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Abstract: Measuring functional fitness (FF) to track the decline in physical abilities is important
in order to maintain a healthy life in old age. This paper aims to develop an estimation model of
FF variables, which represents strength, flexibility, and aerobic endurance, using easy-to-measure
physical parameters for Korean older adults aged over 65 years old. The estimation models were
developed using various machine learning techniques and were trained with the National Fitness
Award datasets from 2015 to 2019 compiled by the Korea Sports Promotion Foundation. The machine-
learning-based nonlinear regression models were employed to improve the performance of the
previous linear regression models. To derive the optimal estimation model that showed the best
estimation accuracy, we developed five different machine-learning-based estimation models and
compares the estimation accuracy not only among the machine learning models, but also with the
previous linear regression model. The coefficient of determination of the FF variables was used to
compare the performance of each model; the mean absolute percentage error (MAPE) and standard
error of estimation (SEE) were used to evaluate the model performance. The deep neural network
(DNN) model presented the best performance among the regression models for the estimation of
all of the FF variables. The coefficient of determination in the HGS test was 0.784, while those of
the others were less than 0.5 meaning that the HGS of older adults can be reliably estimated using
easy-to-measure independent variables.

Keywords: smart fitness; support vector regression; random forest; XGBoost; artificial neural network

1. Introduction

The number of elderly people older than 65 years of age has increased rapidly in recent
decades, and has been a critical social issue in many countries [1]. Human aging leads to
the degradation of physical functionality, such as weakening of the muscle forces, and can
cause serious diseases and impairments [2,3]. The degradation of physical functionality is
critically correlated with diseases that arise in old age. For example, the timed up-and-go
(TUG) test results of elderly people show a correlation with their mental and physical
health [4]. Health-related quality of life is associated with physical functionality, and it
is recommended that physical functionality is maintained in old age in order to ensure a
healthy life without illness [5].

Habitual physical activity and proper nutrition are the top priorities for delaying the
loss of physical functionality [6]. The World Health Organization (WHO) recommends that
elderly individuals perform moderate-intensity aerobic exercises for at least 150–300 min
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per week, vigorous-intensity aerobic exercise for at least 75–150 min, or a combination
of both. The WHO also recommends strength training for more than 2 days a week and
multicomponent physical activities more than 3 days a week [7]. Although regular physical
activity is important to preserve a healthy life in old age, <40% of the elderly population
exercise regularly in their daily life [8]. Insufficient physical activity primarily causes
functional disability and limited mobility, and these cascades result in more critical ill-
nesses [9]. Smart fitness services that provide personalized workout programs can be an
effective solution to encourage the elderly population to exercise regularly. A personalized
workout program that fits an individual’s physical ability prevents over- or under-exercise
and cramping during exercise. Estimation of physical fitness levels, including the mus-
cle strength, flexibility, coordination, agility/dynamic balance, and aerobic endurance
of elderly persons, is important to construct personalized workout programs, and func-
tional fitness (FF) assessment tests have been used to evaluate individual physical fitness
levels [10].

However, performing the FF assessment and monitoring the physical abilities peri-
odically in older adults are associated with many difficulties. In addition, measuring FF
variables requires a sophisticated device and is costly. To address these inconveniences,
several previous studies have proposed methods for estimating an individual’s FF variables
with simple physical parameters using multiple linear regression (MLR). Nevertheless,
the MLR model has a critical limitation in that it can only represent the linear relationship
between the inputs and outputs. In previous studies, machine-learning-based prediction
models, such as support vector machine (SVM) and random forest (RF), have been used to
consider nonlinear relations in FF prediction. Mahajan et al. reported that the RF model
improved the estimation accuracy of 231 divers’ physical fitness levels compared with the
linear regression model [11]. Akay et al. predicted the hamstring and quadriceps strength
of athletes using an SVM estimation model [12]. Zhu et al. used SVM to predict athletes’
performance [13], Taha et al. estimated archers’ physical fitness level using the k-nearest
neighbors and SVM [14], and Matteo et al. proposed nearest neighbor models to predict
athlete performance in team sports [15].

