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Abstract: Based on the Environmental Kuznets Curve (EKC) hypothesis, this paper examines whether
rural broadband adoption affects agricultural carbon reduction efficiency (ACRE), using panel data
from 30 Chinese provinces from 2011 to 2019. This paper achieves a measurement of ACRE by taking
the carbon sink of agricultural as one of the desired outputs and using a Slacks-Based Measure
(SBM) model and the global Malmquist–Luenberger (GML) index. The results show that: (1) Rural
broadband adoption has a positive effect on ACRE. The relationship between the income of rural
residents and ACRE was an inverted U-shaped, which confirms the EKC hypothesis. (2) Land transfer
has a significant promoting effect on the relationship between rural broadband adoption and ACRE.
When the land transfer rate is high, the positive effect of broadband adoption is obvious. (3) The
positive effect of broadband adoption on ACRE was more obvious when farmers invested more in
production equipment, that is to say, it has a significant positive moderating effect. As farmers in
many developing countries suffer from increasingly frequent and severe extreme weather events, we
believe that the results of this study also have implications for the implementation of agricultural
carbon reduction and smart agricultural equipment roll-out in many countries.

Keywords: agricultural carbon reduction efficiency; broadband adoption; rural China; moderating
effects

1. Introduction

The sustainable development of agricultural systems has become a more urgent issue
in the context of global challenges such as the COVID-19 pandemic and food insecurity.
Climate change has substantial impacts on water balance, affecting the surrounding indus-
tries, agriculture, and other economic sectors [1,2]. Carbon dioxide (CO2) is the main gas
causing climate change and the greenhouse effect [3]. Therefore, reducing CO2 emissions
and promoting sustainable agriculture have become major goals for global development.
In the past, due to a large population and limited arable land, China’s agricultural industry
focused strongly on extensive farming. China’s high-input, high-consumption, and high-
pollution agricultural development model has resulted in significant pressure on resources
and the environment, threatening the sustainability of agriculture [4]. In order to overcome
these challenges, it is essential to implement timely strategies for improving the efficiency
of agricultural carbon reduction [5,6]. The progress of digital technology provides a new
way of breaking through the bottleneck of current agricultural development and finding a
green development strategy. Integrating data and information elements into agricultural
systems can help optimize factor allocation and facilitate the efficient and coordinated
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development of agricultural systems [7,8]. Digital agriculture in many developed countries
is based on the concept of green and sustainable development. For example, according to
the precipitation, soil fertility, and climate, Australia ensures efficient and green agricul-
tural production through agricultural information monitoring and agricultural decision
support systems [9]. Germany’s large agricultural machinery equipped with information
technology can carry out all kinds of farm operations, such as precise sowing, fertilization,
weeding, and harvesting. The adoption of these technologies can achieve quantitative
fertilization and spraying in different places within the same plot to ensure the efficient
utilization of chemicals and fertilizer while avoiding environmental pollution [10]. As
a developing country, China, like many developed countries, vigorously develops digi-
tal agriculture and actively promotes the application of information and communication
technologies (ICTs) in green agriculture. At present, with the vigorous implementation
of the “Digital Villages” strategy, the supply of ICTs in rural areas is increasing rapidly.
According to the Communication Industry Statistical Bulletin, by the end of December 2019,
the net increase in rural broadband users was 17.36 million, which was 14.8% higher than
the previous year. This growth rate was 6.3 percentage points higher compared to urban
broadband users in the same year. Furthermore, digital technology is spreading rapidly
into agriculture. Agricultural informatization has become an important power source
to promote the high-quality development of China’s agriculture. Therefore, embedding
ICTs as external technology and studying their impact on agricultural carbon reduction
efficiency (ACRE) is key to testing the actual effect of the “Digital Villages” project in China.

Three core issues are being discussed in existing literature on agricultural carbon
reduction and its relationship with ICTs. The first core issue is of updating the measurement
index and method for ACRE. Carbon reduction efficiency (CRE) is a popular concept in
industrial and urban economies and is often used to measure the gap between the actual
CO2 emissions generated by manufacturing or other human activities and the optimal
CO2 emissions [11,12]. According to this concept, ACRE is defined as the ratio of the
theoretical minimum CO2 emissions of agricultural production activities to the actual CO2
emissions under fixed input-output conditions. ACRE directly reflects the effect of regional
agricultural CO2 emissions and indirectly reflects the potential of regional agricultural CO2
emissions. The literature on ACRE measurement is mainly divided into three parts: One is
the selection of the measurement model, another is the selection of measurement index,
and the final one is the selection of measurement indicators. First, for model selection,
the Solow residual, Algebraic Index, and Stochastic Frontier Approach (SFA) can only
fit the production process of one kind of output. In contrast, the Data Envelopment
Analysis (DEA) method does not need to set a specific form of production function, but
the traditional DEA model has one distinct limitation: non-effective units can only rely
on radial improvement to reach the frontier; that is, increasing or decreasing the input
and output in the same proportion. In order to overcome this limitation of the traditional
DEA model, Tone [13] proposed the Slacks-Based Measure (SBM) model, which involved
the addition of undesirable outputs, such that the output and input can be adjusted in
non-radial directions by non-effective units. Second, regarding the choice of index, there are
three main kinds of productivity index: the Malmquist non-parametric linear programming
algorithm; the Luenberger productivity index further developed by Chambers et al. [14];
and the modified version by Chung and Fare [15] which included undesired output in
the Malmquist–Luenberger index. Unfortunately, these indexes all have problems of
intransitivity and infeasible solutions. A study by Oh [16] showed that the method of
global reference can solve these problems, and the GML (Global Malmquist–Luenberger)
index, constructed by global reference, can measure ACRE more accurately. Third, in terms
of the input indicators, these mainly include agricultural labor force, farmland, machinery,
chemical fertilizer, pesticides, irrigation, and other indicators. Desired output refers to
agricultural output while undesired output indicates agricultural CO2 emissions [17–19].

