improved their levels of resource allocation by expanding the scale.
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Figure 5. Comparison of averages of comprehensive technical efficiency of grain production resource
allocation in different regions before and after adjustment.

In order to further explore the distribution of the utilization efficiency of grain produc-
tion resources in different regions, this paper, instead of dividing the research region into
eastern, central, and western regions according to the previous economic belt classification
standard, combined the characteristics of grain cultivation, natural geographical character-
istics, and allocative efficiency level characteristics (the range of dotted lines in Figure 6).
Major grain-producing areas were divided into northeast China, the Huang-Huai-Hai
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region, and the middle and upper reaches of the Yangtze River. The detailed variation
trend of the allocation efficiency of food production resources in these three regions is
shown in Table 5 and Figure 7. The northeast includes Heilongjiang, Jilin, Liaoning, and
Neimenggu; the Huang-Huai-Hai region includes Hebei, Henan, Shandong, Anhui, and
Jiangsu; and the middle and upper reaches of the Yangtze River include Jiangxi, Hubei,
Hunan, and Sichuan.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 16 of 25 
 

 

 

Figure 6. Scatter diagram of pure technical efficiency and scale efficiency after adjustment.. 

 

Figure 7. Evolving trend of grain production resource allocation efficiency in the three major regions 

from 2000 to 2019. 

3.4. Dynamic Analysis of Resource Utilization Efficiency of Grain Production Based on 

Malmquist Productivity Index 

In order to further explore the dynamic changes in production resource utilization 

efficiency in the major grain-producing areas in China from 2000 to 2019, the GML index 

model was included in this section, with the aim of showing the changes in resource uti-

lization efficiency of food production by applying total factor productivity. In this section, 

Figure 6. Scatter diagram of pure technical efficiency and scale efficiency after adjustment.

Table 5. Regional grain production resource allocation efficiency during five-year planning periods.

Period In the Northeast Huang-Huai-Hai The Middle and Upper
Reaches of the Yangtze River

Major Grain
Producing Areas

The 10th Five-year Plan 0.649 (0.436) 0.443 (0.408) 0.701 (0.471) 0.720 (0.547)
The 11th Five-Year Plan 0.634 (0.526) 0.465 (0.463) 0.615 (0.476) 0.702 (0.617)
The 12th Five-Year Plan 0.722 (0.662) 0.476 (0.495) 0.622 (0.521) 0.747 (0.705)
The 13th Five-Year Plan 0.745 (0.690) 0.509 (0.549) 0.661 (0.561) 0.787 (0.755)

Note: Due to insufficient research years, the 13th Five-Year Plan is the average value from 2016 to 2019. The
efficiency value in the table is the weighted average value of grain output in the total output of major producing
areas, and the adjusted comprehensive technical efficiency value is in parentheses.
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3.4. Dynamic Analysis of Resource Utilization Efficiency of Grain Production Based on Malmquist
Productivity Index

In order to further explore the dynamic changes in production resource utilization
efficiency in the major grain-producing areas in China from 2000 to 2019, the GML index
model was included in this section, with the aim of showing the changes in resource
utilization efficiency of food production by applying total factor productivity. In this section,
while measuring the GML index before and after adjustment, it can be decomposed into the
technological efficiency change index and technological progress change index to identify
the influence degree of both on the dynamic changes in total factor productivity of grain
production resources. The former measures the catch-up degree of each decision-making
unit to the production frontier border for two consecutive terms, presenting the catch-up
effect of resource use efficiency, and it can be further decomposed into pure technical
efficiency change and scale efficiency change index change, while the latter measures the
mobile cases of the effective frontier during two consecutive periods, presenting the growth
effect of resource utilization efficiency. The change index results of decomposition efficiency
are shown in Table 6 and Figure 8.

