Knowledge, Attitudes, and Practices concerning Black Fungus during COVID-19 Pandemic among Students of Bangladesh: An Online-Based Cross-Sectional Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants and Sampling
2.3. Ethical Approval
2.4. Survey Instrument
2.5. Statistical Data Analysis
3. Results
3.1. Sociodemographic Outlines
3.2. The Information Source of KAP Analysis towards Black Fungus
3.3. Knowledge, Attitude, Practice, and Total KAP of the Students
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, C.-C.; Shih, T.-P.; Ko, W.-C.; Tang, H.-J.; Hsueh, P.-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Bio. Med. Atenei Parm. 2020, 91, 157. [Google Scholar]
- World Health Organization. Weekly Operational Update on COVID-19-15 February 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- World Health Organization. COVID-19 Bangladesh Situation Reports: Situation Report 24 January 2022; World Health Organization: Dhaka, Bangladesh, 2022. [Google Scholar]
- Ahmed, M.Z.; Ahmed, O.; Aibao, Z.; Hanbin, S.; Siyu, L.; Ahmad, A. Epidemic of COVID-19 in China and associated psychological problems. Asian J. Psychiatr. 2020, 51, 102092. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yuan, X. China’s ongoing battle against the coronavirus: Why did the lockdown strategy work well? Socio-Ecol. Pract. Res. 2020, 2, 175–180. [Google Scholar] [CrossRef]
- Akter, R.; Akter, M.; Hossain, M.T.; Ahsan, M.N. Socio-environmental factors affecting mental health of people during COVID-19 in coastal urban areas of Bangladesh. In Environmental Resilience and Transformation in Times of COVID-19; Elsevier: Amsterdam, The Netherlands, 2021; pp. 49–62. [Google Scholar]
- Fazel, M.; Wheeler, J.; Danesh, J. Prevalence of serious mental disorder in 7000 refugees resettled in western countries: A systematic review. Lancet 2005, 365, 1309–1314. [Google Scholar] [CrossRef]
- Zheng, W. Mental health and a novel coronavirus (2019-nCoV) in China. J. Affect. Disord. 2020, 269, 201. [Google Scholar] [CrossRef]
- Patel, R.; Baker, S.S.; Liu, W.; Desai, S.; Alkhouri, R.; Kozielski, R.; Mastrandrea, L.; Sarfraz, A.; Cai, W.; Vlassara, H. Effect of dietary advanced glycation end products on mouse liver. PLoS ONE 2012, 7, e35143. [Google Scholar] [CrossRef] [PubMed]
- Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol. 2017, 27, R713–R715. [Google Scholar] [CrossRef] [PubMed]
- Shovo, T.-E.-A.; Ahammed, B.; Khan, B.; Jahan, N.; Shohel, T.A.; Hossain, T.; Islam, N. Determinants of Generalized Anxiety, Depression, and Subjective Sleep Quality among University Students during COVID-19 Pandemic in Bangladesh. Dr. Sulaiman Al Habib Med. J. 2021, 3, 27–35. [Google Scholar] [CrossRef]
- Hossain, M.T.; Islam, M.A.; Jahan, N.; Nahar, M.T.; Sarker, M.J.A.; Rahman, M.M.; Deeba, F.; Hoque, K.E.; Aktar, R.; Islam, M.M.; et al. Mental Health Status of Teachers During the Second Wave of the COVID-19 Pandemic: A Web-Based Study in Bangladesh. Front Psychiatry 2022, 13, 938230. [Google Scholar] [CrossRef]
- Gao, J.; Zheng, P.; Jia, Y.; Chen, H.; Mao, Y.; Chen, S.; Wang, Y.; Fu, H.; Dai, J. Mental health problems and social media exposure during COVID-19 outbreak. PLoS ONE 2020, 15, e0231924. [Google Scholar]
- Hossain, M.T.; Ahammed, B.; Chanda, S.K.; Jahan, N.; Ela, M.Z.; Islam, M.N. Social and electronic media exposure and generalized anxiety disorder among people during COVID-19 outbreak in Bangladesh: A preliminary observation. PLoS ONE 2020, 15, e0238974. [Google Scholar] [CrossRef] [PubMed]
- Hammad, M.A.; Alqarni, T.M. Psychosocial effects of social media on the Saudi society during the Coronavirus Disease 2019 pandemic: A cross-sectional study. PLoS ONE 2021, 16, e0248811. [Google Scholar] [CrossRef]
- Biswas, P.R.; Ahammed, B.; Rahman, M.S.; Nirob, B.M.; Hossain, M.T. Prevalence and determinants of internet addiction among adults during the COVID-19 pandemic in Bangladesh: An online cross-sectional study. Heliyon 2022, 8, e09967. [Google Scholar] [CrossRef]
- Raut, A.; Huy, N.T. Rising incidence of mucormycosis in patients with COVID-19: Another challenge for India amidst the second wave? Lancet Respir. Med. 2021, 9, e77. [Google Scholar] [CrossRef]
- Kabir, H.; Hasan, M.K.; Rahman, M.; Akter, S.; Chowdhury, G.I.; Bhuya, T.R.; Mitra, D.K. Black fungus or mucormycosis: A cross-sectional knowledge assessment among the Bangladeshi health care workers during COVID-19 pandemic. PsyArXiv 2021. [Google Scholar] [CrossRef]
- Chander, J. Textbook of Medical Mycology; JP Medical Ltd.: London, UK, 2017. [Google Scholar]
- Skiada, A.; Pavleas, I.; Drogari-Apiranthitou, M. Epidemiology and diagnosis of mucormycosis: An update. J. Fungi 2020, 6, 265. [Google Scholar] [CrossRef]
- Ishani Ganguli, M.; Katrina Armstrong, M. Ebola Risk and Preparedness: A National Survey of Internists. J. Gen. Intern. Med. 2015, 31, 276–281. [Google Scholar] [CrossRef]
- Sharma, N.C. India Reports 40,854 Cases of Black Fungus So Far. MINT, 28 June 2021. [Google Scholar]
- Ray, S. India Declares ‘Black Fungus’ Epidemic As Infections Rise Among COVID-19 Patients. Forbes, 5 May 2021. [Google Scholar]
- Rahman, F.I.; Islam, M.R.; Bhuiyan, M.A. Mucormycosis or black fungus infection is a new scare in South Asian countries during the COVID-19 pandemic: Associated risk factors and preventive measures. J. Med. Virol. 2021, 93, 6447–6448. [Google Scholar] [CrossRef]
- Kamruzzaman, M. Bangladesh Detects 2 Cases of Black Fungus in Capital; Anadolu Agency: Ankara, Turkey, 2021. [Google Scholar]
- SBS, A. Rare ‘Black Fungus,’ mucormycosis, infects thousands of COVID-19 survivors in India. Wall Street Journal, 24 July 2021. [Google Scholar]
- Daria, S.; Asaduzzaman, M.; Shahriar, M.; Islam, M.R. The massive attack of COVID-19 in India is a big concern for Bangladesh: The key focus should be given on the interconnection between the countries. Int. J. Health Plan. Manag. 2021, 36, 1947–1949. [Google Scholar] [CrossRef]
- Biswas, S. Mucormycosis: The ‘black fungus’ maiming COVID patients in India. BBC News, 9 May 2021. [Google Scholar]
- National Organization for Rare Disorders. Rare Disease Database: Mucormycosis. 2018. Available online: https://rarediseases.org/rare-diseases/Mucormycosis/ (accessed on 27 October 2021).