The second core issue is the identification of the main factors driving agricultural car-
bon reduction. At present, the literature mainly focuses on the sources of agricultural CO2
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emissions and changes in food demand. First, regarding CO2 emissions, micro measures
to combat this issue focus on changes in land use type and the return of grassland and
farmland to forest [20], as well as chemical application and residue, agricultural waste
treatment, and livestock and poultry manure management [21,22]. Agricultural production
structure and regional economic development are considered to have a positive impact on
agricultural CO2 emissions reduction at the macro level [23]. It was confirmed that agroeco-
logical efficiency was also affected by the agricultural industrial structure characterized by
the proportion of the sown area of food crops to the total sown area of crops. Chen et al. [24]
found Kuznets Curve characteristics between agricultural industrial agglomeration and
agricultural carbon efficiency. Second, with respect to food demand, strategies may include
adjusting the diet structure, reducing the proportion of meat intake, replacing animal pro-
tein with plant protein, and reducing food loss and waste [25,26]. Empirical studies have
found that the price mechanism and the promotion and education of healthy eating and
on-demand consumption can effectively change consumers’ behavioral preferences and
influence the structure and quantity of food demand [27,28], thus promoting agricultural
carbon reduction.

The third core issue is the relationship between ICTs and agricultural carbon reduction
(sustainable agriculture). In practice and theory, it is indisputable that ICTs directly affect
the productivity of agriculture [29,30]. In the field of agricultural informatization, ICTs are
expected to enhance the abilities of farmers, with the use of diverse tools to obtain all kinds
of information. For example, mobile messaging applications can support instant access
to market information, weather data, production advice, and financial services-related
information [31]. By observing the development of green agriculture in Serbia and all EU
countries, some scholars believed that the use of precision agriculture, automatic manage-
ment technology systems, and geographic information systems hage led to the rational use
of inputs, thus reducing the adverse impact on the environment [32]. However, others hold
different views. Big data can improve the economic and environmental performance of agri-
culture but may threaten the sustainability of agri-food systems, especially by exacerbating
the gap between small-scale and large-scale farming [33]. Precision agriculture supported
by broadband internet is widely considered to have more environmental benefits than
drawbacks. For example, compared with traditional agriculture, the environmental benefits
of precision agriculture include the possibility of reducing agricultural greenhouse gas
emissions [34,35]. Unfortunately, the policy-related mechanisms of technology adoption
required for green agriculture are rarely explored.

The above three core issues for research and progress have important theoretical value
and policy implications for analyzing the impact of ICTs on ACRE. Indeed, broadband is
the main infrastructure for carrying information, and household broadband penetration
within a region is often used to represent ICTs development level [36–38]. Our paper
defines broadband adoption as an ICTs application. As China’s rural broadband access
becomes increasingly common and more individuals routinely go online, it provides a
good foundation for the operation of agricultural informatization production equipment.
Moreover, under the role of information technology, facility agriculture can better realize
the precision management of farmland. This can be attributed to the increased accessibility
to precision agriculture that is provided by broadband adoption. The research status in
this field is as follows. (1) Apart from a few studies [32,39], most studies on agricultural
carbon reduction do not consider broadband adoption as an external factor. (2) In terms of
research methods, in the studies that considered broadband to reduce carbon emissions,
the analysis method were mainly observation and comparison, rather than econometric
model analysis. Based on existing research, since agricultural production acts as a carbon
sink [40,41], measurement accuracy can be improved by taking the carbon sequestration of
agricultural production as one of the indicators of expected output. (3) Few scholars have
discussed the moderating effect of land transfer and farmers’ investment in production
equipment on ACRE in the context of rural broadband adoption.
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This paper argues that there is currently a lack of discussion on the mechanism by
which rural broadband adoption affects agricultural carbon reduction, which may dilute
its importance in agricultural sustainability. Therefore, in the context of China’s “Digital
Villages” project and carbon reduction strategy, this paper uses provincial panel data and
econometric modeling from 2011 to 2019 to verify the impact and moderating effect of
ICT application on ACRE. The results show that in accordance with the environmental
Kuznets Curve (EKC) hypothesis, rural broadband adoption has a positive effect on ACRE.
In addition, we also find that higher rates of broadband access are associated with greater
improvements in ACRE through increased land transfer rates. With the improvement of
informatization, farmers’ investment in production equipment also plays a positive role
in ACRE.

Compared with previous studies, the main contributions of this paper are as follows.
(1) It confirms the positive impact of rural broadband adoption on ACRE, complementing
existing evidence on the influencing factors of ACRE. (2) This paper analyzes the moderat-
ing effect of land transfer and farmers’ investment in production equipment on ACRE in the
context of rural broadband adoption, and the conclusion has a certain reference value for
the promotion of land transfer and smart agricultural equipment decision-making. (3) Our
paper takes the carbon sink of agricultural production as one of the desired outputs and
uses SBM modeling and the GML index method to measure ACRE more comprehensively.

This paper is organized as follows. After the Introduction, Section 2 is the theoretical
analysis and research hypothesis. Then, we describe the research object, data sources, and
method in Section 3. Section 4 presents our empirical results and carries out a series of
robustness and endogeneity tests. Section 5 concludes the paper.