As can be seen in Table 6, on the whole, the utilization efficiency of grain production
resources in major producing areas showed a significant upward trend from 2000 to 2019,
with each efficiency change index being greater than 1. In particular, the difference degree
of the GML change index before and after adjustment was merely 1.59%, indicating that
external factors have a low impact on the improvement of total factor productivity, reflecting
the sustainability of the continuous improvements in resource utilization efficiency in
China’s major grain-producing areas. GML change is influenced by both technological
efficiency and technological progress, and technological progress has a greater impact
on Malmquist change, indicating that the increase in the total factor productivity of food
production resources not only contributes to the catch-up effect but also to the growth
effect, and the growth effect takes the initiative. In particular, after excluding external
factors, the total factor productivity of resources in northeast China witnessed the fastest
increase during the study period, with an average annual growth rate of 4.04%, while that
of the middle and upper reaches of the Yangtze River and of the Huang-Huai-Hai region
was 1.91% and 0.90%, respectively. In Heilongjiang, Jiangsu, and Hubei, the GML change
index was still greater than 1, while Hunan’s technical efficiency declined, indicating that
technological progress has a significant effect on the growth of total factor productivity of
resources in these four provinces.
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Table 6. Dynamic change index of total factor productivity of grain production resources in the major
producing areas from 2000 to 2019.

Region Technical Efficiency
Change Index

Technological Progress
Change Index

Pure Technical
Efficiency Change Index

Scale Efficiency
Change Index

GML (TFP)
Change Index

Heilongjiang 1.014 (0.997) 1.013 (1.041) 1.000 (0.996) 1.015 (1.004) 1.025 (1.037)
Liaoning 1.032 (1.021) 1.000 (1.022) 1.000 (1.000) 1.033 (1.021) 1.023 (1.038)

Jilin 1.020 (1.028) 0.993 (1.011) 1.020 (1.005) 1.000 (1.022) 1.010 (1.039)
Neimenggu 1.012 (1.045) 1.024 (1.037) 1.005 (1.002) 1.010 (1.044) 1.023 (1.047)

Hebei 1.019 (1.009) 1.001 (1.019) 1.021 (1.016) 0.999 (0.994) 1.017 (1.024)
Shandong 1.015 (1.027) 0.999 (1.018) 1.011 (1.008) 1.027 (1.025) 1.009 (1.017)

Anhui 1.016 (1.006) 0.998 (1.023) 1.018 (1.007) 1.000 (0.997) 1.008 (1.024)
Henan 1.016 (1.025) 0.998 (1.014) 1.001 (1.010) 1.014 (1.028) 1.007 (1.022)
Jiangsu 1.025 (0.999) 1.022 (1.026) 1.022 (1.011) 1.004 (0.991) 1.001 (1.009)
Sichuan 1.016 (1.007) 1.006 (1.044) 1.008 (1.007) 1.008 (0.998) 0.994 (1.011)
Hubei 0.993 (0.990) 0.996 (1.023) 0.992 (0.992) 1.004 (1.001) 0.982 (1.006)
Hunan 1.008 (0.995) 0.994 (1.025) 1.010 (1.008) 1.001 (0.987) 0.989 (1.005)
Jiangxi 1.002 (1.003) 1.006 (1.024) 0.991 (0.997) 1.012 (1.004) 1.000 (1.015)

In the northeast 1.020 (1.023) 1.007 (1.028) 1.006 (1.001) 1.014 (1.022) 1.020 (1.040)
Huang-Huai-Hai 1.018 (1.013) 1.004 (1.020) 1.015 (1.011) 1.009 (1.007) 1.008 (1.019)
The middle and

upper reaches of the
Yangtze River

1.004 (0.999) 1.000 (1.029) 1.000 (1.001) 1.007 (0.998) 0.991 (1.009)

Average 1.014 (1.012) 1.004 (1.025) 1.008 (1.005) 1.010 (1.009) 1.007 (1.023)