- Jha, R.K. Explained: Why There Is Shortage of Black Fungus Drug in India; Indian Express: Noida, India, 2021. [Google Scholar]
- Spellberg, B.; Edwards Jr, J.; Ibrahim, A. Novel perspectives on mucormycosis: Pathophysiology, presentation, and management. Clin. Microbiol. Rev. 2005, 18, 556–569. [Google Scholar] [CrossRef] [Green Version]
- Ahmadikia, K.; Hashemi, S.J.; Khodavaisy, S.; Getso, M.I.; Alijani, N.; Badali, H.; Mirhendi, H.; Salehi, M.; Tabari, A.; Mohammadi Ardehali, M. The double-edged sword of systemic corticosteroid therapy in viral pneumonia: A case report and comparative review of influenza-associated mucormycosis versus COVID-19 associated mucormycosis. Mycoses 2021, 64, 798–808. [Google Scholar] [CrossRef]
- Sen, M.; Honavar, S.G.; Sharma, N.; Sachdev, M.S. COVID-19 and eye: A review of ophthalmic manifestations of COVID-19. Indian J. Ophthalmol. 2021, 69, 488. [Google Scholar]
- Gizaw, G.D.; Alemu, Z.A.; Kibret, K.T. Assessment of knowledge and practice of health workers towards tuberculosis infection control and associated factors in public health facilities of Addis Ababa, Ethiopia: A cross-sectional study. Arch. Public Health 2015, 73, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watkins, J. Preventing a COVID-19 pandemic. BMJ 2020, 368, m810. [Google Scholar] [CrossRef] [Green Version]
- Wake, A.D. Knowledge, attitude, practice, and associated factors regarding the novel coronavirus disease 2019 (COVID-19) pandemic. Infect. Drug Resist. 2020, 13, 3817. [Google Scholar] [CrossRef]
- Oladele, R.; Otu, A.A.; Olubamwo, O.; Makanjuola, O.B.; Ochang, E.A.; Ejembi, J.; Irurhe, N.; Ajanaku, I.; Ekundayo, H.A.; Olayinka, A.; et al. Evaluation of knowledge and awareness of invasive fungal infections amongst resident doctors in Nigeria. Pan Afr. Med. J. 2020, 36, 297. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.K.; Kabir, H.; Rahman, M.; Roy, A.K.; Akter, S.; Mitra, D.K. Association between insomnia and mucormycosis fear among the Bangladeshi healthcare workers: A cross-sectional study. J. Affect. Disord. Rep. 2021, 6, 100262. [Google Scholar] [CrossRef]
- Ahammed, B.; Jahan, N.; Seddeque, A.; Hossain, M.T.; Khan, B.; Mamun, M.A.; Islam, M.N. Exploring the association between mental health and subjective sleep quality during the COVID-19 pandemic among Bangladeshi university students. Heliyon 2021, 7, e07082. [Google Scholar] [CrossRef]
- Islam, M.A.; Barna, S.D.; Raihan, H.; Khan, M.N.A.; Hossain, M.T. Depression and anxiety among university students during the COVID-19 pandemic in Bangladesh: A web-based cross-sectional survey. PLoS ONE 2020, 15, e0238162. [Google Scholar] [CrossRef]
- Obenauer, J.; Rübsamen, N.; Garsevanidze, E.; Karch, A.; Mikolajczyk, R.T. Changes in risk perceptions during the 2014 Ebola virus disease epidemic: Results of two consecutive surveys among the general population in Lower Saxony, Germany. BMC Public Health 2018, 18, 628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferdous, M.Z.; Islam, M.S.; Sikder, M.T.; Mosaddek, A.S.M.; Zegarra-Valdivia, J.; Gozal, D. Knowledge, attitude, and practice regarding COVID-19 outbreak in Bangladesh: An online-based cross-sectional study. PLoS ONE 2020, 15, e0239254. [Google Scholar] [CrossRef]
- Kundu, S.; Al Banna, M.; Sayeed, A.; Begum, M.R.; Brazendale, K.; Hasan, M.T.; Habiba, S.J.; Abid, M.T.; Khan, M.; Chowdhury, S. Knowledge, attitudes, and preventive practices toward the COVID-19 pandemic: An online survey among Bangladeshi residents. J. Public Health 2021, 1–15. [Google Scholar] [CrossRef]
- Hayat, K.; Rosenthal, M.; Xu, S.; Arshed, M.; Li, P.; Zhai, P.; Desalegn, G.K.; Fang, Y. View of Pakistani residents toward coronavirus disease (COVID-19) during a rapid outbreak: A rapid online survey. Int. J. Environ. Res. Public Health 2020, 17, 3347. [Google Scholar] [CrossRef] [PubMed]
- Rugarabamu, S.; Ibrahim, M.; Byanaku, A. Knowledge, attitudes, and practices (KAP) towards COVID-19: A quick online cross-sectional survey among Tanzanian residents. MedRxiv 2020. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, S.J.; Sakib, M.S.; Halim, M.A.; Rahman, M.M.; Asikunnaby; Jhinuk, J.M. COVID-19 responses among university students of Bangladesh: Assessment of status and individual view toward COVID-19. J. Hum. Behav. Soc. Environ. 2021, 31, 512–531. [Google Scholar] [CrossRef]
- Zhong, B.-L.; Luo, W.; Li, H.-M.; Zhang, Q.-Q.; Liu, X.-G.; Li, W.-T.; Li, Y. Knowledge, attitudes, and practices towards COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak: A quick online cross-sectional survey. Int. J. Biol. Sci. 2020, 16, 1745. [Google Scholar] [CrossRef] [PubMed]
- Williams, R. Generalized ordered logit/partial proportional odds models for ordinal dependent variables. Stata J. 2006, 6, 58–82. [Google Scholar] [CrossRef] [Green Version]
- Banik, R.; Rahman, M.; Sikder, M.T.; Rahman, Q.M.; Pranta, M.U.R. Knowledge, attitudes, and practices related to the COVID-19 pandemic among Bangladeshi youth: A web-based cross-sectional analysis. J. Public Health 2021, 1–11. [Google Scholar] [CrossRef]
- Farhana, K.; Mannan, K. Knowledge and Perception Towards Novel Coronavirus (COVID 19) in Bangladesh (SSRN Scholarly Paper ID 3576523). Soc. Sci. Res. Netw. 2020, 3576523. [Google Scholar]
- Fernandes, B.; Biswas, U.N.; Mansukhani, R.T.; Casarín, A.V.; Essau, C.A. The impact of COVID-19 lockdown on internet use and escapism in adolescents. Rev. De Psicol. Clínica Con Niños Y Adolesc. 2020, 7, 59–65. [Google Scholar] [CrossRef]
- Hossain, I. Mobile Operators Struggling to Cope with Rise in Data Consumption. Finance Express. p. 6. Available online: https://thefinancialexpress.com.bd/trade/mobile-operators-struggling-to-cope-with-rise-in-data-consumption-1587611418 (accessed on 20 January 2021).