2. Theoretical Analysis and Hypotheses

This study analyzes the EKC hypothesis considering the role of broadband adop-
tion. The nexuses between rural broadband adoption and agricultural carbon reduction
are complex. The micro-mechanism of broadband adoption influencing agricultural CO2
emission reduction is divided into two strands. The first strand is direct effects. The
ultimate goal of new technologies is reflected in the long-term sustainability of agricul-
ture, and broadband adoption provide a foundation for precision agriculture. The use of
precision-agriculture-applied automated management technology systems and geographic
information systems has led to increased yields, while also reducing the adverse impact
on the environment [32]. Environmental benefits of precision agriculture compared to
traditional agriculture include the potential to reduce waste from fertilizer and pesticide
application, save water [42,43], and mitigate agricultural greenhouse gas emissions [34].
Unfortunately, precision agriculture can only be adopted by farmers who have access to
broadband due to the technological requirements [44]. In previous studies, Wang et al. [45]
and Ma and Zheng [46] found a significant correlation between Internet use and farmers’
environmental behavior of reducing fertilizers and pesticides.

The second strand is the propagation effect. Residents trust public positive information
the most and trust private negative information the least [47]. The spread of positive
information, such as environmental protection, has been accelerated by the popularization
of broadband adoption. This has promoted the awareness of low-carbon consumption in
daily life. The development of broadband has allowed people to quickly access information
related to environmental pollution causes and hazards [48]. Smart phones commonly
used by farmers can not only improve environmental awareness and regulate farmers’
behavior, but also make more farmers aware of the perceived threat of environmental
degradation [49]. In summary, we propose the following hypotheses:

Hypotheses 1 (H1). Rural broadband adoption directly promotes the improvement of ACRE.

The EKC hypothesis illustrates that rising income contributes to pollution but after up
to a point, after which pollution decreases. However, pollution changes with income due
to scale, composition, and technique effects [50,51]. Some scholars focus on the non-linear
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effects of economy and income on agricultural CO2 emissions. Based on the estimation
of agricultural CO2 emissions in China from 1991 to 2018, the EKC model is used to
conclude that economic and income growth is the main driving factor of agricultural CO2
emissions [52]. In summary, we propose the following hypotheses:

Hypotheses 2 (H2). The income of rural residents has a non-linear effect on ACRE.

Theoretically, the mismatch of production materials directly inhibits output and dis-
torts the input decisions of micro subjects, resulting in the loss of environmental welfare [53].
Under the micro-scale efficiency driving mechanism, the development of land transfer
market will increase land use to reduce agricultural yield losses [54]. Existing studies have
shown that compared with small farmers, big farms with strong operational capacity, rich
production experience and a high level of professionalism are more likely to accept and
adopt low-carbon agricultural technologies [55]. As we know, land transfer promotes the
large-scale management of cultivated land, and then changes the land use, thus regulating
agricultural CO2 emissions

The widespread development of broadband adaption around 2010 enabled precision
agriculture to develop web services resulting in information equipment such as spraying
drones and soil temperature sensors [44]. Several barriers exist to adopting precision
agriculture technologies, aside from broadband access. These include technical issues for
the equipment itself, disconnect or lack of compatibility between the precision agriculture
equipment and the farm operation, concerns regarding the misuse of agricultural data,
managing the large amounts of data precision agriculture provides, lack of user-friendly
designs and interfaces, and high costs of implementation [56]. Hence, we propose the
following hypothesis:

Hypotheses 3 (H3). Land transfer plays a positive moderating role between broadband adoption
and ACRE.

Hypotheses 4 (H4). The investment of farmers in production equipment plays a positive moderat-
ing role between broadband adoption and ACRE.

Based on the above research hypothesis, the theoretical analysis framework of this
study is obtained (Figure 1).
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3. Materials and Methods
3.1. Data and Samples

In order to investigate the direct impact of rural broadband adoption on ACRE and
its related moderating effect, this paper uses panel data of 30 provinces (excluding Ti-
bet, Hong Kong, Macao, and Taiwan) from 2011 to 2019. First, the dependent variable is
ACRE, which is measured using input and output data. Second, the core independent
variable is the rural broadband adoption ratio (Broadband). Finally, the control variables
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and moderator variables include rural disposable income (Income), rural disposable income
squared (Income square), operation scale (Scale), agricultural economic status (Status), in-
dustrial added value (Industrialization), the ratio of disaster (Damage), land transfer (Ltr),
and equipment investment (Equipment). The above data mainly come from the China Rural
Statistical Yearbook, China Statistical Yearbook, China Agricultural Machinery Industry statistical
Yearbook, and China Environmental Statistical Yearbook.

3.2. Variables
3.2.1. Dependent Variable

By definition, ACRE should be measured according to the actual level of agricultural
carbon emissions and the theoretical optimal CO2 emissions. Based on existing research
methods, this paper adopts the SBM model and GML (Global Malmquist–Luenberger)
index method to calculate ACRE [57–61]. The measurement index system for the ACRE is
as follows (Table 1). Labor input, land input, machinery input, fertilizer input, irrigation
input, and electricity input are applied as input indicators. Referring to Liu et al. [23], the
total output value of agriculture, forestry, animal husbandry and fishery, and the CO2 sink
of agricultural production are taken as desirable outputs, and the undesirable output is
CO2 emissions generated in the process of agricultural planting.

Table 1. Agricultural carbon reduction efficiency measurement index system.

