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Abstract: Abandoned mines are typical areas of soil erosion. Landscape transformation of abandoned
mines is an important means to balance the dual objectives of regional ecological restoration and
industrial heritage protection, but the secondary development and construction process of mining
relics require long-term monitoring with objective scientific indicators and effective assessment of
their management effectiveness. This paper takes Tongluo Mountain Mining Park in Chongqing as an
example and uses a remote sensing ecological index (RSEI) based on Landsat-8 image data to assess
the spatial and temporal differences in the dynamic changes in the ecological and environmental
quality of tertiary relic reserves with different degrees of development and protection in the park.
Results showed that: 1© The effect of vegetation cover, which can significantly improve soil and water
conservation capacity. 2© The RSEI is applicable to the evaluation of the effectiveness of ecological
management of mines with a large amount of bare soil areas. 3© The mean value of the RSEI in the
region as a whole increased by 0.090, and the mean values of the RSEI in the primary, secondary and
tertiary relic reserves increased by 0.121, 0.112 and 0.006, respectively. 4© The increase in the RSEI
in the study area is mainly related to the significant decrease in the dryness index (NDBSI) and the
increase in the humidity index (WET). The remote sensing ecological index can objectively reflect
the difference in the spatial and temporal dynamics of the ecological environment in tertiary relic
protection, and this study provides a theoretical reference for the ecological assessment of secondary
development-based management under difficult site conditions.

Keywords: land ecology; mine management; remote sensing ecological index; ecological restoration
assessment; soil and water conservation

1. Introduction

Ecological restoration and environmental protection management of mines are cur-
rently the focus of global attention [1] and is a global concern. As a special landscape
remnant of the human transformation of nature, mining relics can be transformed into
parks by means of landscape transformation [2]. This study examines the transformation
of abandoned mines into parks and open spaces, which can realize the protection of indus-
trial relics [3] and natural ecological restoration [4] and the economic development of the
surrounding area [5,6] and other Multiple goals [7,8]. However, the process of “turning
mines into parks” requires secondary development and construction of the site [2,9,10],
and long-term monitoring of mine ecological restoration is necessary to avoid negative
impacts on regional ecology [11].

Detailed evaluation of sample sites, is constrained by spatial and temporal condi-
tions [12–16]. It is difficult to form a comprehensive long-term evaluation. With its
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multitemporal, high-spatial coverage and easy and rapid access, remote sensing tech-
nology has become an important tool for the long-term monitoring of regional ecological
changes [17–20]. However, most related work is based on basic observations using single
indicators [21]. However, most work is based on basic observations using single indicators,
especially vegetation indicators [22]. In 2013, Xu Hanqiu proposed the remote sensing
ecological index (RSEI), which is a measure of the ecological change in the region [23]. In
2013, Xu Hanqiu proposed the remote sensing ecological index (RSEI) as a monitoring and
evaluation tool for regional ecological conditions and a rapid detection and evaluation
of regional ecological long time series [24]. The four items of the RSEI are among the
four ecological factors of the RSEI. The heat index and dryness index obtained from the
inversion of surface temperature and bare soil index have a high contribution rate in the
evaluation of the ecological quality of mines and are closely related to human life [25,26].
The RSEI has more comprehensive and social criteria applicability, which makes up for
the deficiency of the traditional evaluation method of using a normalized vegetation index
to evaluate ecological quality. Existing studies based on the RSEI have conducted a large
number of studies on cities and urban clusters [27–29], nature reserves [30–32], soil erosion
areas [33,34], and mines [35].

Tongluo Mountain Mine Park in Chongqing adopts the idea of “turning mines into
gardens” and limits the degree of protection and development of the 41 quarry relics
in the park to three levels, fully reflecting the impact of different degrees of secondary
development and construction on ecological restoration. Here we asked: (1) Can the
ecological quality of the study area be improved by the ecological treatment of “mine to
park”, which requires secondary development and construction? (2) What are the spatial
and temporal dynamics of the ecological environment of each quality level in the three-level
protected areas with different degrees of development and protection? (3) Can the remote
sensing ecological index (RSEI) reflect the differences in the effectiveness of ecological
management in the study area under different levels of development and management?
This study is expected to enrich the evaluation system of ecological restoration effectiveness
in mining areas and has long-term practical significance for ecological construction in the
study area.