- Zhao, N.; Zhou, G. COVID-19 stress and addictive social media use (SMU): Mediating role of active use and social media flow. Front. Psychiatry 2021, 12, 85. [Google Scholar] [CrossRef] [PubMed]
- Clements, J.M. Knowledge and behaviors toward COVID-19 among US residents during the early days of the pandemic: Cross-sectional online questionnaire. JMIR Public Health Surveill. 2020, 6, e19161. [Google Scholar] [CrossRef] [PubMed]
- Almohammed, O.A.; Aldwihi, L.A.; Alragas, A.M.; Almoteer, A.I.; Gopalakrishnan, S.; Alqahtani, N.M. Knowledge, attitude, and practices associated with COVID-19 among healthcare workers in hospitals: A cross-sectional study in Saudi Arabia. Front. Public Health 2021, 9, 1007. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.S.; Serper, M.; Opsasnick, L.; O’Conor, R.M.; Curtis, L.; Benavente, J.Y.; Wismer, G.; Batio, S.; Eifler, M.; Zheng, P. Awareness, attitudes, and actions related to COVID-19 among adults with chronic conditions at the onset of the US outbreak: A cross-sectional survey. Ann. Intern. Med. 2020, 173, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.-L.; Lee, Y.-M.; Kim, T.; Lee, J.-Y.; Chung, Y.-S.; Kim, M.-N.; Kim, S.-H.; Choi, S.-H.; Kim, Y.S.; Woo, J.H. Risk factors for mortality in patients with invasive mucormycosis. Infect. Chemother. 2013, 45, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Dyer, O. COVID-19: India sees record deaths as “black fungus” spreads fear. BMJ 2021, 373, n1238. [Google Scholar] [CrossRef]
- Kassie, B.A.; Adane, A.; Tilahun, Y.T.; Kassahun, E.A.; Ayele, A.S.; Belew, A.K. Knowledge and attitude towards COVID-19 and associated factors among health care providers in Northwest Ethiopia. PLoS ONE 2020, 15, e0238415. [Google Scholar]
- Endriyas, M.; Kawza, A.; Alano, A.; Hussen, M.; Mekonnen, E.; Samuel, T.; Shiferaw, M.; Ayele, S.; Kelaye, T.; Misganaw, T. Knowledge and attitude towards COVID-19 and its prevention in selected ten towns of SNNP Region, Ethiopia: Cross-sectional survey. PLoS ONE 2021, 16, e0255884. [Google Scholar] [CrossRef]
- Giao, H.; Thi, N.; Han, N.; Khanh, T.V.; Ngan, V.; Tam, V. Knowledge and attitude toward COVID-19 among healthcare workers at Knowledge and attitude toward COVID-19 among healthcare workers at District 2 Hospital, Ho Chi Minh City. Asian Pac. J. Trop. Med. 2020, 13, 1–6. [Google Scholar]
- Azlan, A.A.; Hamzah, M.R.; Sern, T.J.; Ayub, S.H.; Mohamad, E. Public knowledge, attitudes and practices towards COVID-19: A cross-sectional study in Malaysia. PLoS ONE 2020, 15, e0233668. [Google Scholar] [CrossRef] [PubMed]
- Saqlain, M.; Munir, M.M.; Rehman, S.U.; Gulzar, A.; Naz, S.; Ahmed, Z.; Tahir, A.H.; Mashhood, M. Knowledge, attitude, practice and perceived barriers among healthcare workers regarding COVID-19: A cross-sectional survey from Pakistan. J. Hosp. Infect. 2020, 105, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Srichan, P.; Apidechkul, T.; Tamornpark, R.; Yeemard, F.; Khunthason, S.; Kitchanapaiboon, S.; Wongnuch, P.; Wongphaet, A.; Upala, P. Knowledge, attitudes and preparedness to respond to COVID-19 among the border population of northern Thailand in the early period of the pandemic: A crosssectional study. WHO South-East Asia J. Public Health 2020, 9, 118–125. [Google Scholar]
- Rahman, A.; Sathi, N.J. Knowledge, Attitude, and Preventive Practices toward COVID-19 among Bangladeshi Internet Users. Electron. J. Gen. Med. 2020, 17, em245. [Google Scholar] [CrossRef]
- Islam, S.; Emran, G.I.; Rahman, E.; Banik, R.; Sikder, T.; Smith, L.; Hossain, S. Knowledge, attitudes and practices associated with the COVID-19 among slum dwellers resided in Dhaka City: A Bangladeshi interview-based survey. J. Public Health 2021, 43, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Leung, G.M.; Ho, L.-M.; Chan, S.K.; Ho, S.-Y.; Bacon-Shone, J.; Choy, R.Y.; Hedley, A.J.; Lam, T.-H.; Fielding, R. Longitudinal assessment of community psychobehavioral responses during and after the 2003 outbreak of severe acute respiratory syndrome in Hong Kong. Clin. Infect. Dis. 2005, 40, 1713–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Pei, C.; Zheng, Y.; Wang, J.; Zhang, K.; Zheng, Z.; Zhu, P. A cross-sectional survey of knowledge, attitude and practice associated with COVID-19 among undergraduate students in China. BMC Public Health 2020, 20, 1292. [Google Scholar] [CrossRef]