Type Indicator Abbreviations Indicator Index

Input indicators

Labor input Number of First-born Employees (10,000 persons)
Land input Agricultural Sown Area (1000 Ha)

Mechanical input Total power of agricultural machinery (10,000 kW)

Fertilizer input Application amount of agricultural chemical fertilizer
(10,000 tons)

Pesticide input Pesticide usage (10,000 tons)
Plastic film input Plastic film usage (10,000 tons)
Irrigation input Effective irrigation Area (1000 Ha)

Output indicators
Desirable output Gross output value of Agriculture, Forestry, Animal

Husbandry and Fishery (100 million Yuan)
Agricultural carbon sink (10,000 tons)

Undesirable output Agricultural CO2 Emissions (10,000 tons)

The reasons for choosing this approach are as follows. First, the GML index method
can simulate multiple inputs and outputs simultaneously to accurately measure ACRE.
Second, the SBM model can measure efficiency from multiple angles, evaluate the impact
of non-zero input and non-zero output relaxation, and comprehensively measure ACRE.
Finally, in view of the above advantages, the SBM model and GML index method are
suitable for estimating the efficiency of agricultural carbon emissions reduction.

Referring to Meng and Qu [62], according to the global comparison strategy, each
province in each year is regarded as a decision-making unit (DMU). Suppose each province
has m inputs, r1 desirable outputs, and r2 undesirable outputs. Then, under VRS (Variable
Returns to Scale), the general form of the SBM model can be constructed as follows:

min ρ =
1
m (∑m

i=1
x

xik
)

1
r1+r2

(∑
r1
w=1

yw
ywk

+∑
r2
w=1

pu
puk

s.t.



xi ≥
n
∑

j=1, 6=k
xijλj, i = 1, 2, . . . , m;

yw ≥
n
∑

j=1, 6=k
ywjλj, i = 1, 2, . . . , r1;

pu ≥
n
∑

j=1, 6=k
pujλj, i = 1, 2, . . . , r2;

λj ≥ 0, xi ≥ xik, yw ≥ ywk, pu ≥ puk; j = 1, 2, . . . , n(j 6= k)

(1)
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In Equation (1), ρ is the objective function. xij, ywj, and puj are the relaxation variable
of input, desirable output, and undesirable output, respectively, and λ is their weight.
According to the definition of agricultural CO2 emissions reduction (the ratio of possible
minimum carbon emission from agricultural production to actual carbon emission under
fixed input and fixed economic output), based on the calculation of the SBM model, the
GML index is determined as follows:

GMLt,t+1
k =

1+DG(xt
k ,yt

k ,pt
k)

1+DG(xt+1
k ,yt+1

k ,pt+1
k )

=
1+Dt(xt

k ,yt
k ,pt

k)
1+Dt+1(xt+1

k ,yt+1
k ,pt+1

k )
×
[

1+DG(xt
k ,yt

k ,pt
k)

1+Dt(xt
k ,yt

k ,pt
k)
× 1+Dt+1(xt+1

k ,yt+1
k ,pt+1

k )
1+DG(xt+1

k ,yt+1
k ,pt+1

k )

]
= ECt,t+1

k × TCt,t+1
k

(2)

In Equation (2), GMLt,t+1
k represents the two stages of the change in CO2 reduction

efficiency in each province. DG represents a global directional distance function dependent
on production possibilities. ECt,t+1

k represents the change in technical efficiency; TCt,t+1
k

represents the technical progress index. A smaller GML value indicates a greater deviation
between the actual agricultural CO2 emissions and the minimum possible CO2 emissions,
and therefore implies greater redundancy in agricultural carbon emissions and lower
efficiency of carbon emissions reduction.

3.2.2. Main Independent Variable

In the Introduction, the impact of ICT application on agricultural carbon reduction
was described in detail. Broadband penetration, as a measure of ICT development, is
usually measured by the proportion of broadband connections available [38,63] Therefore,
this paper uses the proportion of actual rural broadband users out of the total regional
users to measure rural broadband adoption as the main independent variable, expressed
by Broadband. In the robustness test, the penetration rate of household computers in rural
households, i.e., the ownership of household computers per 100 households, is selected
for reference Zhang [64] and is represented by Computer. This variable is selected because
rural households need Internet terminal equipment to install fixed broadband.

3.2.3. Other Variables

The factors affecting ACRE are complex, so we also added control variables. Some
previous studies have focused on the non-linear effects of the economy and income on
agricultural CO2 emissions. The EKC model estimates that economic growth is the main
driving factor of agricultural CO2 emissions in China from 1991 to 2018 [52]. Hence, we
choose rural per capita disposable income and income squared as control variables. Previ-
ous studies found that the extent of input of agricultural CO2 sources (such as fertilizers
and chemicals) showed an obvious U-shaped trend with increasing farmland size [65].
Therefore, the sowing area is divided by the total labor force of the planting industry to
construct the control variable Scale. Industrial agglomeration is closely related to economic
development [66–68]. Therefore, this paper uses an agricultural location quotient to mea-
sure agricultural economic status, which is assigned to the variable Status. With increasing
industrial agglomeration and industrialization, rural production and living equipment
will be effectively improved, providing material conditions and product markets for agri-
culture and promoting high-quality development of the agricultural economy. Therefore,
in this paper, the industrial added value of each region is used to measure the degree of
industrialization of the region, with the variable being Industrialization. In addition, rural
economic development is often affected by natural disasters [69]. Agricultural production
performance is closely related to environmental quality. Any natural disasters can be dev-
astating to farmers’ morale and may affect technological progress and efficiency [70], thus
affecting the efficiency of agricultural carbon emissions reduction. Therefore, the degree of
disaster measured by the affected crop area in each region is included as a control variable,
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Damage. Finally, moderating variables are chosen. Theoretically, mismatches in production
materials directly inhibit output and distort the input decisions of micro subjects, resulting
in loss of environmental welfare [53]. Therefore, this paper chooses farmer household land
circulation and farmer household production equipment investment as the moderating
variables, represented by Ltr and Equipment, respectively. Table 2 defines the variables used
in the econometric model of this study. Except for proportional variables, all other variables
were determined based on the data from 2010.