2. Materials and Methods
2.1. Materials

Located in Shifun town and Yupeng Mountain town, Yubei District, Chongqing
Tongluo Mountain Mining Park was once the largest limestone quarry group in Yubei
District, and since the 1980s, large-scale gravel-mining activities have been carried out in
Tongluo Mountain. By 2010, long-term mining had left 41 pits of various shapes and forms,
forming an impact area of 14.87 square kilometers. The quarrying area stretched 10 km from
north to south, with bare rock exposed in the pits and significant degradation of vegetation
around the pits, exposing the local ecological environment to great safety hazards. From
2010 to 2012, the city of Chongqing completely shut down the Tongluo Mountain quarry,
and 12 water pits gradually formed in the pit complex due to groundwater activities, with
minerals dissolving in the water forming a unique turquoise blue pit lake with unique
scenery, attracting many surrounding residents. The unique scenery attracts many residents
to visit this place.

Based on the special landscape of Tongluo Mountain, the local government has carried
out ecological management of the quarry area in phases since 2014 and has built Tongluo
Mountain Mine Park, which has a total planning area of 2472.25 hm2, of which 691.75 hm2

is the core area, 171.47 hm2 is the scope of the heavy control area, and 2300.78 hm2 is
the scope of the no-build area. The park has 41 limestone pit relics, and according to the
typicality, rarity and ornamental nature of the mining relics, as well as their scientific,
historical and cultural values and development and utilization functions, the mining relics
in Tongluo Mountain are graded and protected as rare (Grade 1), important (Grade 2) and
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general (Grade 3). Each level is separately designated as a protected area in accordance
with the relevant requirements, and the protection requirements are determined.

The delineation of the protected areas is mainly based on the level of protection
of the relics, which is shown in the Figure 1. Within a radius of 100 m of the Grade I
mining remains, the zone is designated as a Grade I protection zone. Construction is
prohibited within the zone, and the original appearance of the mining ruins is maintained
as much as possible. Within a 50-m radius of the secondary mining relics, the zone is
designated as a secondary protection zone, where construction is prohibited, and scientific
activities are carried out in the form of cultural experiences in trace camps. Within a
20-m radius of the tertiary mining ruins is designated as a tertiary protection zone, with
moderate development and construction within the tertiary protection zone, with cultural
buildings and necessary tourism service facilities arranged around the theme of mine
science education.
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2.2. Methods
2.2.1. Data Sources

Landsat has a large amount of historical data compared with other satellite data,
which is conducive for the study of long-time series of the ground surface. Therefore, this
paper uses Landsat remote sensing images as the data source to analyze and evaluate the
ecological environment of Tongluo Mountain Mining Park in Chongqing. The data were
obtained from the United States Geological Survey (USGS) and Geospatial Data Cloud.
To ensure that the surface ecology was not different due to seasonal differences, remote
sensing data were selected from July to August; when it was summer, the vegetation
growth condition was good, which is conducive to the evaluation study of ecological
quality of the mine area. In this paper, Landsat 8 TM images from July 2014, August 2019
and August 2021 were used. The selected data all meet the characteristics of high data
quality and low cloud content, and the image quality meets the research needs. The remote
sensing images were preprocessed in ENVI5. 3 software for radiometric calibration and
atmospheric correction, and finally, the remote sensing images were cropped based on the
boundary of Tongluo Mountain Mining Park.

2.2.2. Research Methodology

The remote sensing ecological index (RSEI) is a more mature model in the study of
ecological status evaluation. The index is entirely based on the information of remote
sensing image data, and the four index factors of vegetation, heat, humidity, and dryness
are obtained by inversion of remote sensing image data. The vegetation index is repre-
sented by the normalized differential vegetation index (NDVI), which is commonly used
to monitor vegetation growth and vegetation cover; the moisture index is represented by
the moisture component (WET), which is related to soil moisture in the tassel cap trans-
formation; and the moisture component (WET), which is related to soil moisture in the
tassel cap transformation, is used to represent the moisture index, which is a response to
the water content of the surface. Land surface temperature (LST), an important parameter
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reflecting the energy flow and material exchange in the soil–vegetation–atmosphere system,
represents the heat index; the index-based built-up index (IBI) and soil index (SI), which
jointly influence surface dryness, are taken as the average values to represent the dryness
index. The formulae for calculating the index factors are as follows:

(1) The normalized difference vegetation index (NDVI) was used to represent the green-
ness component (also called greenness index), which was modeled as:

NDVI = (ρnir − ρred)/(ρnir + ρred) (1)

(2) Humidity component WET based on tassel cap variation is sensitive to humidity, ρi
indicates the spectral reflectance of the corresponding waveband:

WET = 0.1511ρblue + 0.1973ρgreen + 0.3283ρred + 0.3407ρnir−0.7117ρmir1 − 0.4559ρmir2 (2)

(3) The NDBSI is expressed as the average of the exponential building index (IBI) and the
bare earth index (SI):

NDBSI = (IBI + SI)/2 (3)

(4) The heat index is expressed in terms of surface temperature LST, and the other indices
are calibration parameters:

LST = T/[1 +
(

λT
ρ

)
lnε] (4)

The RSEI coupling the four indicators were constructed. Because of the differences in
the values of the indicators, standardization and dimensionless processing were performed,
and the calculation formula is:

NX =
X − Xmin

Xmax − Xmin
(5)

In the formula, NX is the result of the normalization of the index, X is the mean of the
image elements of this index, Xmax and Xmin are the maximum and minimum values of the
indicator, respectively.