Variables | Frequency (f) | Percentage (%) |
---|---|---|
Sex identity | ||
Male | 914 | 45.5 |
Female | 1074 | 53.5 |
Prefer not to say | 21 | 1.0 |
Religious identity | ||
Muslim | 1842 | 91.7 |
Hindu | 129 | 6.4 |
Others | 38 | 1.9 |
Age (years) | ||
≤17 | 1275 | 63.5 |
18–25 | 632 | 31.5 |
≥26 | 102 | 5.0 |
Schooling | ||
Up to HSC | 1562 | 77.8 |
Honors | 314 | 15.6 |
Masters and above | 133 | 6.6 |
Marital status | ||
Never married | 1805 | 89.8 |
Ever married | 204 | 10.2 |
Living status | ||
With family (including children) | 1912 | 95.2 |
Alone or with friends | 97 | 4.8 |
Living location | ||
Rural and Suburban | 789 | 39.3 |
Urban | 1220 | 60.7 |
Health status | ||
Poor | 34 | 1.7 |
Fair | 107 | 5.3 |
Good | 867 | 43.2 |
Very good | 567 | 28.2 |
Excellent | 434 | 21.6 |
Ever COVID-19 affected | ||
No | 1590 | 79.2 |
Maybe/not sure | 332 | 16.5 |
Yes | 87 | 4.3 |
Media exposure | ||
Never | 155 | 7.7 |
Occasionally/sometimes/often | 1291 | 64.2 |
Always | 564 | 28.1 |
Source of information | ||
Social media | 744 | 37.0 |
YouTube and online news | 358 | 17.8 |
Radio and television | 907 | 45.2 |
Time spent (hours) on media | ||
≤2 h | 1282 | 63.8 |
3–4 h | 472 | 23.5 |
5 h and above | 255 | 12.7 |
Exposure to media compared to pre-COVID-19 situation | ||
Decreased | 150 | 7.5 |
About the same | 590 | 29.4 |
Increased | 1269 | 63.1 |
Questions/Statements | True n (%) | False n (%) | |
---|---|---|---|
Knowledge | |||
1 | Black Fungus is contagious. | 1093 (54.4) | 916 (45.6) |
2 | The Black Fungus spreads through breathing fungal spores from the environment. | 1308 (65.1) | 701 (34.9) |
3 | Black Fungus usually infects the lung, sinus, stomach, and skin of a human. | 1495 (74.4) | 514 (25.6) |
4 | The symptoms of Black Fungus consist of headache, fever, cough, nausea, chest pain, vomiting, and breathlessness. | 1325 (66.0) | 684 (34.0) |
5 | There is a test to confirm a Black Fungus or a vaccine to prevent it. | 503 (25.0) | 1506 (75.0) |
6 | Most patients infected with Black Fungus are those who recovered from the COVID-19. | 1244 (61.9) | 765 (38.1) |
7 | The spread of Black Fungus can be minimized by universal masking. | 1111 (55.3) | 898 (44.7) |
8 | Elderly and chronic patients are more vulnerable to Black fungus. | 1436 (71.5) | 573 (28.5) |
Attitude | |||
1 | Keeping updated with the current situation of Black Fungus is essential for individual and collective well-being. | 1625 (80.9) | 384 (19.1) |
2 | I felt worried/scared after knowing the growing number of deaths across the world due to the Black Fungus. | 1468 (73.1) | 541 (26.9) |
3 | The information shared by the Government agencies is essential to control the disease and rumors. | 1552 (77.3) | 457 (22.7) |
4 | People infected with or suspected of Black Fungus should be labeled or stigmatized. | 361 (18) | 1648 (82.0) |
5 | Emphasis should be placed on keeping the environment clean and maintaining personal hygiene. | 1735 (86.4) | 274 (13.6) |
Practice | |||
1 | I try to avoid areas covered with dust, like construction sites. | 1637 (81.5) | 372 (18.5) |
2 | I wear a facemask if I go to the market or other crowded places. | 1790 (89.1) | 219 (10.9) |
3 | I try to avoid visiting water-damaged buildings and flooded areas. | 1513 (75.3) | 496 (24.7) |
4 | I do not wear shoes, gloves, masks, long pants, and a long-sleeve shirt while getting in contact with soil and dust. | 1195 (59.5) | 814 (40.5) |
5 | I clean skin injuries with disinfectants, especially after exposure to soil or dust. | 1663 (82.8) | 346 (17.2) |