Nevertheless, these nonlinear prediction models focused on being trained with in-
dividuals who have superior physical functionality, which is not the general population.
Previous studies have measured athletes’ physical information to train a prediction model
with complicated equipment, which is not adequate for ordinary applications. Lee et al.
presented an artificial neural network-based regression model for Korean adults aged
<65 years [16]. However, they did not consider older adults whose variables in the FF test
were different. In this paper, we propose a machine-learning-based estimation model for
FF variables with easy-to-measure physical variables in Korean older adults. To derive the
optimal estimation model that shows the best estimation performance, we constructed vari-
ous machine-learning-based estimation models and evaluated the estimation performance
of each model.

The main contributions of this study are as follows:

1. This study proposed the FF variable estimation model for evaluating the physical
fitness level of elderly adults using easy-to-measure independent variables. The
proposed model can be used as an effective tool to evaluate the personal fitness level
in smart fitness services.

2. Various nonlinear machine learning regression models were constructed and evalu-
ated to compare the accuracy with the previous linear model and to derive the optimal
estimation model presenting the best estimation performance.

2. Materials and Methods
2.1. Ethics Statement

The study was conducted in accordance with the guidelines of the Declaration of
Helsinki and was approved by the International Review Board of Konkuk University
(7001355-202101-E-132).
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2.2. Dataset

The National Fitness Award (NFA) is a program carried out by the Ministry of Cul-
ture, Sports, and Tourism (MCST) and the Korea Sports Promotion Foundation (KSPF) to
measure the physical fitness levels of general Koreans aiming to help people live healthier.
This paper employs the NFA datasets of elderly adults (age: ≥65 years), gathered by the
KSPF to train the machine-learning-based estimation models. The NFA dataset includes the
physical fitness levels of individuals that are measured under strict measurement protocols
at 75 sites throughout the Republic of Korea. The participants of the NFA dataset, who were
collected between 2015 and 2019, were older adults (total = 210,490) who were older than
65 years of age. We excluded missing values of older adults’ independent variables and
FF variables, resulting in 178,960 adults in the regression model datasets (men: n = 61,465,
women: n = 117,495). The regression models in the study used independent variables (e.g.,
sex, age, body mass index (BMI), and percent body fat) as the inputs and predicted the FF
variables, including hand grip strength (HGS), lower body strength (30 s chair stand test),
lower body flexibility (chair sit-and-reach test), coordination (figure-of-eight walk test),
agility/dynamic balance (TUG test), and aerobic endurance (2 min step test), as the outputs;
70% of the data (total: n = 125,272, men: n = 42,911, women: n = 82,281) were used as the
training dataset, and 30% of the data (total: n = 53,688; men: n = 18,474; women: n = 35,214)
were used as the validation dataset. A summary of the NFA datasets is presented in Table 1.

Table 1. Summary of the NFA dataset used to train the FF variable estimation model.

Data Type Variables

Training Dataset Validation Dataset

Men
(n = 42,991)

Women
(n = 82,281)

Men
(n = 18,474)

Women
(n = 35,214)

Independent
Variable
(Input)

Age (year) 73.26 ± 5.45 72.55 ± 5.62 73.31 ± 5.45 72.51 ± 5.59

Height (cm) 165.10 ± 5.86 152.37 ± 5.54 165.10 ± 5.79 152.38 ± 5.52

Weight (kg) 66.33 ± 8.87 57.54 ± 8.00 66.39 ± 8.84 57.49 ± 7.93

Percent body fat (%) 24.31 ± 2.80 24.77 ± 3.13 24.33 ± 2.79 24.75 ± 3.09

BMI (kg/m2) 26.01 ± 6.39 34.97 ± 6.42 26.06 ± 6.42 34.93 ± 6.38

Functional
Fitness

Variable
(Output)