In data mining-related applications, principal component analysis is one of the most
common methods, and its key advantage is that the weights of each indicator are non-
artificially determined, which can reduce the errors caused by human interference. Principal
component analysis is used for index integration of remote sensing ecological indices, and
the initial value is obtained by using Envi software, and the initial value RSEI0 is obtained
by subtracting PC1 from 1, and then it is standardized, and the resulting RSEI is the remote
sensing ecological index, calculated by the formula:

RSEI =
RSEI0 − RSEI0_min

RSEI0_max − RSEI0_min
(6)

In the formula, RSEI0 is the initial remotely sensed ecological index, RSEI0_max and
RSEI0_min are the maximum and minimum values of the initial remote sensing ecological
index, respectively, and the RSEI is the final remote sensing ecological index with a value
range of [0, 1]; the larger the value is, the better the ecological environmental quality.

3. Results
3.1. Results of Principal Component Analysis

As seen from Table 1, the contribution rates of the eigenvalues of the first principal
component PC1 are all up to more than 80%, i.e., the first principal component concentrates
the characteristic information of the four subindicators to the maximum extent. In PC1 of
the results of the principal component analysis in each year, WET and NDVI are positive,
and NDBSI and LST are negative, which is consistent with the general perception of the
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feedback relationship between the four indicators and the ecological environmental quality,
namely, moisture and vegetation cover have positive effects on ecological environmental
quality, and the degree of surface exposure, anthropogenic floor area and surface tem-
perature have negative effects on ecological environmental quality. Among them, the
highest value of green load indicates that the vegetation factor has the greatest influence
on ecological environmental evaluation, which means that vegetation has the greatest
effect on environmental quality improvement. Meanwhile, the sum of the eigenvalues of
the vegetation index (NDVI) and humidity index (WET) are smaller than the sum of the
absolute values of the eigenvalues of the dryness index (NDBSI) and heat index (LST),
indicating that the improvement effect of vegetation and humidity on ecology is weaker
than the damage effect of dryness and heat on ecology. Among them, the vegetation index
(NDVI) and the humidity index (WET) respond to the local green cover area, which has
a significant effect on local cooling and humidification, while the plants have good soil
and water conservation ability for areas with large slopes such as mine pits. At the same
time, the humidity index (WET) can also respond well to the enhancement of soil and
water conditions.

Table 1. Remote sensing ecological index calculation equation based on Landsat.

Year Indicator PC1 PC2 PC3 PC4

2014

NDVI 0.522858 0.525688 0.567416 −0.35821
WET 0.521052 0.413196 −0.70196 0.25501

NDBSI −0.447353 −0.60023 −0.24506 −0.61607
LST −0.504975 −0.43892 0.353893 0.653537

Eigenvalues 0.1008 0.0127 0.001 0.0006
Eigenvalue Contribution Rate 87.59% 11.00% 0.87% 0.54%

2021

NDVI 0.521654 0.430223 0.692738 −0.2508
WET 0.602344 0.343521 −0.71044 −0.12019

NDBSI −0.31315 −0.74006 0.008344 −0.59513
LST −0.516716 −0.38628 0.123759 0.753976

Eigenvalues 0.1193 0.01 0.0021 0.0004
Eigenvalue Contribution Rate 90.55% 7.60% 1.56% 0.29%

As seen from Table 2, the RSEI values in the study area improved considerably from
2014 to 2021, with an overall increase of 0.089948, and the overall ecological quality entered
a good grade. The percentage of excellent ecological grade increased by 16.14%, and the
percentage of poor and poorer grade areas decreased by 12.22%. The ecological quality of
the overall study area showed an upward trend. In recent years, with restoration work, the
ecological quality of the mine area has shown significant improvement, mainly because the
mine area has been treated in a three-level way, and different treatment measures have been
adopted for different areas, resulting in different index changes. Through an analysis of the
changes in the four ecological factors, the remote sensing ecological index constructed by
the factors shows good applicability in the ecological quality monitoring of the limestone
mine area and can reflect the ecological characteristics of different graded treatment areas.