Factors | Knowledge Score | Attitude Score | Practice Score | Total KAP Score | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Low Score n (%) | Moderate Score n (%) | High Score n (%) | p-Value | Low Score n (%) | Moderate Score n (%) | High Score n (%) | p-Value | Low Score n (%) | Moderate Score n (%) | High Score n (%) | p-Value | Low Score n (%) | Moderate Score n (%) | High Score n (%) | p-Value | |
Knowledge score | 770 (38.3) | 830 (41.3) | 409 (20.4) | 819 (40.8) | 1021 (50.8) | 169 (8.4) | 502 (25.0) | 735 (36.6) | 772 (38.4) | 660 (32.9) | 832 (41.4) | 517 (25.7) | ||||
Sex identity | ||||||||||||||||
Male | 402 (20.0) | 345 (17.2) | 167 (8.3) | 0.000 | 429 (21.4) | 424 (21.1) | 61 (3.0) | 0.000 | 271 (13.5) | 343 (17.1) | 300 (14.9) | 0.000 | 361 (18.0) | 354 (17.6) | 199 (9.9) | 0.000 |
Female | 357 (17.8) | 476 (23.7) | 241 (12.0) | 377 (18.8) | 590 (29.5) | 107 (5.3) | 218 (10.9) | 388 (19.3) | 468 (23.3) | 287 (14.3) | 472 (23.5) | 315 (15.7) | ||||
Prefer not to say | 11 (0.5) | 9 (0.4) | 1 (0.0) | 13 (0.6) | 7 (0.3) | 1 (0.0) | 13 (0.6) | 4 (0.2) | 4 (0.2) | 12 (0.6) | 6 (0.3) | 3 (0.1) | ||||
Religious identity | ||||||||||||||||
Muslim | 690 (34.4) | 775 (38.6) | 377 (18.8) | 0.039 | 756 (37.7) | 931 (46.4) | 155 (7.7) | 0.031 | 448 (22.3) | 681 (33.9) | 713 (35.6) | 0.147 | 593 (29.5) | 771 (38.4) | 478 (23.9) | 0.088 |
Hindu | 59 (2.9) | 42 (2.1) | 28 (1.4) | 42 (2.1) | 78 (3.9) | 9 (0.4) | 39 (1.9) | 44 (2.2) | 46 (2.3) | 47 (2.3) | 49 (2.4) | 33 (1.6) | ||||
Others | 21 (1.0) | 13 (0.6) | 4 (0.2) | 21 (1.0) | 12 (0.6) | 5 (0.2) | 15 (0.7) | 10 (0.5) | 13 (0.6) | 20 (1.0) | 12 (0.6) | 6 (0.3) | ||||
Age (years) | ||||||||||||||||
≤17 | 472 (23.5) | 537 (26.8) | 266 (13.2) | 0.621 | 500 (24.9) | 657 (32.7) | 118 (5.9) | 0.226 | 303 (15.1) | 440 (21.9) | 532 (26.5) | 0.000 | 399 (19.9) | 523 (26.0) | 353 (17.7) | 0.049 |
18–25 | 257 (12.8) | 251 (12.5) | 124 (6.2) | 277 (13.8) | 312 (15.5) | 43 (2.1) | 176 (8.8) | 261 (13.0) | 195 (9.7) | 230 (11.4) | 261 (13.0) | 141 (7.0) | ||||
≥26 | 41 (2.0) | 42 (2.1) | 19 (0.9) | 42 (2.1) | 52 (2.6) | 8 (0.4) | 23 (1.1) | 34 (1.7) | 45 (2.2) | 31 (1.5) | 48 (2.4) | 23 (1.1) | ||||
Schooling | ||||||||||||||||
Up to HSC | 572 (28.5) | 660 (32.9) | 330 (16.4) | 0.063 | 605 (30.1) | 819 (40.8) | 138 (6.9) | 0.012 | 368 (18.3) | 555 (27.6) | 639 (31.9) | 0.000 | 477 (23.7) | 664 (33.1) | 421 (21.0) | 0.001 |
Honors | 140 (7.0) | 119 (5.9) | 55 (2.7) | 153 (7.6) | 138 (6.9) | 23 (1.1) | 97 (4.8) | 130 (6.5) | 87 (4.3) | 132 (6.6) | 114 (5.6) | 68 (3.4) | ||||
Masters and above | 58 (2.9) | 51 (2.5) | 24 (1.2) | 61 (3.0) | 64 (3.2) | 8 (0.4) | 37 (1.8) | 50 (2.5) | 46 (2.3) | 51 (2.5) | 54 (2.7) | 28 (1.4) | ||||
Marital status | ||||||||||||||||
Never married | 687 (34.3) | 744 (37.0) | 374 (18.6) | 0.470 | 719 (35.8) | 934 (46.5) | 152 (7.6) | 0.034 | 446 (22.2) | 655 (32.6) | 704 (35.0) | 0.285 | 588 (29.3) | 741 (36.9) | 479 (23.7) | 0.152 |
Ever married | 83 (4.1) | 86 (4.3) | 35 (1.7) | 100 (5.0) | 87 (4.3) | 17 (0.8) | 56 (2.8) | 80 (4.0) | 68 (3.4) | 72 (3.6) | 91 (4.5) | 41 (2.0) | ||||
Living status | ||||||||||||||||
With family (including children) | 723 (36.0) | 789 (39.3) | 400 (19.9) | 0.012 | 765 (38.1) | 984 (49.0) | 163 (8.1) | 0.009 | 465 (23.2) | 704 (35.1) | 743 (37.0) | 0.008 | 617 (30.7) | 792 (39.5) | 503 (25.0) | 0.010 |
Alone or with friends | 47 (2.3) | 41 (2.1) | 9 (0.4) | 54 (2.7) | 37 (1.8) | 6 (0.3) | 37 (1.8) | 31 (1.5) | 29 (1.4) | 43 (2.1) | 40 (2.0) | 14 (0.7) | ||||
Living location | ||||||||||||||||
Rural and Suburban | 320 (15.9) | 303 (15.1) | 166 (8.3) | 0.098 | 357 (17.8) | 378 (18.8) | 54 (2.7) | 0.002 | 240 (11.9) | 273 (13.6) | 276 (13.7) | 0.000 | 287 (14.3) | 314 (15.6) | 188 (9.4) | 0.023 |
Urban | 450 (22.4) | 527 (26.2) | 243 (12.1) | 462 (23.0) | 643 (32.0) | 115 (5.7) | 262 (13.0) | 462 (23.0) | 496 (24.8) | 373 (18.6) | 518 (25.7) | 329 (16.4) | ||||
Health status | ||||||||||||||||
Poor | 18 (0.9) | 11 (0.6) | 5 (0.2) | 0.015 | 17 (0.8) | 16 (0.8) | 1 (0.0) | 0.480 | 15 (0.7) | 6 (0.3) | 13 (0.6) | 0.012 | 17 (0.8) | 11 (0.5) | 6 (0.3) | 0.001 |