Note: Each efficiency change index is the average from 2000 to 2019, and the adjusted efficiency change index of
the third stage is in parentheses.
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It can also be seen from Figure 8 that the GML change index of all years from 2000
to 2019 was greater than 1 except for 2003, 2007, 2009, 2014, and 2018, indicating the
overall progress of total factor productivity of food production resources. The GML change
is basically consistent with the changing trend of technological progress, which proves
once again that the change in the total factor productivity of food production resources
mainly depends on technological changes. The GML change index and its decomposition
can be divided into the following three stages in terms of trends. The first stage is the
synergy stage (2001–2005), where the changing trend of technical efficiency and total factor
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productivity was coordinated, especially in 2003, the change index of technical efficiency
and technological progress were both less than 1, and the catch-up effect and growth effect
showed a simultaneous decline. The second stage is the interactive stage (2006–2011),
where the GML change index was influenced by the technological progress change index
and technological progress change index interactively, and the synergy was not high. In
particular, the technological efficiency and technological progress change index varied most
dramatically in 2017 and 2018 during the study period. The third stage is the stable stage,
in which the technological efficiency and technological progress change index showed a
stable fluctuation trend from 2012 to 2019.

4. Discussion

The purpose of this study was to explore the allocation efficiency of production
resources in major grain-producing areas in China from the perspective of water–soil–
energy–carbon linkage, while excluding the impact of the external environment and to
identify the driving factors for the improvement of resource allocation efficiency in differ-
ent regions through analyses of differences. In the selection of its indicators, this study
considered that the defect of Chinese farmer quantity indicators would have a negative
influence on the results of the data envelopment analysis. In the research method, the
homogeneity of the research area was fully taken into account, and the standard analysis
paradigm was adopted to avoid the results being unable to reflect reality. The method of
this paper was first to establish carbon emission constraints under each grain production
factor evaluation system and to analyze the traditional methods of regional resource use
efficiency when it comes to grain production. Second, we calculated the external environ-
mental impact on efficiency. Finally, we calculated the efficiency after stripping out the
influence of the external environment and evaluated the management level of production
resource allocation in each main grain-producing area.

It was found that, under the measurement of the traditional envelope analysis model,
the overall utilization efficiency of grain production resources in the main producing areas
was high, but there was still more than 20% room for improvement. After excluding
the external environmental factors and random factors, the utilization efficiency of grain
production resources in the main grain-producing areas decreased, and the external factors
inhibited the pure technical efficiency while expanding the scale efficiency, indicating that
there is more room to improve the resource allocation and management level in the main
grain-producing areas. In terms of the comparison of spatial features, the direction and
intensity of the influence of external factors on the utilization efficiency of food production
resources in different regions were obviously different. Except for Hebei and Anhui,
which remain unchanged in terms of their efficiency rankings, the regions with rising
comprehensive technical efficiency ranking included Heilongjiang (from 3 to 1), Shandong
(from 10 to 6), Henan (from 3 to 1), Jiangsu (from 9 to 7), Sichuan (from 5 to 4), and
Hunan (from 4 to 3). The regions that fell in the overall technical efficiency rankings
include Liaoning (from 7 to 10), Jilin (from 1 to 2), Neimenggu (from 6 to 12), Hubei (from
8 to 9), and Jiangxi (from 2 to 8). Through the comparison of comprehensive technical
efficiency values in Table 3, Figures 3 and 5, it can be found that the mean change in grain
production resource utilization efficiency in each region in the major grain-producing areas
was significantly different before and after adjustment. With the exception of Heilongjiang,
Hebei, Shandong, Anhui, Henan, and Jiangsu, efficiency fluctuated greatly in other regions.
It was further indicated that external factors have an obvious promotional effect on grain
production resource utilization efficiency in Liaoning, Jilin, Sichuan, Hubei, Hunan, Jiangxi,
and Neimenggu. Among them, Jiangxi (0.275), Neimenggu (0.272), and Liaoning (0.241)
had the greatest promotional effect. After adjustment, except for Shandong and Henan, the
average utilization efficiency of grain production resources in other provinces and regions
was lower than that before adjustment, indicating that the relative inefficiency of Shandong
and Henan before adjustment was caused by an unfavorable environment and random
error, rather than its low level of resource allocation and management. In contrast, the
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previous high efficiency of the other regions was due to a more favorable environment and
random errors, thus creating the illusion of high-level resource allocation management. In
addition, the differences in the direction of influence also indicated that the external factors
do not all have a positive promotional effect on the comprehensive technical efficiency, but
they also have a restraining effect, which shows that the external environment of the major
grain-producing areas, mainly the comprehensive endowment of grain and policy support,
is obviously different.