Table 2. Area and proportion of each ecological level in the study area.

Quality Level
2014 2021 Growth during

2014–2021/km2
Area/km2 Proportion/% Area/km2 Proportion/%

Very poor (0–0.2) 1.09 16.03% 0.48 6.98% −0.62
Poor (0.2–0.4) 1.02 15.04% 0.81 11.87% −0.22

Medium (0.4–0.6) 1.42 20.85% 1.42 20.89% 0.00
Good (0.6–0.8) 3.00 44.02% 2.73 40.06% −0.27

Very good (0.8–1.0) 0.28 4.05% 1.37 20.19% 1.10
Mean 0.514385 0.604333 0.089948

Total area/km2 6.81
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3.2. Analysis of the Ecological Quality and Soil and Water Conservation Capacity of the Study Area

A grading map of the remote sensing ecological index was made (Figure 2a,b). The
area of each grade and the proportions were determined (Table 2).
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Figure 2. RSEI and its variation in Tongluo Mountain Mine Park from 2014 to 2021.

Between 2014 and 2021, the overall ecological quality within the scope of Tongluo
Mountain Mine Park improved generally, and the remote sensing ecological index increased
by 0. 028. Its ecological management effectiveness was mainly manifested by an increase of
1.10 km2 in the area of excellent ecological grade within the region, which increased from
4.05% to 20.19%, and the area of excellent grade ecological quality within the study area
increased significantly, reflecting the ecological management effects. The area of excellent
ecological quality in the study area increased significantly, reflecting the effectiveness
of ecological management and the lag of results with typical performance of vegetation
restoration, a large number of vegetation restoration areas are mainly located in the original
bare soil areas around the mine pits, which greatly enhance the soil and water conservation
capacity of the vegetation covered areas and strongly prevent the erosion of the original
landforms by heavy rainfall; meanwhile, the area of poor ecological grade decreased by
9.05%, among which the area of poorer grade decreased by 3.17%. During the treatment
period, a large number of bare soil areas reclaimed from mines was restored, which had
a significant effect on the ecological quality improvement and RSEI. The large number of
re-greened areas has raised the humidity level of the area and most of the pits have formed
a cultured water source in the center, enhancing the surrounding hydrological conditions.
After the restoration, the low-quality areas at this stage were mainly distributed on both
sides inside and outside the mining relic reserve: within the reserve, the construction of the
landscape facilities of the mine ecological park and the space of buildings and squares in
the park formed part of the low-quality ecological areas, which can be seen in the Figure 3.
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3.3. Analysis of Ecological Dynamic Changes in the Study Area

ENVI software was used to detect the change information of the RSEI from 2014 to
2021 and generate the ecological change map (Figure 2c). From Table 3, we can see that the
percentage of the area with no ecological change between 2014 and 2021 was 0%, and the
overall ecological quality of the study area had a large range of change; the percentage of the
area with ecological improvement was 77.88%, and the percentage of the area with only one
ecological grade improvement was 69.89%. The ecological quality was improved mainly in
the areas around the mine pits within the study area due to the mine pit protection project,
while ecological quality was degraded in 22.12% of the area, with 19.77% of the ecological
quality reduced by one grade and 2.12% of the ecological quality reduced by two grades
or more. The ecological quality reduction area was mainly concentrated around Pits 1–8.
This indicates that large-scale construction has had a significant negative impact on the
ecological restoration effects around the reserve (Pits 1–8), and the surrounding villages
have been expanded and rebuilt to a certain extent, resulting in a significant decrease in
the index around the pits. Although there was a certain decline in the index, the park
construction of the mine pits has been completed, forming a good landscape ornamental
effect, and to a certain extent, the conservation and utilization requirements of the mine
pits in the plan have been completed.
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Table 3. Area and proportion of each ecological level in the study area.