Table 2. Variables definition.

Variable Name Symbol Variable Definition

Agricultural carbon
reduction efficiency ACRE Accumulated value of carbon reduction efficiency of

regional agriculture
Rural broadband adoption Broadband Ratio of regional rural broadband users to regional total users
Rural household computer

penetration rate Computer Rural household computer penetration rate, that is, per
100 households computer ownership (sets/100 persons)

rural disposable income Income Natural logarithm of rural per capita disposable income
rural disposable income square Income square Natural logarithm of rural per capita disposable income square

Operation scale Scale Sown area/total labor in planting industry (hectares/person)

Agricultural economic status Status
Location quotient: The ratio of the agricultural output value to

the national agricultural output value divided by the ratio of the
gross product of the province to the national gross product

Industrial added value Industrialization Natural logarithm of industrial added value
Ratio of disaster Damage Ratio of disaster area to sown area

Land transfer Ltr Ratio of circulation area to household contracted arable land area

Equipment investment Equipment Ratio of production equipment investment to fixed assets
investment of rural households

3.3. Econometric Model

This paper constructed the following econometric model to analyze the impact of
broadband adoption on agricultural carbon emissions reduction efficiency by referring to
Tang et al. [71].

ACREit = β0 + β1Broadbandit + β2Xit + λi + µi + εit (3)

In Equation (3), ACREit represents agricultural CO2 reduction efficiency in each
province per year, and Broadbandit represents the rural broadband use in province i as a
proportion of time t. λi is the fixed effects, µi is the time-fixed effects, and εit is the random
perturbation terms.

In order to analyze the moderating effect, this paper adds two moderating variables,
land transfer (Ltr) and equipment investment (Equipment), based on the above benchmark
model. The specific model is constructed as follows:

ACREit = β0 + β1Broadbandit + β2Lcrit + β3Broadbandit·Lcrit + β4Xit + λi + µi + εit (4)

ACREit = β0 + β1Broadbandit + β2Equipmentit + β3Broadbandit·Equipmentit + β4Xit + λi + µi + εit (5)

Equations (4) and (5) are the measurement models of Ltr and Equipment, respectively.
Other variables are consistent with the benchmark model of Equation (3).

4. Results
4.1. Descriptive Statistics

Descriptive statistical results of variables are shown in Table 3. The maximum and
minimum values of ACRE were 1.2 and 0.77, respectively. This shows that there is a certain
gap in the efficiency of agricultural carbon emissions reduction in all provinces of China.
The average broadband adoption rate was 22% and the minimum was 8.3%. According
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to the Communication Industry Statistical Bulletin, the proportion of fixed broadband access
users in 2019 was 30%, an increase of 1.2 percentage points from the end of the previous
year. Therefore, there remains much room for improvement in rural broadband access.
The minimum number of computers per 100 households in rural areas was about 4 and
the maximum number was about 75. This indicates a certain regional gap in the terminal
application of rural broadband.

Table 3. Descriptive statistics.

Variable
Symbol

N Mean SD Min Max

ACRE 270 1.00 0.06 0.77 1.20
Broadband 270 0.22 0.10 0.08 0.44
Computer 270 25.33 14.45 4.04 74.70

income 270 9.30 0.41 8.30 10
income square 270 87 7.60 68 108

Scale 270 4.20 2.40 0.53 15
Status 270 1.20 0.68 0.04 4.10

Industrialization 270 8.80 0.97 6.20 11
Damage 270 0.15 0.12 0.006 0.62

Ltr 270 0.31 0.16 0.03 0.87
Equipment 270 0.16 0.13 0.003 0.68

Note: 1. See Table 2 for definitions of the Explained variables; 2. One USD was about 6.65 Chinese yuan as of
December 2010.

In Figure 2, there are four labels: (a), (b), (c), and (d). First, label (a) shows the rural
broadband adoption rate of 30 provinces in 2011, 2015, and 2019. Over time, the broadband
adoption rate demonstrated a divergent outward rise. Second, labels (b) to (d) show the
spatial distribution of ACER in 2011, 2015, and 2019. In the spatial map, darker colors
indicate higher ARCE and lighter colors indicate lower ARCE. The pattern of ARCE values
across regions shows a gradual shift of high ACRE from the eastern and central regions
to the central and western regions. In 2011, the regions with high ARCE were mainly the
developed eastern coastal provinces and the large agricultural provinces in central China.
Compared with 2011, ARCE in the central region represented by Jiangxi and Hunan and
the western region represented by Yunnan and Sichuan was significantly higher than the
national average in 2019, while that in the eastern coastal region was significantly lower
than the national average. The main reason for the increase in carbon emission levels in
western China is the rapid increase in high-carbon agricultural production activities in
western China, and the relative decrease in eastern China. This is fitting because China
has vigorously implemented the “Broadband Village” pilot project in western and central
China since 2014. Specific provinces involved include Yunnan, Sichuan, Chongqing, Jiangxi,
and Hunan.