The utilization efficiency of Northeast China is much higher than that of the Huang-
Huai-Hai region and the middle and upper reaches of the Yangtze River region, and its grain
production resource allocation management has obvious advantages. According to the
adjusted distribution of pure technical efficiency and scale efficiency in the scattered chart
(Figure 6), the 13 major grain-producing areas can be divided into four types. The first type
is the two-high type, which includes Heilongjiang, Jilin, Jiangxi, and Liaoning. Its efficiency
in both indicators was relatively high, so the improvement room is relatively limited.
The second type is the high-and-low type, including Jiangxi, Liaoning, and Neimenggu.
Due to its relatively low-scale efficiency, there is greater room for improvement. The
utilization efficiency of grain production resources can be improved by enhancing the
scale. The third type is the low-and-high type, which includes the Shandong, Henan,
Hebei, Jiangsu, and Anhui provinces. Due to their relatively low pure technical efficiency,
the specific path to improve the utilization efficiency of food production resources is to
improve the management and technical factors. The fourth type is the two-low type, such
as Hubei province, where pure technical efficiency and scale efficiency are both relatively
low. In theory, it has the largest improvement room, but this area of food production
is often restricted by some objective factors. They should adjust their measures to local
conditions so as to expand production, adopt new technology, and strengthen management,
which will serve as comprehensive governance measures to promote the allocation of food
production resources. Combined with Table 4, after adjustment, the average efficiency in
the Huang-Huai-Hai region, northeast China, and the middle and upper reaches of the
Yangtze River are 0.563, 0.472, and 0.504, respectively. Given the evolving trend of the
utilization efficiency of grain production resources in the three regions (Figure 7), since
2005, the major grain-producing areas in northeast China have obvious had advantages
in terms of efficiency, which indicates that the efficiency level in northeast China is much
higher than that of the other two regions, and the efficiency level in the Huang-Huai-Hai
region is the lowest, which was also confirmed in the efficiency data before adjustment.
In particular, as one of the three black soil areas in the world, the major grain-producing
area in Northeast China has become the largest commercial grain production base in
China, with grain output having exceeded 1/5 of the national total for many years. It is
the “cornerstone and stabilizer” of national food security. It is not difficult to tell from
Table 5 that, during the 15th Five-year Plan to the 13th Five-Year Plan period, the adjusted
comprehensive technical efficiency of each region increased gradually, indicating that the
resource allocation management level of the three grain production regions continued
to improve during the planned period of each stage. However, from the perspective of
the actual resource efficiency of grain production in the major producing areas before
adjustment, the overall efficiency decline during the 11th Five-Year Plan period was mainly
caused by the decrease in the efficiency of the major producing areas in northeast China
and the middle and upper reaches of the Yangtze River. On the contrary, the allocation
level of the major producing areas in the Huang-Huai-Hai region still rose steadily. The
main reason is that during the 11th Five-Year Plan period, the Chinese government and
all provinces invested heavily in the construction of grain production infrastructure in
the Huang-Huai-Hai region, which improved the grain production and further optimized
the internal composition of the sowing area. In particular, Henan province ranked first in
terms of grain output in China for five consecutive years during this period. In addition,
we found that the total factor productivity index of food production resources showed an
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upward trend on the whole, and its change was affected by both technological efficiency
and technological progress, among which technological progress had the greater impact.