HGS (kg) 30.76 ± 6.66 19.45 ± 4.84 30.75 ± 6.65 19.49 ± 4.82

30-s chair stand (n) 20.58 ± 6.40 18.23 ± 6.05 20.53 ± 6.40 18.27 ± 6.05

Chair sit-and-reach (cm) 3.87 ± 9.70 13.06 ± 8.06 3.79 ± 9.64 13.12 ± 8.02

Figure of 8 walk (s) 26.04 ± 7.01 28.00 ± 7.96 26.13 ± 7.16 27.95 ± 7.90

Timed up-and-go (s) 6.20 ± 1.81 6.79 ± 2.07 6.20 ± 1.78 6.77 ± 2.02

2-sim step test (n) 107.20 ± 24.90 100.31 ± 27.49 107.02 ± 24.50 100.58 ± 27.18

NFA, National Fitness Award; BMI, body mass index; HGS, hand grip strength.

Measurement of physical independent variables and FF variables: The measurements
of independent variables and FF variables followed the NFA guidelines, as presented in a
previous study [17].

2.3. Data Pre-Processing

Pearson’s correlation analysis was used to assess the linear relationship between the
independent variables and FF variables. Table 2 shows the degree of correlation between
the input and output variables. HGS had a positive linear correlation with height and
weight and a negative correlation with sex and percent body fat. Figure-of-eight walk and
TUG had a positive correlation with age, and the 30 s chair stand had a negative correlation
with age. The chair sit-and-reach showed a positive correlation with sex and a negative
correlation with height. As most of the FF variables showed a weak linear relation with the
independent variables, it is possible to consider using nonlinear prediction models rather
than linear prediction models to improve the prediction accuracy.
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Table 2. Pearson’s correlation analysis between the independent variables and FF variables.

HGS 30-s Chair Stand Chair Sit-and-Reach Figure of 8 Walk Timed Up-and-Go 2-min Step Test

Age −0.223 −0.317 −0.250 0.429 0.397 −0.306

Sex −0.693 −0.172 0.454 0.122 0.144 −0.126

Height 0.688 0.169 −0.307 −0.223 −0.239 0.196

Weight 0.492 0.029 −0.229 −0.070 −0.082 0.074

Percent body fat −0.466 −0.246 0.153 0.212 0.212 −0.189

BMI 0.013 −0.111 −0.016 0.106 0.104 −0.079

FF, functional fitness; Sex, male is expressed as 1 and female is expressed as 2.

Standardization: Standardization, which is a feature scaling technique, was used for
the input variables to avoid data redundancy and dependency caused by feature scale
differences (Equation (1)). All data, except sex, were centered around the mean of 0 with a
standard deviation of 1.

x̂i =
xi − µ

σ
(1)

where xi and x̂i denote the values of the input and standardized input, respectively. µ
and σ are the average and standard deviation of the input variable xi, respectively. For
standardization, sex was expressed as 1 (male) or 2 (female).

Outlier removal: Outliers, which can distort statistical analyses and create prediction
models of poor outcomes, are data with abnormal values from other data. To manage
outliers in the training dataset, the studentized residual (SRE) was used, and outlier data
were removed when the absolute value of the SRE was >2 [17].

Feature selection: Feature selection methods were used to increase the estimation
performance and shorten the training regression model. The p-value was used to validate
the relationship between the independent variables and FF variables. The independent
variables with p-value is >0.05 were removed for dimension reduction and estimation
accuracy improvement. In addition, feature selection using the Boruta algorithm was used
to assess variables that could decrease the performance of the regression model and cause
overfitting. In the ranking of the features, 1 means confirmed, 2 means tentative, and
3 means rejected. The p-values for each variable and the Boruta algorithm ranking are
listed in Table 3. With reference to feature selection, we selected the input variables and
maximized the estimation performance.

Table 3. p-values and Boruta feature selection of each independent variable.