4.2. Rural Broadband Adoption and ACRE

The purpose of this study was to investigate the impact of broadband adoption on
agricultural carbon reduction efficiency. Table 4 shows the estimated effects of broadband
adoption on ACRE and reports the core conclusions of this paper. Model (1) controls the
individual dummy variables of provinces. The influence coefficient of the core independent
variable (Broadband) was 0.201 and significant at 5%. Income had a significant negative
impact on ACRE, that is, within a certain range of income, the income of rural residents
significantly reduces the ACRE. However, Income squared had a significant positive impact
on ACRE, such that when income exceeded a certain range, the increase in the income of
rural residents was conducive to improving ACRE. This confirms the U-shaped relationship
between rural residents’ income and ACRE, consistent with the EKC hypothesis. At the
same time, this result preliminarily verifies H1 and H2. Broadband adoption significantly
promotes ACRE. Models (2) and (3) report the results after adding other control variables.
It can be seen that Broadband had the same positive impact on agricultural carbon emission
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reduction efficiency as the previous model, and it is significant at 5%. This indicates that the
results in Table 4 have high stability and further verify H1. This may be because broadband
adoption improve ACRE by promoting technological innovation, alleviating the distortion
of industrial structure, and improving the efficiency of resource allocation [72]. In this
paper, this is mainly mediated by direct effects and propagation effects. First, broadband
adoption influence the rational use of inputs of factors through precision agriculture, thus
reducing their adverse impact on the environment [32]. Second, regulating human envi-
ronmental behavior through propagation effects contributes to significantly reducing CO2
emissions [73]. Therefore, broadband adoption can promote green agricultural production
and achieve a significant improvement in ACRE. In terms of the positive impact of broad-
band adoption on the agricultural environment, our results were consistent with those by
Ma and Zheng [46].
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In addition, the scale of operation significantly affected ACRE. Possible reasons are
as follows. First, the transfer of surplus agricultural labor concentrates cultivated land
in the hands of the operators, causing a scale effect. This improves agricultural output,
which is conducive to improving the enthusiasm of farmers for production standardization.
Second, it provides intensive space for the large-scale socialization of agricultural services.
Fragmented farmland is not conducive to increasing the scale of services, while larger scale
production promotes cost reductions for green agricultural services. Agricultural economic
status had a significant negative effect on ACRE. The reasons may be as follows. Areas
with high agricultural economic status are the main grain-producing areas. With the goal of
ensuring grain output, the concentrated input leads to pollution. Compared with non-major
grain-producing areas, agricultural production activities in major grain-producing areas
are more concentrated, and agricultural non-point source pollution per unit space increases
with increasing production scale, resulting in greater environmental pollution. The degree
of industrialization also had a significant effect on ACRE. This may be due to the crowding
out of agriculture by industry to some extent. The development of industry requires the
expansion of land in a large area, causing huge resource pressure for the development of
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agriculture. The frequency of natural disasters also negatively impacted ACRE. This may
be explained by direct effects on the expected output and an impaired ability of agricultural
activity to sequester carbon. Natural disasters may also negatively affect the motivation of
farmers, including for green agricultural production. Therefore, considering agricultural
development and ecological environmental protection under the goal of food security is a
mainstream pursuit for current agricultural development.

Table 4. Rural broadband adoption and agricultural carbon reduction efficiency.

(1) (2) (3)

ACRE ACRE ACRE

Broadband 0.201 ** 0.111 ** 0.210 **
(2.30) (2.30) (2.42)

Income −0.889 *** −0.608 *** −1.101 ***
(−2.87) (−3.12) (−3.62)

income square 0.047 *** 0.032 *** 0.057 ***
(2.84) (3.01) (3.51)

Scale 0.004 ** 0.012
(2.35) (1.20)

Status −0.020 *** −0.003
(−3.69) (−0.25)

Industrialization −0.005 −0.014
(−1.39) (−0.70)

Damage −0.101 * −0.137 *
(−1.81) (−1.73)

_Cons 5.163 *** 3.979 *** 6.358 ***
(3.61) (4.46) (4.69)

N 270 270 270
Province FE YES NO YES

Year FE NO NO YES
R-squared 0.033 0.127 0.085

Note: 1. See Table 2 for definitions of the variables; 2. *** p < 0.01, ** p < 0.05, and * p < 0.1; 3. Robust t-statistics
in parentheses.

4.3. Robustness Check

In order to verify the accuracy of the conclusion, it is necessary to test the robustness
of the conclusion and replace the main independent variables. The computer penetration
rate of rural residents (number of computers per 100 persons in rural areas) was used to
replace the ratio of broadband adoption. Table 5 reports the impact of rural computer
penetration on ACRE. The influence coefficient of computer penetration rate on ACRE is
positive and significant at the 10% level. Therefore, the robustness test verifies that a larger
rate of broadband adoption is associated with a more beneficial ACRE.

Table 5. Robustness analysis: Replacing the main independent variable.

(4)

ACRE

Computer 0.011 *
(1.92)

Other control variables Control
_Cons 3.196 *

(1.87)
N 270

Province FE Yes
Year FE NO

R-squared 0.054
Note: 1. See Table 2 for definitions of the variables and other control variables; 2. *** p < 0.01, ** p < 0.05, and
* p < 0.1; 3. Robust t-statistics in parentheses.
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4.4. Endogeneity Problem

The core of this study is the nexus between broadband adoption and ACRE. However,
an underlying endogeneity problem may occur. On one hand, there may be a reverse
causality. If ACRE is higher in one province, it will have a spillover effect on the rest
of the country, leading to a larger proportion of broadband adoption in other provinces.
On the other hand, there may be some missing variables or measurement errors. These
problems all lead to the underlying endogeneity problem. In order to alleviate and solve
this problem, this paper uses the independent variable of a single lagged period and the
heteroscedasticity-based recognition strategy for further estimation.