In this paper, some research conclusions were consistent with those of other scholars.
For example, in terms of external environmental impact, He et al. [20] and Zhang et al. [58]
found that, among external environmental indicators, the impact direction of a disaster-
affected area on relaxation variables was negatively correlated, and the other influencing
factors are consistent with other scholars’ studies [20,21,24]. Additionally, the trend of the
overall resource allocation efficiency after adjustment is consistent with Wang Lei et al. [25].
In the efficiency comparison of major grain-producing areas, Heilongjiang and Jilin have
always been typical areas of large-scale agricultural modernization in China, and their
efficiency results were verified in this paper, which is also consistent with the conclusions
of scholars’ first-stage data envelopment analysis [26,58]. The innovation of this paper lies
in that the selection of input–output indicators, which take into account the factors of water,
soil, energy, and carbon in the process of grain production, and the more cutting-edge
EBM–GML measurement tool, which was used to achieve comparative efficiency; therefore,
some of the results differ from those of other agricultural productivity studies. Additionally,
in some difference comparisons, it is more reasonable to weigh the overall efficiency results.
In terms of the comparative analysis of different regions, this paper did not divide the
study area into eastern, central, and western regions according to the previous economic
belt classification standard [26,58]. Instead, the main grain-producing areas were divided
into the northeast region, the Huang-Huai-Hai region, and the middle and upper reaches
of the Yangtze River based on the characteristics of grain planting, physical geography,
and allocative efficiency. In addition, an analysis of changes to China’s “Five-Year Plan”
was considered.

There are two main inspirations from the conclusions of this paper.
First, the allocation of agricultural resources is a complex systematic project, so we

should not just focus on one single target or factor when considering using food production
resources more efficiently. The empirical results of this paper prove that external envi-
ronmental factors and random error factors have a great impact on resource utilization
efficiency in the process of grain production, and the random error is generally difficult
to control. Therefore, reducing the external environmental differences in the major grain-
producing interval is an effective way to achieve efficiency improvement. Combining this
with the regression estimation of stochastic frontier analysis in the second stage, we firstly
found that, while improving urbanization, more attention should be paid to the exces-
sive investment in agricultural machinery and equipment. Through promoting moderate
land intensification to optimize the structure of agricultural machinery and equipment,
we should upgrade agricultural machinery technology and enhance scientific research
strength, establishing a pattern of agricultural mechanization development with Chinese
characteristics. Secondly, the positive correlation between the redundancy of chemical fer-
tilizer application amount and economic development represents the practical dilemma of
chemical fertilizer application. On the one hand, excessive fertilizer in the grain production
process causes increasing production cost, waste of labor resource and arable land, and
soil degradation. On the other hand, carbon emissions caused by fertilizers occupy the
largest proportion of the whole agricultural system. Improving fertilizer efficiency is an
effective way to achieve a comprehensive carbon peak and carbon neutrality at an early
date. In this regard, it is suggested that we further carry out binding measures related to
chemical fertilizer reduction. We should realize chemical fertilizer reduction and efficiency
improvement through technical means such as using organic fertilizer, applying fertilizer
in accordance with soil conditions, targeted fertilization, mechanized deep fertilization,
and soil structure improvement. Thirdly, in implementing agricultural financial support
policies, more attention should be paid to the investment in various aspects such as the
project and subsidy to promote the improvement of the efficiency of fertilizer and irrigation
water. Finally, we should steadily promote the construction of high-standard farmland and
expand the reconstruction of farmland infrastructure. Irrigation and water conservancy
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facilities can help to effectively avoid the impact of natural disasters on agriculture, espe-
cially in areas where flood and drought disasters have significantly reduced production. A
monitoring network of agricultural meteorological conditions and natural disaster system
compatible with the construction of high-standard farmland should be built. The intelligent
application capacity of agricultural meteorological observation data will be realized using
big data, cloud computing, and Internet of Things technologies.

Secondly, the characteristics of resource use efficiency in major grain-producing areas
in China are obviously different, so each region should further adjust its efficiency based
on its potential for improvement. With lower pure technical efficiency caused by inefficient
utilization of resources, in areas such as Jiangsu, Hebei, Henan, Shandong, and Anhui, we
can improve management and technology as a starting point and realize a greater resource
allocation of grain production. These provinces should adopt better farming technologies
and crop strains, strengthen the management and innovation of food production, introduce
advanced management ideas and methods, and establish a new system so as to ensure
the sustainable and efficient growth of food production resource utilization. For regions
with rather low scale efficiency, such as Jiangxi, Liaoning, and Neimenggu, the allocation
efficiency can be improved by tapping the production scale, including promoting grain cul-
tivation on a moderate scale in line with intensive operation, accelerating the construction
of high-standard farmland, and guiding grain from small-scale farmers’ scattered cultiva-
tion to cooperative enterprises’ large-scale cultivation. This will help turn the disorderly
and extensive production model into a green and efficient development model. In view of
the low pure technical efficiency and scale efficiency in Hubei province, we should adopt
new technology and strengthen management with comprehensive management measures,
according to local conditions, to promote grain production resource allocation.