HGS 30 s Chair Stand Chair
Sit-and-Reach Figure of 8 Walk Timed Up-and-Go 2 min Step Test

p-Value Rank p-Value Rank p-Value Rank p-Value Rank p-Value Rank p-Value Rank

Age 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1

Sex 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.554 1

Height 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1

Weight 0.000 1 0.000 1 0.000 1 0.000 1 0.000 3 0.000 1

Percent
body fat 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1 0.000 1

BMI 0.000 1 0.000 1 0.000 1 0.034 1 0.059 2 0.000 1

2.4. Machine Learning-Based Estimation Models

Various machine-learning-based regression models were used to predict the FF vari-
able with independent variables. Each model was evaluated using R2 and SEE values and
was compared with the other models. A summary of this method is shown in Figure 1.
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2.4.1. Support Vector Regression

SVM, which predicts the optimal hyperplane generated in an n-dimensional feature
space, is a supervised learning algorithm for classification and regression. SVR is specifically
used for regression, and Equation (2) represents the linear approximation function [18].

y = ω·x + b (2)

where ω is the weight vector of the function. Equations (3) and (4) represents the objective
function of SVR, as follows:

Lsvr = min
1
2
|ω|2 + C ∑n

i=1(ξi + ξ∗i ) (3)

s.t.


(
ωTxi + b

)
− yi ≤ ε + ξi

yi −
(
ωTxi + b

)
≤ ε + ξ∗i

ξi, ξ∗i ≥ 0
(4)

where the positive constant, C, which is the regularization parameter, determines the
flatness of the approximation function. xi and yi are the input and output variables of the
i-th instance, respectively. ε is the error tolerance margin of the approximation function and
ξi and ξ∗i are slack variables for measuring the distance to the points outside the margin.
The SVR input space computation can be performed using the kernel function, which
returns the inner product of the input feature vectors, to solve the nonlinear problem by
mapping lower-dimensional data into higher-dimensional data. This study used kernels in
SVR, as follows (Equation (5)):

K
(

xi , xj
)
= Φ(xi)· Φ

(
xj
)

(5)

where Φ(xi) and Φ
(

xj
)

are feature space mapping functions.
Using the Lagrangian dual problem and kernel trick, SVR can be expressed as follows

(Equation (6)):
y = ∑n

i=1(α
∗
i − αi)K

(
xi , xj

)
+ b (6)

where αi and α∗i are Lagrange multipliers.
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2.4.2. Decision Tree

A decision tree is a decision-support-tree-like model formed of nodes and edges [19].
In the tree structure, class labels are represented by leaves and feature combinations are
represented by branches. A decision tree splits nodes based on the result of the Gini
impurity, which is a measure of diversity in a dataset (Equation (7)).

Gi = 1−∑n
k=1 p2

i, k (7)

where p2
i, k is the proportion of samples belonging to class k for the i’th node.

2.4.3. Random Forest Regression

Random forest regression is a bagging ensemble method of decision tree regression
that is trained using the classification and regression tree (CART) algorithm. The objective
function of CART is as follows (Equation (8)) [20]:

J(k, tk) =
mle f t

m
Gle f t +

mright

m
Gright (8)

where k and tk are the single feature and threshold, respectively; Gle f t/right is the impurity
of the subset; and mle f t/right is the number of samples of the subset. The ensemble method
constructs multiple decision trees using a bagging algorithm known as bootstrap aggression.
Each decision tree is trained by a sampling dataset with replacement and is aggregated by
the average regression outcomes of the models. RF can mitigate the prediction variance
and maintain unbiasedness as compared with a single decision tree.

2.4.4. EXtreme Gradient Boost (XGBoost)

XGBoost is an ensemble algorithm that implements gradient-boosted decision trees [21].
Gradient boosting trains weak learners to create a strong ensemble model. Gradient boost-
ing recursively adds a new decision tree model to correct the prior predictor model. Each
decision tree was trained on the residual errors of the prior tree model. The sum of all of
the prediction outcomes of the trees is the same as the ensemble prediction outcome.