Ecological Change Rangeability
2014–2021

Area/km2 Proportion/%

Ecological Improvement
3.0 0.01 0.18%
2.0 0.53 7.81%
1.0 4.76 69.89%

Ecological Unchanged 0.0 0.00 0.00%

Ecological Degradation
−1.0 1.35 19.77%
−2.0 0.14 2.12%
−3.0 0.02 0.23%

3.4. Analysis of Changes in Ecological Quality and Soil and Water Conservation Capacity of
Tertiary Conservation Areas

To further analyze the differences between the subtreatment measures, remotely
sensed ecological indices (Table 4) were calculated separately within the three levels of
treatment areas to reflect the degree of change in ecological quality within the areas and the
role of each area in influencing the ecological quality of the whole park. From the change
in the ecological quality index from 2014 to 2021, the value of the RSEI for the whole park
improved by 0.089948 for all three graded areas. The primary area was a key restoration
area with a low RSEI of 0.455299 in 2014, which was at a medium level, after which the area
was treated more vigorously, and the overall area improved by 0.121361 to 0.576660 at the
beginning and end of the treatment phase. The secondary area had a better ecological base,
with a RSEI of 0.498493 in 2014, which was slightly better than the primary area but also at
a medium level. The ecological quality of this area also had an increasing trend, with the
overall area improving by 0.111994 at the beginning and end of the treatment phase, and
the final RSEI reached 0.61487, rising to a good level. The tertiary area was at the stage of
the lowest level of protection and could be built on a certain scale, taking up the main tour
function, but the RSEI of the tertiary area reached 0.604446 in 2014, which is a good level,
and the overall area improved by 0.006093 at the beginning and end of the treatment stage,
and the RSEI reached 0.610539 after the treatment, which remained at a good level.

Table 4. Remote sensing ecological index of different governance areas and the overall area from
2014 to 2021.

The Whole Area The First-Grade
Protection Zones

The Second-Grade
Protection Zones

The Third-Grade
Protection Zones

2014 RSEI 0.514385 0.455299 0.498493 0.604446
2021 RSEI 0.604333 0.576660 0.610487 0.610539

growth in value
from 2014 to 2021 0.089948 0.121361 0.111994 0.006093

area/km2 6.81 1.19 4.11 1.51

To further compare and analyze the characteristics of ecological quality changes among
the three levels of areas between 2014 and 2021, the share of areas with different ecological
grades within the three levels in 2014 and 2021 were counted (Figure 4), and the graphs
show that the share of areas with an ecological quality index of 0.0–0.2 in the three graded
areas decreased significantly totally 16.04% between 2014 and 2021, with the first-level
areas. The reason for this is that the primary protected area, as the most severely mined
area, has a large number of bare soil mining areas with the greatest risk of soil erosion,
therefore it had the greatest protection and the best re-greening effect in the first stage. The
re-greening effect is obvious in the location of the slope, the overall re-greening area is large,
and the formation of the mine cultured water source to promote each other, playing a good
cooling and humidification, reduce rainwater scouring effect of soil and water conservation;
It is especially obvious in the RSEI. In contrast, the lowest ecological indices in secondary
and tertiary areas also had a decreasing trend, but at the same time, the ecological quality
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of these two areas was better, the area of the ecological quality index 0.8–1.0 improved
significantly under the protection measures, indicating that the secondary and tertiary
areas showed a “better quality” ecological restoration effect after the implementation of
the protection measures. Therefore, the three types of graded areas have adopted different
restoration strategies to achieve a comparable post-restoration level in the face of different
restoration status.
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The ecological quality of all three regions improved during 2014–2021, but the three
regions adopted different treatment measures; therefore, the reasons and characteristics of
the ecological quality improvement in the three regions can be analyzed in detail based on
the changes in the normalized index values of ecological factors in the four regions from
2014–2021 (Table 5 and Figure 5).

Table 5. Ecological factor index of different governance areas in 2014–2021.