4.4.1. Independent Variable of One Lag Period

Referring to Yu et al. [74], this paper uses independent variables lagged by one period
to solve the endogenous problems caused by mutual causality. The lagging broadband
adoption has a close relationship with the current period and is not affected by the efficiency
of ACRE in the current period. Therefore, we use lagged first-stage broadband adoption as
an instrumental variable to solve the endogenous problem caused by the reverse causality
effect. The results in Table 6 show that the coefficient of ACRE is positive when broadband
adoption lags by a period. Compared with the baseline results in Table 4, the estimated
coefficient for broadband adoption varies from 0.111 to 0.074 and is significant at the 5%
level. This further demonstrates the robustness of our results. That is, broadband adoption
plays an important role in promoting ACRE.

Table 6. Endogeneity problem: The independent variable lag for one period.

(5) (6)

ACRE ACRE

Broadband 0.074 * 0.093 *
(1.78) (1.69)

income −0.683 *** −1.055 **
(−3.23) (−2.45)

income square 0.035 *** 0.054 **
(3.09) (2.31)

Scale 0.004 ** 0.015
(2.51) (1.12)

Status −0.020 *** 0.028
(−4.40) (1.40)

Industrialization −0.003 −0.012
(−0.76) (−0.48)

Damage −0.105 * −0.146
(−1.67) (−1.59)

_Cons 4.339 *** 6.168 ***
(4.48) (3.17)

N 240 240
Province FE Yes No

Year FE No No
R-squared 0.061 0.021

Note: 1. See Table 2 for definitions of the variables; 2. *** p < 0.01, ** p < 0.05, and * p < 0.1; 3. Robust t-statistics
in parentheses.

4.4.2. Recognition Strategy Based on Heteroscedasticity

To solve the endogenous problem, the heteroscedasticity-based recognition strategy
from Lewbel [75] is adopted in this paper. This method uses the high-order moments
of the data to generate a set of internal instrumental variables to improve the estimation
validity, especially when the external validity of the instrumental variables is difficult to
guarantee. According to Lewbel [75], recognition is achieved under two assumptions. First,
the first-stage regression is performed on the benchmark econometric model, and the error
obtained is heteroscedastic, which can be confirmed by the Breusch heteroscedasticity test.
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Second, there are covariates of the first-order and second-order errors that are independent
of the conditional covariance. Table 7 reports the results of the instrumental variables.
The results show that the F statistic of the first stage is greater than 10, indicating that
there is no weak tool problem in the instrumental variables selected in this paper. The
p-value of the Sargen-Baseman test statistic is greater than 0.05, which shows that all
instrumental variables are exogenous and valid. Based on the above tests, it is concluded
that the influence coefficient of broadband adoption on ACRE is 0.563, which is significant
at the level of 5%. These results again demonstrate that the adoption of broadband can
promote ACRE.

Table 7. Endogenous treatment: Lewbel [75].

(7)

ACRE

Broadband 0.563 **
(2.20)

Other control variables Control
_Cons 0.901 ***

(6.04)
N 270

Province FE Yes
Year FE Yes

R-squared 0.792
First-Stage F-Statistic 12.399

Sargan Statistic 16.380
p-value 0.063

Note: 1. See Table 2 for definitions of the variables; 2. *** p < 0.01, ** p < 0.05, and * p < 0.1; 3. Robust t-statistics
in parentheses.

4.5. Further Analysis

Through the robustness and endogeneity analyses above, the relationship between
rural broadband adoption and agricultural carbon emission reduction efficiency has been
verified. However, existing studies have shown that compared with small farmers, land
transfer operators are more likely to accept and adopt low-carbon agricultural technolo-
gies [55]. Information technology allows agricultural facilities to better realize the precision
management of farmland to achieve carbon emissions reduction. Sun and Kim [76] found
that ICTs effectively reduced CO2 intensity and spatial heterogeneity. Therefore, this paper
further analyzes the moderating effects of land transfer (Ltr) and equipment investment
(Equipment) on ACRE under the effect of broadband adoption, including further analysis of
possible heterogeneity.

4.5.1. Moderating Effects

Table 8 reports the regression results of the two moderating effects. It can be seen
from Model (8) that the influence coefficient of the interaction term (Broadband•Ltr) is
greater than zero and achieves statistical significance at the 10% level. This means that a
higher proportion of broadband adoption results in improved ARCE by increasing land
transfer rate. This conclusion verifies H3. A possible explanation for this phenomenon is
that land transfer promotes the possibility of scaling up operation, causing a scale effect
and improving agricultural output. This is conducive to improving the enthusiasm of
farmers for production standardization and also increasing investment in green technology
to provide an economic basis for promoting green agricultural production.



Int. J. Environ. Res. Public Health 2022, 19, 7844 14 of 19

Table 8. Moderating effect results.

(8) (9)

ACRE ACRE

Broadband 0.124 ** Broadband 0.181 **
(2.13) (1.85)

Ltr 0.019 Equipment −0.096 **
(0.92) (−2.47)

Broadband•Ltr 0.387 * Broadband•Equipment 0.475 *
(2.01) (1.68)

income −0.810 *** income −0.637 ***
(−3.72) (−3.02)

income square 0.025 *** income square 0.024 ***
(2.71) (2.95)

Scale 0.002 Scale 0.007
(1.16) (0.75)

Status −0.003 Status 0.001
(−0.21) (0.47)

Industrialization −0.017 Industrialization −0.006
(−0.81) (−1.32)

Damage −0.074 * Damage −0.149 *
(−1.76) (−1.98)

_Cons 5.916 *** _Cons 6.036 ***
(4.32) (3.92)

N 270 N 270
Province FE Yes Province FE Yes

Year FE Yes Year FE Yes
R-squared 0.059 R-squared 0.137

Note: 1. See Table 2 for definitions of the variables; 2. ***p < 0.01, **p < 0.05, and *p < 0.1; 3. Robust t-statistics
in parentheses.