2.4.5. Deep Neural Network (DNN)

The DNN, which is composed of node layers, consists of an input layer, hidden layer,
and output layer. Each node has a weight and threshold and is activated when the output
of the node is above the specified threshold when using the activation function [22]. Batch
normalization was used for each layer to avoid gradient vanishing or exploding. The model
hyperparameters (the number of hidden layers and number of nodes in each layer) were
determined by a grid search, and we determined the number of nodes and layers for the
best estimation performance. The hidden layers were composed of three layers with 32,
64, and 32 nodes, respectively. A rectified linear unit was used for the activation function,
the mean square error was the loss function used in the training, and Adam was used as
an optimizer.

2.4.6. Mixture Density Network (MDN)

The MDN, which is combined with a convolution network and mixture density model,
models the mixture of parametric distributions, as shown in Equations (9) and (10) [23].

p(y|x) = ∑n
i=1 αi(x)Φ(y | θi) (9)

s.t.
{

∑n
i=1 αi(x) = 1

Φ(y | θi) =
(
µi, σ2

i
) (10)

where x and y are the input and output variables, respectively; n is the number of mixture
components; and αi(x) are mixing coefficients, which are prior probabilities (conditioned
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on x) corresponding to the mixture weight. Φ(y | θi) is the conditional density composed
of the mean (µi) and variance (σ2

i ).

2.5. Model Evaluation

Using 30% of the total data, which were divided in the Bernoulli trial, the validation
of the regression models was tested with the mean error and SEE, as shown in Equations
(11) and (12).

MAPE (%) =
100
N ∑

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (11)

SEE =
∑N

i=0(ŷi − yi)
2

N − 2
(12)

where yi and ŷi are the measured and estimated values, respectively, and N is the number
of test samples.

3. Results

Detailed results of the regression model analysis are presented in Tables 4 and 5. For
each trained regression model, the coefficients of determination (R2), adjusted coefficients
of determination, and SEE were used to analyze the estimated explanatory power of the
regression models.

3.1. Performance Evaluation of the Regression Models

Table 4 presents a comparison of the FF variable estimation performance in the machine
learning models. The DNN models presented the best performance with respect to R2 for
estimation of the HGS (R2 = 0.622) and 30 s chair stand (R2 = 0.175), while the random forest
model showed the best performance in the estimation of the chair sit-and-reach (R2 = 0.279),
figure-of-eight walk (R2 = 0.381), and TUG (R2 = 0.212). For the estimation of the 2 min step
test, the MDN model showed the most accurate estimation results (R2 = 0.119). Compared
with the linear regression model [17], with the DNN model, R2 was improved by 3.7% and
1.2% in the HGS and 30 s chair stand estimation, respectively. It was also improved by 0.4%
and 15.3% in estimation of the chair sit-and-reach and figure-of-eight walk, respectively,
with the random forest model.

3.2. Performance Evaluation of the Regression Models without Outlier Data

Table 5 shows a comparison of the FF variable estimation performance in machine
learning models without outlier data. In this performance evaluation, the outliers in the
NFA datasets were removed using SRE to improve the training performance. Additionally,
the Boruta algorithm and p-value were applied for feature selection of the input variables,
as mentioned in Section 2.3. The input variables with a rank higher than 1 in the Boruta
algorithm were excluded in the training (BMI and weight in TUG estimation). Further-
more, the input variables with a p-value higher than 0.05 (sex in the 2 min step test) were
also excluded in the model training. The DNN-based regression model showed the best
performance with respect to the R2 values for all FF variable estimations. Compared with
the previous linear regression model [17], R2 was improved by 1.1%, 0.6%, 1.1%, 0.6%, 1%,
and 1.4% for the HGS, 30 s chair, chair sit-and-reach, figure-of-eight walk, TUG, and 2 min
step test with the DNN model.
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Table 4. Comparison of the estimated regression models predicting the FF variables.