Indicator

the First-Grade
Protection Zones

the Second-Grade
Protection Zones

the Third-Grade
Protection Zones

2014 2021 2014 2021 2014 2021

NDVI 0.508773 0.537714 0.582730 0.635925 0.635969 0.641617
WET 0.517207 0.740030 0.572531 0.723445 0.632828 0.696893

NDBSI 0.540865 0.414093 0.500751 0.382151 0.428610 0.390973
LST 0.593211 0.608623 0.576721 0.640104 0.442797 0.592080

Among the graded regions in 2014, the ecological damage area of the tertiary region
was smaller, the degree of damage was lower, and the ecological damage of the primary
region was the greatest; therefore, in 2014, the dryness index of the primary region was
highest, the secondary region was second, and the tertiary region was in the best condition.
Figure 2a shows that there was some concentrated ecological damage within the primary
region, and the large area of bare soil in the region was mainly due to the mining caused by
mining. With the graded protection measures starting in 2014, the vegetation and moisture
index within the primary area appeared to increase, and by 2021, the vegetation of the
primary area increased by 0.028941, and the dryness index decreased by −0.126772. This
stage of improvement was related to local high-intensity protection initiatives, meanwhile
the large amount of vegetation cover effectively mitigates the risk of soil erosion in this
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area. At the same time, the formation of a large number of natural puddles in the primary
area had a certain effect on the overall ecological quality improvement, and the humidity
index increased by 0.222823 between 2014 and 2021. The four ecological factors in the
index indicate that the primary area had importance for ecological restoration and the
development and construction of conservation initiatives were not carried out, and the
integrated RSEI also increased by 0.121361. The ecological base of the secondary area
was better, and the vegetation index in 2014 reached 0.582730 higher than the vegetation
value of the primary area after treatment in 2021, which was 0.098211, indicating that the
vegetation status of the secondary area was significantly better than that of the primary
area. At the same time, the dryness index of the secondary area reached 0.500751, and
the destruction of bare soil was comparable to that of the primary area. The government
adopted the approach of attaching importance to ecological restoration and trace landscape
development for the secondary area and adopted high-intensity ecological restoration
measures to increase the vegetation coverage area for the bare area and the damaged
area in the protected area, while at the same time carrying out trace development for the
scenic quality resources of the mine area to meet the visitation demand of the surrounding
residents, but the development intensity was weak and did not cause an excessive impact
on the ecological quality. By 2021, with the progress of conservation work, the vegetation
index of the secondary area increased to 0.635925, which was 0.053195 higher than that
in 2014, and the dryness index decreased by 0.118600, which indicates that the bare soil
recovered better, and the humidity index increased by 0.150914, which was low compared
with that of the primary area, because the natural puddles formed in the mine area in the
secondary area were worse than those in the primary area. The Level I area was poor.
As the best ecological substrate, the vegetation index of the tertiary area was as high as
0.604446 in 2014, which exceeded the pre-restoration level of the primary and secondary
areas. Therefore, in addition to ecological restoration, the policy of protecting this area also
undertook the construction of tour facilities and provided cultural tour services; therefore,
there was a certain degree of engineering construction in the tertiary area, which caused
a certain degree of negative impact on the ecosystem; and in terms of ecological factors,
the increase in vegetation between 2014 and 2021 was only 0.005648 less than the other
two areas, which was 19. 51% and 10. 32% of the other two areas, respectively. The
decrease in the dryness index was only 0.037637, which was 29.69% and 31.73% of the other
two regions, respectively. However, after the restoration of the tertiary area, not only the
construction of several landscape tour facilities was carried out but also the improvement
of ecological quality was completed.

Int. J. Environ. Res. Public Health 2022, 11, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 5. The mean changes in the normalized indices of ecological factors in the three zones. 

4. Discussion 

Rare earth minerals are a non-renewable resource, and are being more extensively 

used in machinery manufacturing, petrochemical industry, agriculture, forestry and 

animal husbandry, aerospace and military technology. Due to the increasing demand for 

rare earth resources, the mining scale of rare earth mines has been expanded, and some 

unscrupulous businessmen are mining rare earth mines beyond the mine area according 

to the scope for profiteering, and the improper mining methods will certainly lead to plant 

destruction, ecological quality decline, soil erosion and many other environmental 

problems in rare earth mines. Facing such problems, the landscape transformation of 

abandoned mines is an important measure to protect and reuse industrial heritage. In the 

face of different mine status quo, different restoration priorities and strategies are 

specified according to local conditions, and the ecological factor screening out strategy by 

remote sensing ecological index suppresses the risk of soil erosion and improves the 

ecological quality of the mine. 

The Tongluo Mountain Mining Park mentioned in this paper divides the mining 

remains in the park into three levels (Figure 1) for graded control and protection to 

enhance ecological quality and reduce the risk of soil erosion. The primary protected area 

was only protected without development, and the area contains eight naturally occurring 

water mine pits. The significant improvement in its internal ecological quality over seven 

years is mainly related to the significant increase in humidity (WET) and decrease in 

dryness (NDBSI) in the area, highlighting the positive environmental effect of the 

naturally occurring water pits in the area. The secondary protection zone was protected 

before development, and the area contains 25 distinctive and accessible quarry ruins. Of 

the three classes of areas, the secondary protected area has the highest value-added 

vegetation (NDVI). Although the construction of the park caused a legacy of some bare 

rock and bare soil areas, and park construction increased the hard site area to some extent, 

the dryness index (NDBSI) within the area decreased compared to the original mining, 

indicating a decrease in the area of bare soil. The damage and impact of the subsequent 

construction on the environment was greatly lessened, including the ecological benign 

development around the relics. The tertiary protection zone was developed first and then 

protected, and the area contains eight quarry relics with poor landscape effects. The region 

directly used the hardened area of bare soil and bare rock in the original site for park 

construction. Its ecological quality was minimally enhanced, mainly caused by the 

negative effect of the significant increase in the heat level (LST) in the area, and its change 

was consistent with the increasing intensity of human activities in the area. 