Fair | 53 (2.6) | 37 (1.8) | 17 (0.9) | 47 (2.3) | 55 (2.7) | 5 (0.2) | 34 (1.7) | 42 (2.1) | 31 (1.5) | 50 (2.5) | 41 (2.0) | 16 (0.8) | ||||
Good | 334 (16.6) | 352 (17.5) | 181 (9.0) | 345 (17.3) | 442 (22.0) | 80 (4.0) | 220 (11.0) | 332 (16.5) | 315 (15.7) | 289 (14.5) | 353 (17.7) | 225 (11.2) | ||||
Very good | 204 (10.2) | 262 (13.0) | 101 (5.0) | 220 (11.0) | 299 (14.9) | 48 (2.4) | 132 (6.6) | 209 (10.5) | 226 (11.2) | 166 (8.3) | 262 (13.0) | 139 (6.9) | ||||
Excellent | 161 (8.1) | 168 (8.4) | 105 (5.2) | 190 (9.5) | 209 (10.4) | 35 (1.7) | 101 (5.0) | 146 (7.3) | 187 (9.3) | 138 (6.8) | 165 (8.2) | 131 (6.5) | ||||
Ever COVID-19 affected | ||||||||||||||||
No | 581 (28.9) | 669 (33.3) | 340 (16.9) | 0.019 | 630 (31.4) | 823 (41.0) | 137 (6.8) | 0.154 | 375 (18.7) | 567 (28.2) | 648 (32.2) | 0.001 | 488 (24.3) | 662 (33.0) | 440 (21.9) | 0.000 |
Maybe/not sure | 151 (7.5) | 125 (6.2) | 56 (2.8) | 146 (7.3) | 163 (8.1) | 23 (1.1) | 102 (5.1) | 130 (6.5) | 100 (5.0) | 137 (6.8) | 135 (6.7) | 61 (3.0) | ||||
Yes | 38 (1.9) | 36 (1.8) | 13 (0.6) | 43 (2.1) | 35 (1.7) | 9 (0.4) | 25 (1.2) | 38 (1.9) | 24 (1.2) | 36 (1.8) | 35 (1.7) | 16 (0.8) | ||||
Media exposure | ||||||||||||||||
Never | 82 (4.1) | 50 (2.5) | 23 (1.1) | 0.000 | 92 (4.6) | 51 (2.5) | 12 (0.6) | 0.000 | 78 (3.9) | 37 (1.8) | 40 (2.0) | 0.000 | 84 (4.2) | 44 (2.2) | 27 (1.3) | 0.000 |
Occasionally/sometimes/often | 497 (24.7) | 551 (27.5) | 242 (12.0) | 526 (26.2) | 664 (33.1) | 100 (5.0) | 316 (15.8) | 473 (23.5) | 501 (24.9) | 433 (21.6) | 548 (27.3) | 309 (15.4) | ||||
Always | 191 (9.5) | 229 (11.4) | 144 (7.2) | 201 (10.0) | 306 (15.2) | 57 (2.8) | 108 (5.4) | 225 (11.2) | 231 (11.5) | 143 (7.1) | 240 (11.9) | 181 (9.0) | ||||
Source of information | ||||||||||||||||
Social media | 322 (16.0) | 269 (13.4) | 153 (7.6) | 0.000 | 344 (17.1) | 362 (18.0) | 38 (1.9) | 0.000 | 225 (11.2) | 288 (14.3) | 231 (11.5) | 0.000 | 292 (14.5) | 285 (14.2) | 167 (8.3) | 0.000 |
YouTube and online news | 135 (6.7) | 167 (8.3) | 56 (2.8) | 150 (7.5) | 166 (8.3) | 42 (2.1) | 93 (4.6) | 129 (6.4) | 136 (6.8) | 116 (5.8) | 161 (8.0) | 81 (4.0) | ||||
Radio and television | 313 (15.6) | 394 (19.6) | 200 (10.0) | 325 (16.2) | 493 (24.5) | 89 (4.4) | 184 (9.2) | 318 (15.8) | 405 (20.2) | 252 (12.5) | 386 (19.2) | 269 (13.5) | ||||
Time spent (hours) on media | ||||||||||||||||
≤2 h | 478 (23.8) | 552 (27.6) | 252 (12.5) | 0.003 | 507 (25.2) | 656 (32.7) | 119 (5.9) | 0.132 | 277 (13.8) | 480 (23.9) | 525 (26.1) | 0.000 | 392 (19.5) | 553 (27.6) | 337 (16.8) | 0.000 |
3–4 h | 169 (8.4) | 199 (9.9) | 104 (5.2) | 202 (10.1) | 232 (11.5) | 38 (1.9) | 132 (6.6) | 156 (7.8) | 184 (9.2) | 151 (7.5) | 196 (9.8) | 125 (6.2) | ||||
5 h and above | 123 (6.1) | 79 (3.9) | 53 (2.6) | 110 (5.5) | 133 (6.6) | 12 (0.6) | 93 (4.6) | 99 (4.9) | 63 (3.1) | 117 (5.8) | 83 (4.1) | 55 (2.7) | ||||
Exposure to media compare to pre COVID-19 situation | ||||||||||||||||
Decreased | 68 (3.4) | 48 (2.4) | 34 (1.7) | 0.040 | 77 (3.8) | 67 (3.3) | 6 (0.3) | 0.001 | 57 (2.8) | 53 (2.6) | 40 (2.0) | 0.002 | 73 (3.6) | 46 (2.3) | 31 (1.5) | 0.000 |
About the same | 242 (12.0) | 239 (11.9) | 109 (5.4) | 263 (13.1) | 273 (13.6) | 54 (2.7) | 145 (7.2) | 220 (11.0) | 225 (11.2) | 205 (10.2) | 238 (11.8) | 147 (7.3) | ||||
Increased | 460 (22.9) | 543 (27.1) | 266 (13.2) | 479 (23.9) | 681 (33.9) | 109 (5.4) | 300 (14.9) | 462 (23.0) | 507 (25.2) | 382 (19.1) | 548 (27.3) | 339 (16.9) |
Factors | Knowledge (Median (IQR)) | Attitude (Median (IQR)) | Practice (Median (IQR)) | Total KAP (Median (IQR)) |
---|---|---|---|---|
Sex identity | ||||
Male | 5 (3) *** | 4 (1) * | 4 (2) * | 12 (4) * |
Female | 5 (2) | 4 (1) | 4 (1) | 13 (4) |
Prefer not to say | 4 (5) | 3 (3) | 3 (3) | 11 (11) |
Religious identity | ||||
Muslim | 5 (2) ** | 4 (1) | 4 (1) * | 13 (4) *** |
Hindu | 5 (3) | 4 (1) | 4 (2) | 13 (5) |
Others | 4 (3) | 3 (3) | 4 (3) | 11 (9) |
Age (years) | ||||
≤17 | 5 (2) | 4 (1) *** | 4 (1) * | 13 (4) ** |