Support Vector Regression R R2 Adjusted R2 SEE

HGS 0.788 0.621 0.621 4.750 kg

30 s chair stand 0.417 0.174 0.174 5.635 n

Chair sit-and-reach 0.515 0.265 0.265 8.395 cm

Figure-of-eight walk 0.423 0.179 0.179 6.784 s

Timed up-and-go 0.391 0.153 0.153 1.846 s

2 min step test 0.313 0.098 0.098 25.73 n

Random Forest R R2 Adjusted R2 SEE

HGS 0.787 0.619 0.619 4.681 kg

30 s chair stand 0.406 0.165 0.165 5.293 n

Chair sit-and-reach 0.528 0.279 0.279 8.124 cm

Figure-of-eight walk 0.617 0.381 0.381 3.116 s

Timed up-and-go 0.460 0.212 0.212 1.198 s

2 min step test 0.310 0.096 0.096 22.63 n

XGBoost R R2 Adjusted R2 SEE

HGS 0.787 0.620 0.620 4.755 kg

30 s chair stand 0.409 0.167 0.167 5.660 n

Chair sit-and-reach 0.521 0.272 0.272 8.355 cm

Figure-of-eight walk 0.442 0.195 0.195 6.716 s

Timed up-and-go 0.416 0.173 0.173 1.823 s

2 min step test 0.321 0.103 0.103 25.66 n

DNN R R2 Adjusted R2 SEE

HGS 0.789 0.622 0.622 4.741 kg

30 s chair stand 0.418 0.175 0.175 5.640 n

Chair sit-and-reach 0.523 0.274 0.274 8.347 cm

Figure-of-eight walk 0.449 0.202 0.202 6.688 s

Timed up-and-go 0.423 0.179 0.179 1.817 s

2 min step test 0.329 0.108 0.108 25.59 n

MDN R R2 Adjusted R2 SEE

HGS 0.785 0.617 0.617 4.771 kg

30 s chair stand 0.394 0.155 0.155 5.700 n

Chair sit-and-reach 0.522 0.273 0.273 8.349 cm

Figure-of-eight walk 0.448 0.201 0.201 6.693 s

Timed up-and-go 0.436 0.190 0.190 1.804 s

2 min step test 0.345 0.119 0.119 25.44 n
FF, functional fitness; SEE, standard error of estimation; XGBoost, extreme gradient boosting; DNN, deep neural
network; MDN, mixture density network.
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Table 5. Comparison of the estimated regression models predicting the FF variables without out-
lier data.

FF Variables SRE Independent Variables (Input Variables)

HGS SRE 32: n = 101,438 Age, Sex, Height, Weight, Percent body fat, BMI

30 s chair stand SRE 39: n = 102,726 Age, Sex, Height, Weight, Percent body fat, BMI

Chair sit-and-reach SRE 35: n = 102,640 Age, Sex, Height, Weight, Percent body fat, BMI

Figure-of-eight walk SRE 22: n = 79,724 Age, Sex, Height, Weight, Percent body fat, BMI