Figure 5. The mean changes in the normalized indices of ecological factors in the three zones.



Int. J. Environ. Res. Public Health 2022, 19, 9750 11 of 15

4. Discussion

Rare earth minerals are a non-renewable resource, and are being more extensively
used in machinery manufacturing, petrochemical industry, agriculture, forestry and animal
husbandry, aerospace and military technology. Due to the increasing demand for rare earth
resources, the mining scale of rare earth mines has been expanded, and some unscrupulous
businessmen are mining rare earth mines beyond the mine area according to the scope for
profiteering, and the improper mining methods will certainly lead to plant destruction,
ecological quality decline, soil erosion and many other environmental problems in rare
earth mines. Facing such problems, the landscape transformation of abandoned mines is
an important measure to protect and reuse industrial heritage. In the face of different mine
status quo, different restoration priorities and strategies are specified according to local
conditions, and the ecological factor screening out strategy by remote sensing ecological
index suppresses the risk of soil erosion and improves the ecological quality of the mine.

The Tongluo Mountain Mining Park mentioned in this paper divides the mining
remains in the park into three levels (Figure 1) for graded control and protection to enhance
ecological quality and reduce the risk of soil erosion. The primary protected area was
only protected without development, and the area contains eight naturally occurring
water mine pits. The significant improvement in its internal ecological quality over seven
years is mainly related to the significant increase in humidity (WET) and decrease in
dryness (NDBSI) in the area, highlighting the positive environmental effect of the naturally
occurring water pits in the area. The secondary protection zone was protected before
development, and the area contains 25 distinctive and accessible quarry ruins. Of the
three classes of areas, the secondary protected area has the highest value-added vegetation
(NDVI). Although the construction of the park caused a legacy of some bare rock and bare
soil areas, and park construction increased the hard site area to some extent, the dryness
index (NDBSI) within the area decreased compared to the original mining, indicating a
decrease in the area of bare soil. The damage and impact of the subsequent construction
on the environment was greatly lessened, including the ecological benign development
around the relics. The tertiary protection zone was developed first and then protected, and
the area contains eight quarry relics with poor landscape effects. The region directly used
the hardened area of bare soil and bare rock in the original site for park construction. Its
ecological quality was minimally enhanced, mainly caused by the negative effect of the
significant increase in the heat level (LST) in the area, and its change was consistent with
the increasing intensity of human activities in the area.

Overall analytical indicator relationships in the RSEI evaluation model had positive
first principal component loadings for vegetation (NDVI) and humidity (WET) and the
opposite for dryness (NDBSI) and heat (LST) [36]. Among the four indicators, dryness
(NDBSI) had the largest load value and showed an increasing trend between 2014 and
2021, and its mean value showed a significant decrease between 2014 and 2021, indicating
that in the study area, dryness had the greatest and continuously increasing impact on the
RSEI [21]. The change in index had a significant impact on the improvement of the remote
sensing ecological index in the region and played an important driving role [33]. On the
one hand, it is clear that the original bare rock and bare soil areas had a negative impact
on the location and surrounding ecological environment [37,38]; on the other hand, it also
reflects the applicability of the RSEI in the evaluation of mine ecological quality.

The strategy of graded zoning, site-specific and moderate development and protection
restored the ecological quality of the area and drove the economic development of the
surrounding area on the basis of preserving the original appearance of the industrial ruins,
which provides a practical reference for the ecological restoration path of the abandoned
mine sites [39]. This study provides a practical reference for the ecological restoration
of abandoned mine sites. However, the ecological restoration idea of turning the mine
into a park is closely related to a number of water pits formed spontaneously in Tongluo
Mountain Mine Park due to natural effects [40]. It can be said that water pits are the result
of natural action. The construction of the local mine park was not only for the protection of
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the mining relics but also for restoration of the ecology in the area and for protection of
this special landscape of human–nature coproduction [41]. The construction of the local
mining park was not only for the protection of the mining relics but also for the restoration
of the ecology in the area and the protection of this special landscape of humans and
nature. Therefore, the construction of Tongluo Mountain Mine Park had its own special
characteristics, and the ecological management of the mine should be planned according to
the local conditions and should not be blindly imitated.