18–25 | 5 (3) | 4 (1) | 4 (2) | 12.5 (4) |
≥26 | 5 (2) | 3 (1) | 4 (1) | 13 (3) |
Schooling | ||||
Up to HSC | 5 (2) | 4 (1) * | 4 (1) * | 13 (4) * |
Honors | 5 (3) | 4 (2) | 4 (2) | 12 (4) |
Masters and above | 5 (3) | 4 (1) | 4 (2) | 13 (4) |
Marital status | ||||
Never married | 5 (2) | 4 (1) *** | 4 (1) | 13 (4) |
Ever married | 5 (2) | 4 (1) | 4 (2) | 12.5 (4) |
Living status | ||||
With family (including children) | 5 (2) ** | 4 (1) * | 4 (1) ** | 13 (4) * |
Alone or with friends | 5 (3) | 3 (2) | 4 (3) | 12 (6) |
Living location | ||||
Rural and Suburban | 5 (3) | 4 (1) *** | 4 (2) * | 13 (4) ** |
Urban | 5 (2) | 4 (1) | 4 (1) | 13 (4) |
Health status | ||||
Poor | 4 (4) ** | 3.5 (3) *** | 4 (4) *** | 11.5 (11) ** |
Fair | 5 (3) | 4 (1) | 4 (2) | 12 (4) |
Good | 5 (2) | 3 (1) | 4 (2) | 13 (4) |
Very good | 5 (2) | 4 (1) | 4 (1) | 13 (3) |
Excellent | 5 (3) | 4 (1) | 4 (1) | 13 (4) |
Ever COVID-19 affected | ||||
No | 5 (2) * | 4 (1) *** | 4 (1) * | 13 (4) * |
Maybe/not sure | 5 (3) | 4 (1) | 4 (2) | 12 (4) |
Yes | 5 (3) | 3 (1) | 4 (2) | 12 (4) |
Media exposure | ||||
Never | 4 (4) * | 3 (3) * | 3 (4) * | 11 (9) * |
Occasionally/sometimes/often | 5 (2) | 4 (1) | 4 (1) | 13 (3) |
Always | 5 (3) | 4 (1) | 4 (1) | 13 (4) |
Source of information | ||||
Social media | 5 (3) * | 4 (1) * | 4 (2) * | 12 (4) * |
YouTube and online news | 5 (2) | 4 (1) | 4 (2) | 13 (4) |
Radio and television | 5 (2) | 4 (1) | 4 (1) | 13 (4) |
Time spent (hours) on media | ||||
≤2 h | 5 (2) *** | 4 (1) ** | 4 (2) * | 13 (4) * |
3–4 h | 5 (2) | 4 (1) | 4 (2) | 13 (4.5) |
5 h and above | 5 (3) | 4 (2) | 4 (1) | 12 (5) |
Exposure to media compared to pre-COVID-19 situation | ||||
Decreased | 5 (3) *** | 3 (2) * | 4 (2) * | 12 (6) * |
About the same | 5 (3) | 4 (1) | 4 (1) | 13 (4) |
Increased | 5 (2) | 4 (1) | 4 (1) | 13 (4) |
Factors | Knowledge | Attitude | Practice | |||
---|---|---|---|---|---|---|
Moderate and Higher vs. Lower aOR (95%CI) | Higher vs. Lower or Moderate aOR (95%CI) | Moderate and Higher vs. Lower aOR (95%CI) | Higher vs. Lower or Moderate aOR (95%CI) | Moderate and Higher vs. Lower aOR (95%CI) | Higher vs. Lower or Moderate aOR (95%CI) | |
Sex Identity | ||||||
Male (r) | ||||||
Female | 1.49 [1.23, 1.81] | 1.27 [1.01, 1.60] | 1.58 [1.30, 1.91] | 1.41 [1.00, 1.99] | 1.56 [1.25, 1.95] | 1.57 [1.29, 1.91] |
Prefer not to say | 1.12 [0.43, 2.91] | 0.32 [0.04, 2.45] | 0.79 [0.30, 2.07] | 0.58 [0.07, 4.52] | 0.34 [0.13, 0.92] | 0.69 [0.21, 2.21] |
Religious identity | ||||||
Muslim (r) | ||||||
Hindu | 0.77 [0.53, 1.11] | 1.02 [0.66, 1.59] | 1.55 [1.04, 2.29] | 0.79 [0.39, 1.61] | 0.77 [0.51, 1.16] | 0.92 [0.63, 1.35] |
Others | 0.57 [0.29, 1.15] | 0.55 [0.19, 1.60] | 0.64 [0.32, 1.29] | 2.09 [0.77, 5.69] | 0.67 [0.31, 1.43] | 1.02 [0.49, 2.13] |
Age (years) | ||||||
≤17 (r) | ||||||
18–25 | 1.18 [0.91, 1.54] | 1.10 [0.81, 1.49] | 1.21 [0.93, 1.56] | 0.80 [0.49, 1.28] | 1.20 [0.89, 1.62] | 0.93 [0.72, 1.21] |
≥26 | 1.67 [0.87, 3.22] | 1.54 [0.67, 3.52] | 2.21 [1.15, 4.24] | 1.14 [0.34, 3.83] | 2.02 [0.96, 4.23] | 3.13 [1.55, 6.33] |
Schooling | ||||||
Up to HSC (r) | ||||||
Honors | 0.82 [0.59, 1.15] | 0.92 [0.61, 1.38] | 0.74 [0.53, 1.03] | 1.39 [0.76, 2.55] | 0.90 [0.62, 1.29] | 0.79 [0.56, 1.12] |
Masters and above | 0.75 [0.43, 1.30] | 0.91 [0.45, 1.85] | 0.74 [0.43, 1.29] | 0.79 [0.26, 2.43] | 0.84 [0.45, 1.57] | 0.61 [0.32, 1.14] |
Marital status | ||||||
Never married (r) | ||||||
Ever married | 0.89 [0.63, 1.25] | 0.72 [0.46, 1.11] | 0.64 [0.45, 0.90] | 1.18 [0.64, 2.18] | 0.80 [0.55, 1.17] | 0.72 [0.50, 1.04] |
Living status | ||||||
With family (including children) (r) | ||||||
Alone or with friends | 0.89 [0.57, 1.42] | 0.45 [0.21, 0.95] | 0.75 [0.46, 1.18] | 0.90 [0.37, 2.22] | 0.72 [0.45, 1.17] | 1.01 [0.61, 1.67] |
Living location | ||||||
Rural and Suburban (r) | ||||||
Urban | 1.03 [0.85, 1.25] | 0.91 [0.72, 1.15] | 1.24 [1.03, 1.51] | 1.24 [0.87, 1.76] | 1.33 [1.07, 1.66] | 1.10 [0.90, 1.34] |
Health status | ||||||
Poor (r) | ||||||