Timed up-and-go SRE 36: n = 94,621 Age, Sex, Height, Percent body fat

2-min step test SRE 28: n = 91,420 Age, Height, Weight, Percent body fat, BMI

Support Vector Regression R R2 Adjusted R2 SEE

HGS 0.885 0.784 0.784 3.069 kg

30-s chair stand 0.548 0.300 0.300 3.800 n

Chair sit-and-reach 0.664 0.441 0.441 5.436 cm

Figure-of-eight walk 0.628 0.395 0.395 3.083 s

Timed up-and-go 0.624 0.389 0.389 0.705 s

2-min step test 0.455 0.207 0.207 12.46 n

Random Forest R R2 Adjusted R2 SEE

HGS 0.861 0.742 0.742 3.336 kg

30-s chair stand 0.514 0.264 0.264 5.492 n

Chair sit-and-reach 0.655 0.429 0.429 3.197 cm

Figure-of-eight walk 0.590 0.348 0.348 3.197 s

Timed up-and-go 0.588 0.346 0.346 0.729 s

2-min step test 0.438 0.192 0.192 12.57 n

XGBoost R R2 Adjusted R2 SEE

HGS 0.885 0.783 0.783 3.069 kg

30-s chair stand 0.548 0.301 0.301 3.800 n

Chair sit-and-reach 0.662 0.438 0.438 5.448 cm

Figure-of-eight walk 0.628 0.395 0.395 3.080 s

Timed up-and-go 0.626 0.392 0.392 0.704 s

2-min step test 0.453 0.205 0.205 12.48 n

DNN R R2 Adjusted R2 SEE

HGS 0.885 0.784 0.784 3.054 kg

30-s chair stand 0.550 0.302 0.302 3.794 n

Chair sit-and-reach 0.668 0.446 0.446 5.418 cm

Figure-of-eight walk 0.629 0.396 0.396 3.078 s

Timed up-and-go 0.628 0.394 0.394 0.702 s

2-min step test 0.458 0.210 0.210 12.44 n

MDN R R2 Adjusted R2 SEE

HGS 0.885 0.783 0.783 3.069 kg

30-s chair stand 0.529 0.280 0.280 3.852 n

Chair sit-and-reach 0.646 0.417 0.417 5.552 cm

Figure-of-eight walk 0.628 0.394 0.394 3.083 s

Timed up-and-go 0.622 0.387 0.387 0.707 s

2-min step test 0.451 0.203 0.203 12.49 n

SRE, studentized residual; SEE, standard error of estimation.

3.3. Regression Model Validity

Table 6 shows a comparison of the regression models’ validity with the test data, which
is 30% of the total data. The mean absolute percentage error ranged from 0.084% to 22.68%
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in the regression models (DNN model, HGS: MAPE = 0.16% and SEE = 4.135 kg, 30 s chair
stand test: MAPE = 0.205% and SEE = 4.169 times, chair sit-and-reach test: MAPE = 20.92%
and SEE = 6.228 cm, figure-of-eight walk test: MAPE = 0.097% and SEE = 3.546 s, TUG
test: MAPE = 0.084% and SEE = 0.805 s, and 2 min step test: MAPE = 0.099% and
SEE = 13.00 times). Figure 2 shows the relationship between the measured and predicted
FF variables using scatter plots.
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Figure 2. Relationship between the measured and predicted FF variables using scatter plots. (A) HGS,
(B) 30 s chair stand test, (C) chair sit-and-reach test, (D) figure-of-eight walk test, (E) timed up-and-go
test, and (F) 2 min step test results.
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Table 6. Validation of estimating accuracy.

HGS
(kg)

30 s Chair Stand
(n)

Chair
Sit-and-Reach (cm)

Figure of 8 Walk
(s)

Timed Up-and-Go
(s)

2 min Step Test
(n)

MAPE
(%) SEE MAPE

(%) SEE MAPE
(%) SEE MAPE

(%) SEE MAPE
(%) SEE MAPE

(%) SEE

MLR 0.160 4.216 0.206 4.214 20.12 6.315 0.100 3.565 0.089 0.822 0.100 13.13

SVR 0.157 4.147 0.202 4.183 19.81 6.274 0.098 3.549 0.087 0.817 0.099 13.03

RF 0.160 4.258 0.210 4.307 20.75 6.455 0.102 3.649 0.091 0.840 0.103 13.56

XGBoost 0.158 4.160 0.205 4.178 19.96 6.252 0.098 3.529 0.087 0.814 0.099 13.06

DNN 0.157 4.135 0.205 4.169 20.92 6.228 0.097 3.546 0.084 0.805 0.099 13.00

MDN 0.158 4.141 0.214 4.228 22.68 6.313 0.096 3.517 0.086 0.831 0.099 13.03

MAPE, mean absolute percentage error; MLR, multiple linear regression; SVR, support vector regression; RF,
random forest; SEE, standard error of estimation.

4. Discussion

FF variables, which can be used as an index of healthcare, have been used to assess
the health conditions of older adults, and several researchers have studied the correlation
between independent variables and FF variables. In previous studies, MLR was used to
develop a prediction model for the FF variables. However, MLR, which cannot represent
the nonlinearity of data, has limitations in estimating FF variables. In addition, prior studies
focused on predicting a specific group’s superior physical functionality, such as that of
athletes, which is not appropriate for the prediction of FF variables in older adults. The
present study focused on developing a regression model for estimating the FF variables of
older adults in Korea with easy-to-measure independent variables. To obtain an accurate
regression model, we compared various machine learning and deep learning regression
models. This study demonstrated the highest performance of the DNN model in FF variable
estimation compared with the other regression models. With the developed regression
model, it would be helpful to monitor the FF in older adults in daily life.