The moderating effect of farmers’ investment is reported in model (9). The interaction
(Broadband•Equipment) has an impact factor greater than zero and passes the significance
test at 10%. Therefore, improvements in informatization level support greater farmers’
investment in production equipment, thus increasing ACRE. This conclusion verifies H4.
This can be attributed to the increased accessibility to precision agriculture that is provided
by broadband adoption. While equipment investment with low-level informatization
cannot realize precision agriculture and therefore result in increased CO2 emissions, the
adoption of broadband in rural areas facilitates greater precision agriculture, supporting
yield growth and the rational use of inputs. Thus, precision agriculture supported by
broadband adoption minimizes the adverse impact on the environment.

4.5.2. Heterogeneity Analysis

As previously described by Ma et al. [77], the provinces studied in this paper were
grouped into three regions: western, central, and eastern. The results of spatial hetero-
geneity analysis are reported in Table 9. In eastern and central, broadband adoption has a
positive effect on ACRE, but there was no significant effect in the west. Therefore, the west-
ern region is already making full use of the benefits brought by broadband infrastructure
to expand the application of ICTs in agricultural and rural areas.
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Table 9. Heterogeneity analysis results.

(Western) (Central) (Eastern)

ACRE ACRE ACRE

Broadband 0.197 0.089 * 0.115 *
(1.09) (1.81) (1.74)

Other control
variables Control Control Control

_Cons 3.936 4.663 *** 8.188 *
(1.51) (2.91) (1.84)

N 81 108 81
Province FE No No No

Year FE Yes Yes Yes
R-squared 0.221 0.057 0.047

Note: 1. See Table 2 for definitions of the variables; 2. *** p < 0.01, ** p < 0.05, and * p < 0.1; 3. Robust t-statistics
in parentheses.

5. Conclusions

This study investigated the impact of rural broadband penetration on ACRE. Our
provincial-level panel data demonstrated that the maximum and minimum values of ACRE
were 1.2 and 0.77, indicating that there is a certain gap in the efficiency of agricultural carbon
emissions reduction in all provinces of China. Further, the average broadband adoption rate
was 22% and the minimum was 8.3%. Therefore, there remains much room for improvement
in rural broadband access. In addition, the pattern of ARCE values across regions shows a
gradual shift of high ACRE from the eastern and central regions to the central and western
regions, which is similar to the results of He et al. and Yan et al. [78,79]. The main reason is
that the agricultural production activities with high carbon emissions in the western region
increased rapidly, while those in the eastern region decreased in comparison.

By looking into the direct impact of rural broadband adoption on ACRE and its related
moderating effect, this study has generated a rich set of empirical findings. Firstly, based
on the EKC hypothesis and considering the role of broadband adoption, our econometric
results confirm the hypothesis that rural broadband adoption has a positive role in promot-
ing agricultural carbon emissions reduction, supporting that which was reported in the
literature [32,45,46]. Then, through further analysis of the mediation effect of land transfer
and farmers’ investment in production equipment on ACRE, we found that the positive
effect of broadband adoption on ACRE was more obvious when land transfer rates are high.
This conclusion verifies the hypothesis that land transfer reduces the distortion degree
of the factor market and has a regulating effect on ACRE. When farmers invest more in
production equipment, the positive effect of broadband adoption is obvious. Finally, there
was spatial heterogeneity between rural broadband adoption and ACRE. In eastern and
central China, broadband adoption had a positive effect on ACRE, while in western China,
broadband adoption had no significant effect. In particular, the SBM model and GML index
method were used to measure ACRE, and the carbon sink of agricultural production was
taken as one of the expected outputs, which was often ignored in previous studies.

The above empirical findings have several policy implications. (1) China is vigorously
implementing the “Digital Villages” strategy, and a significant quantity of broadband
infrastructure investment is gradually meeting the requirements of rural production and
life. Therefore, future work will expand the application of ICTs at the production end
of rural areas, advocate the use of broadband to connect farmers with green production
and management and improve the efficiency of resource utilization. (2) The government
should consider environmental externalities when formulating income redistribution poli-
cies. Transferring the surplus rural labor force can increase the income of rural families
and enhance awareness of rural environmental protection, to realize the “win-win” of
environmental protection and economic development. (3) Improving the land transfer rate
is beneficial to increase the investment of green technology. At the same time, governments
should continue to increase investment in intelligent agricultural production equipment.
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On the basis of the existing broadband infrastructure in rural areas, we should vigorously
promote the use of information agricultural production equipment that is suitable for
agricultural production, convenient for farmers, low cost, and simple to operate. (4) Rural
broadband construction has lagged behind urban areas for a long time [80], so extra focus
should be given to the promotion of household broadband penetration in developing areas.
These areas can make good use of the Internet to improve energy efficiency and reduce the
use of straw and coal in rural areas to reduce CO2 emissions.

Finally, it should be acknowledged that this work has some limitations. First, due
to the lack of relevant data, our study only used broadband penetration to measure the
application of ICTs development. To be more comprehensive, the application of ICTs
development is measured in terms of infrastructure construction and utilization of ICTs.
Therefore, in the following research, we will add indicators such as “network speed” and
“Internet usage duration” to construct a comprehensive measurement of ICTs level. Second,
this study investigated the impact of the application of ICTs on ACRE from a macro regional
perspective. To further analyze the impact of the application of ICTs on the behavior of
enterprises and farmers from a micro perspective, more representative samples should be
used in future assessments of micro subjects’ behavior.
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