The limitation of this paper is that, due to the lack of better statistical data, the
indicators can only be selected from national macro statistical data and some scholars’
calculation data. In particular, only six types of indicators were used to calculate the carbon
emission data, which did not take into account the carbon emission in the processing stage
after grain harvesting, as well as the role of agricultural carbon sink and land organic matter
protection. In particular, carbon emission data only adopted six types of indicators in its
calculation, and the carbon emission before and after food production was not taken into
account. However, this did not affect the overall conclusion of this paper. The contribution
of this paper lies in proving that the external environmental and random error factors of
grain production in the process of resource utilization efficiency have a large impact. As
such, it points to steps that managers should take to reduce the external environmental
differences between the major grain-producing areas as a way of increasing efficiency.
Thus, our adjustment of the resource allocation efficiency of grain production for regions
may provide a theoretical reference. Future studies in this area will attempt to evaluate
the impact of partial technological progress and resource allocation interaction on green
grain production and provide a theoretical basis for the low-carbon transformation of
food production. In addition, the impact of carbon sink and soil improvement in the
process of food production should be considered in the following research on the resource
allocation of food production. Meanwhile, food waste in the process of food processing
and consumption in the future also needs more attention.

5. Conclusions

With carbon emission constraints in place, taking water–soil–energy–carbon corre-
lation as an indicator, this paper conducted static and dynamic analyses and research
on the utilization efficiency of grain production resources in 13 provinces in the major
grain-producing areas in China from 2000 to 2019, based on the three-stage super-efficiency
EBM–GML model under the global common frontier boundary. The paper drew the
following conclusions:
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(1) Applying the traditional envelope analysis model, the weighted mean value of the
utilization efficiency of grain production resources in major producing areas from 2000
to 2019 was 0.733, with great differences between the different regions. Jilin, Jiangxi,
and Heilongjiang were the top three regions in terms of efficiency level. During the
study period, the utilization efficiency of grain production resources in the major
producing areas was relatively high, and the annual growth rate was 0.49%, but there
is still more than 20% room for improvement.

(2) After excluding external environmental and random factors, the weighted mean
value of grain production resource utilization efficiency in the major producing areas
decreased to 0.639, and the efficiency and ranking of each province changed greatly.
External factors inhibited pure technical efficiency while expanding scale efficiency,
and finally the comprehensive technical efficiency was exaggerated with the scale
efficiency in place. Meanwhile, the direction and intensity of the influence of external
factors on the utilization efficiency of grain production resources were obviously
different in each region, which proves that the influence of external factors on the
efficiency is not always positive.

(3) In terms of the spatiotemporal characteristics of the utilization efficiency of grain
production resources in the major producing areas after adjustment, the allocation
efficiency increased from 0.528 to 0.761 during the study period, with an annual growth
rate of 1.94%. The improvement in the technical level of grain production resource
allocation was not as fast as that of production scale. Our research found that the
utilization efficiency of grain production resources in northeast China was much higher
than that of the other two regions after 2005, and the major grain-producing areas in
northeast China had obvious advantages in terms of the allocation and management
level of grain production resources.

(4) The change index of the total factor productivity of grain production resources in the
major producing areas showed an upward trend on the whole, and the change was
basically consistent with the changing trend of technological progress. This change
was more influenced by technological advances. After excluding external factors, the
total factor productivity of resources in northeast China showed the fastest growth.
Technological progress had an obvious effect on the growth of total factor productivity
of grain production resources in Heilongjiang, Jiangsu, Hubei, and Hunan provinces.
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