The correlation coefficient shown in Table 2 represents the strength and direction of
the linear relation between the input and output variables. In a previous study, height,
weight, and BMI were significantly correlated with HGS for older adults [24]. In this study,
HGS had a higher correlation coefficient with these independent variables, and presented
the most accurate estimation results compared with the other FF variables. From these
results, we can infer that it is important to select input variables with a strong correlation in
order to obtain higher estimation results.

Using nonlinear regression models, we focused on predicting the FF variables of older
adults using independent variables. The mean explanatory power of HGS was high in the
HGS and DNN regression models (MLR: 61.4%, SVM: 62.1%, RF: 61.9%, XGBoost: 62.0%,
DNN: 62.2%, and MDN: 61.7%). In this study, outlier removal and feature selection were
conducted. The mean explanatory power of HGS without outlier data was 78.4%, which
was the highest value in the DNN model (MLR: 77.3%, SVM: 78.4%, RF: 74.2%, XGBoost:
78.3%, DNN: 78.4%, MDN: 78.3%). Our proposed regression model’s explanatory power
of HGS was improved by approximately 25% compared with previous studies [25,26]. In
our previous study, we developed a linear regression model for predicting FF variables of
South Korean older adults [17]. However, the previous study did not cover the nonlinearity
of the dataset and only used multiple linear regression models without considering other
regression models, which may likely improve the prediction accuracy. Hence, we tested
various regression models covering data nonlinearity and proposed the best performance
regression model. The DNN-based regression model had a better performance than the
linear regression model. Comparing the model’s validation, SEE was improved by 16.6% in
HGS, 28.2% in 30 s chair stand, 25.9% in chair sit-and-reach, 50.1% in figure-of-eight walk,
56.7% in TUG, and 48.5% in the 2 min step test.
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The coefficient of determination of the proposed model was too low, making it insuffi-
cient for practical applications, except for predicting HGS. The coefficients of determination
in the 30 s chair stand (adjusted R2 = 0.300), chair sit-and-reach (adjusted R2 = 0.441),
figure-of-eight walk (adjusted R2 = 0.395), TUG (adjusted R2 = 0.389), and 2 min step tests
(adjusted R2 = 0.207) were in the mid-range. It was inferred that more input variables were
required to analyze the relationship with the FF variables. Hence, additional variables,
such as the individual physical activity level or nutrition, which are correlated with the
FF variables [27], were needed to improve the prediction accuracy. Moreover, we used the
general older adults’ independent variables, which did not contain their health status, such
as personal physical illness/disease information, even though these might be correlated
with the FF variables. Chronic diseases, such as cardiovascular disease and type 2 diabetes,
cause mortality in older adults [28]. Information obtained from blood pressure measure-
ments and blood glucose tests could be used as input variables to predict the correlation
with FF variables. These parameters may also be used as indicators to isolate the effects
of physical illness/disease information. The DNN-based regression model showed the
highest performance for most of the FF variables, but the amount of improvement was
<1.6% compared with the other regression models in validation. Selecting machine learning
models with a computational efficiency is considered practical for predicting HGS.

5. Conclusions

Herein, we proposed an FF variable prediction model based on machine learning and
deep learning regression with easy-to-measure independent variables, and compared the
performance of each model. This study demonstrated a correlation between older adults’
independent variables and the FF variables, especially HGS. However, the estimation
results of the FF variables, except for HGS, were unsatisfactory for monitoring older adults’
physical functionality and providing personalized workout programs. The results showed
the difficulty in predicting the FF variables using six independent variables (age, sex, height,
weight, percent body fat, and BMI), which were insufficient for representing the correlation
of FF variables. In future research, additional variables, including the physical activity level
and nutritional status, will be used to enhance the accuracy of the estimation results.
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