Fair | 0.92 [0.41, 2.06] | 1.08 [0.36, 3.26] | 0.91 [0.40, 2.06] | 1.21 [0.13, 11.01] | 0.93 [0.39, 2.2] | 0.44 [0.19, 1.05] |
Good | 1.45 [0.70, 2.99] | 1.45 [0.54, 3.91] | 1.12 [0.54, 2.34] | 2.83 [0.37, 21.59] | 1.41 [0.65, 3.07] | 0.63 [0.29, 1.35] |
Very good | 1.58 [0.76, 3.25] | 1.25 [0.46, 3.40] | 1.18 [0.56, 2.48] | 2.23 [0.29, 17.22] | 1.53 [0.69, 3.38] | 0.70 [0.32, 1.52] |
Excellent | 1.54 [0.73, 3.23] | 1.81 [0.66, 4.96] | 0.98 [0.46, 2.06] | 2.20 [0.28, 17.09] | 1.62 [0.73, 3.61] | 0.82 [0.37, 1.79] |
Ever COVID-19 affected | ||||||
No (r) | ||||||
Maybe/not sure | 0.77 [0.60, 0.99] | 0.86 [0.62, 1.18] | 0.92 [0.72, 1.19] | 0.90 [0.56, 1.44] | 0.87 [0.66, 1.16] | 0.74 [0.57, 0.98] |
Yes | 0.79 [0.50, 1.23] | 0.74 [0.40, 1.36] | 0.65 [0.41, 1.02] | 1.14 [0.54, 2.39] | 0.82 [0.49, 1.36] | 0.63 [0.38, 1.03] |
Media exposure | ||||||
Never (r) | ||||||
Occasionally/sometimes/often | 1.74 [1.23, 2.46] | 1.46 [0.91, 2.34] | 1.91 [1.35, 2.72] | 0.88 [0.47, 1.65] | 2.75 [1.92, 3.94] | 1.71 [1.15, 2.53] |
Always | 2.05 [1.41, 2.97] | 2.11 [1.29, 3.47] | 2.29 [1.57, 3.33] | 1.19 [0.62, 2.31] | 3.80 [2.57, 5.66] | 1.75 [1.16, 2.66] |
Source of information | ||||||
Social media (r) | ||||||
YouTube and online news | 1.22 [0.93, 1.60] | 0.70 [0.49, 0.98] | 1.14 [0.88, 0.50] | 2.39 [1.48, 3.85] | 1.17 [0.87, 1.58] | 1.19 [0.91, 1.58] |
Radio and television | 1.27 [1.03, 1.58] | 0.96 [0.75, 1.24] | 1.34 [1.08, 1.67] | 1.78 [1.17, 2.72] | 1.39 [1.08, 1.79] | 1.44 [1.16, 1.80] |
Time spent (hours) on media | ||||||
≤Two hours (r) | ||||||
3–4 h | 1.08 [0.86, 1.35] | 1.09 [0.84, 1.42] | 0.90 [0.72, 1.12] | 0.92 [0.63, 1.36] | 0.74 [0.58, 0.95] | 0.95 [0.76, 1.18] |
5 h and above | 0.73 [0.54, 0.97] | 1.03 [0.72, 1.47] | 1.05 [0.78, 1.41] | 0.58 [0.30, 1.11] | 0.57 [0.42, 0.78] | 0.58 [0.42, 0.80] |
Exposure to media compared to pre-COVID-19 situation | ||||||
Decreased (r) | ||||||
About the same | 1.03 [0.71, 1.49] | 0.71 [0.45, 1.11] | 1.18 [0.81, 1.72] | 2.39 [1.00, 5.72] | 1.57 [1.05, 2.33] | 1.44 [0.95, 2.18] |
Increased | 1.27 [0.89, 1.81] | 0.81 [0.53, 1.23] | 1.49 [1.04, 2.12] | 2.14 [0.91, 5.01] | 1.57 [1.07, 2.27] | 1.56 [1.06, 2.31] |
LR χ2 | 131.92 | 154.53 | 224.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.A.; Nahar, M.T.; Khan, M.N.A.; Butt, Z.A.; Monjur-Al-Hossain, A.S.M.; Barna, S.D.; Rahman, M.M.; Halder, H.R.; Hossain, M.Z.; Hossain, M.T. Knowledge, Attitudes, and Practices concerning Black Fungus during COVID-19 Pandemic among Students of Bangladesh: An Online-Based Cross-Sectional Survey. Int. J. Environ. Res. Public Health 2022, 19, 9146. https://doi.org/10.3390/ijerph19159146
Islam MA, Nahar MT, Khan MNA, Butt ZA, Monjur-Al-Hossain ASM, Barna SD, Rahman MM, Halder HR, Hossain MZ, Hossain MT. Knowledge, Attitudes, and Practices concerning Black Fungus during COVID-19 Pandemic among Students of Bangladesh: An Online-Based Cross-Sectional Survey. International Journal of Environmental Research and Public Health. 2022; 19(15):9146. https://doi.org/10.3390/ijerph19159146
Chicago/Turabian StyleIslam, Md. Akhtarul, Mst. Tanmin Nahar, Md. Nafiul Alam Khan, Zahid Ahmad Butt, A. S. M. Monjur-Al-Hossain, Sutapa Dey Barna, Md. Mostafizur Rahman, Henry Ratul Halder, Mohammed Zaber Hossain, and Md. Tanvir Hossain. 2022. "Knowledge, Attitudes, and Practices concerning Black Fungus during COVID-19 Pandemic among Students of Bangladesh: An Online-Based Cross-Sectional Survey" International Journal of Environmental Research and Public Health 19, no. 15: 9146. https://doi.org/10.3390/ijerph19159146
APA StyleIslam, M. A., Nahar, M. T., Khan, M. N. A., Butt, Z. A., Monjur-Al-Hossain, A. S. M., Barna, S. D., Rahman, M. M., Halder, H. R., Hossain, M. Z., & Hossain, M. T. (2022). Knowledge, Attitudes, and Practices concerning Black Fungus during COVID-19 Pandemic among Students of Bangladesh: An Online-Based Cross-Sectional Survey. International Journal of Environmental Research and Public Health, 19(15), 9146. https://doi.org/10.3390/ijerph19159146