The existing evaluation index system still needs to be improved. Based only on the
visualization results of the RSEI, the ecological quality grades of the area of bare soil caused
by mining and the area where roads, flooring and buildings are located in the new park are
both extremely poor, and it is difficult to distinguish the influence of both on the ecological
quality of the area. The reason for this is that the dryness index was obtained by inversion of
the mean values of the building index and bare soil index, which to a certain extent lessens
the negative effect of the surface bare soil index on the ecological quality evaluation of the
rare earth mining area and makes it difficult to visualize the regional impact of different
features on the ecological environment. The related research combines the idea of scale in
landscape ecology to propose a remote sensing ecological index based on moving windows,
which optimizes the accuracy of the calculation of the RSEI in the case of more mixed
regional feature types [42], which is applicable to similar special cases, such as bare earth
land in mining areas and construction land transposition. The evaluation model can be
optimized by introducing geographic probes [34], Google Earth Engine cloud computing
platform [43] and other indicators. How to refine more targeted ecological evaluation
indicators with this study needs further research. Meanwhile, the degradation of ecological
quality in the park is closely related to human activities [21]. The degradation of ecological
quality in the park is closely related to human activities. However, the construction and
development of rural settlements around the park and the landscape construction in the
park both play a positive role in the sustainable development of the regional economy
and society and thus cannot be used as a basis for denying the ecological management
effectiveness of the park. The model can be optimized by introducing human activity
intensity [25] and nighttime lighting data [44]. The model can be optimized by introducing
human activity intensity, nighttime lighting data and other indicators, or add a slope
indicator to reflect the risk of erosion at the mine site.

5. Conclusions

The remote sensing ecological index is quantitatively constructed with four indicators,
green, thermal, dry, and wet, and the objective and diverse characteristics can be applied
well to the evaluation and evolutionary analysis of the ecological environmental status of
regions with different degrees of development and treatment in the process of development-
style management of mining areas. The ecological quality of the study area is improved
comprehensively. The spatial and temporal dynamic change characteristics of the ecological
environment at each quality level vary in the three-level relic reserve. The evaluation of
ecological environmental quality in the three-level relic reserve of Tongluo Mountain
Mining Park from 2014–2021 is analyzed as follows.

(1) Rare earth mines and other such over-exploited mines, the bare soil areas in the
mines are mostly the plots where water and soil erosion occur, and emphasis should be
placed on enhancing the vegetation cover of the bare soil areas to play a role in cooling,
increasing humidity and enhancing the water and soil conservation capacity. In the face of
the current situation of mining areas with different degrees of damage different focused
soil and water conservation strategies should be adopted.

(2) The Tongluo Mountain mine pit restoration project improved the ecological quality
in the region. As a product of resource-depleting collection behavior, mountain pits have
increasingly significant negative environmental effects on mining areas. Applying the
ecological remote sensing index (RSEI) to remote sensing monitoring of ecological quality
and changes in pits enables rapid quantitative remote sensing evaluation of ecological



Int. J. Environ. Res. Public Health 2022, 19, 9750 13 of 15

changes in Tongluo Mountain Pit Park in Chongqing from 2014–2021, and the results of
the study show that the overall ecological quality of the local area shows an upward trend.
The three levels of protection indicate zoning treatment, and the treatment measures are
adapted to local conditions, all of which improved the ecological quality within the region.

(3) The types of ecological changes in Tongluo Mountain pits are mainly divided
into three categories: ecological conservation, resource diversion, and redevelopment. In
terms of ecological enhancement, based on the principle of the three-level classification of
pits, different utilization strategies are adopted for different levels of pits, and ecological
conservation strategies are adopted inside and at the boundary of Pits 1–8 so that ecological
quality is greatly improved in the remote sensing index. In terms of resource transfer, the
mine pit with high landscape value is designed to become a mine park with experience,
culture and education as the main focus; therefore, there is a small piece of land reclamation
around the mine pit; thus, the ecological quality index is not improved as much as the
area of the No. 1–8 mine pit, but it produces high landscape benefits and improves the
overall conservation diversity of Tongluo Mountain. In terms of redevelopment, for the
lower protection level of the mine area, we assumed the additional function of scenic
tours and the secondary development of the surrounding green space to be used as a
park-supporting facility arrangement place. In the original ecological base of the area, we
did not overly pursue the rise of indicators but chose to provide more multifunctional
support and, ultimately, to a certain degree, to improve the ecological quality based on the
additional landscape facilities.

(4) For mine pit restoration according to the local conditions, the effect is good. Com-
paring the disposal measures for the three types of pits, the ecological enhancement as the
main disposal measure contributes to the greatest ecological quality improvement benefit
and ensures that the overall ecological quality of Tongluo Mountain Pit Park is continu-
ously improved. In the comprehensive management system, resources are transferred and
redeveloped, and different levels of development interventions are used in the secondary
and tertiary areas with good ecological substrates so that both areas are upgraded to a
good level, the diversity of pit protection measures is enhanced, and the scenic resources of
the pits are efficiently used, completing the transformation from ecological resources to
landscape resources.
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