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Abstract: With the proposal of the “carbon peak, carbon neutral“ goal, energy efficiency has become
one of the key means to achieve energy conservation and emission reduction at this stage. The
construction industry, as a cornerstone of China’s economy, is characterized by serious overcapacity,
energy waste, and pollution. As a result, academic research on its energy efficiency is gaining
traction. This paper employed the Super-EBM model considering undesirable output to evaluate
the green total-factor energy efficiency of the construction industry (CIGTFEE) in the Yangtze River
Economic Belt (YREB) from 2003 to 2018. The spatial-temporal evolution characteristics and spatial
heterogeneity of CIGTFEE were analyzed in detail through geospatial analysis. Finally, the driving
factors of CIGTFEE were analyzed through a spatial econometric model. The results indicated that,
during the sample research period, the CIGTFEE showed a holistic growth trend with volatility. By
region, the downstream CIGTFEE grew sharply until 2006 and then remained fairly stable, while
the midstream conformed to the “M” trend and the upstream region showed an inverted u-shaped
trend; From the perspective of spatial differentiation, the CIGTFEE in YREB shows a significant
spatial agglomeration situation, while the spatial agglomeration degree weakened. It existed a
ladder-shaped change trend, with the regional average CIGTFEE from high to low levels as follows:
Downstream, Midstream, and Upstream, and showed an obvious polarization in the upstream
and downstream. From the analysis of the driving factors, CIGTFEE is significantly promoted by
economic growth, energy structure, and human capital and suppressed by urbanization level, yet
the impact of technological progress and the level of technology and equipment is not significant. In
summary, province-specific policies based on spatial and temporal heterogeneity were proposed to
improve the CIGTFEE of YREB.

Keywords: green total-factor energy efficiency of construction industry (CIGTFEE); Super-EBM;
spatial-temporal heterogeneity; driving factors; the Yangtze River Economic Belt (YREB)

1. Introduction

With regard to global warming, China, as the largest developing country and the
largest coal consumer in the world, put forward in time the “double-carbon” goal, i.e.,
the “carbon peak, carbon neutral” goal, and the goal of national independent contribution
to climate change, so as to reduce energy consumption per unit GDP by 13.5% and CO2
emissions by 18%. As the demonstration belt of ecological civilization construction, the
Yangtze River Economic Belt is the main force to achieve the above-mentioned goals. The
rapid economic development and the continuous improvement of urbanization levels in the
Yangtze River Economic Belt depend on traditional energy, and the problems of resource
depletion and environmental degradation have already emerged. However, the Interna-
tional Energy Agency (IEA) predicts that it will take 15–20 years for China’s industries to
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achieve deep decarbonization, so the short-term benefits of improving energy efficiency are
far greater than those of energy decarbonization, and it is an important measure to promote
high-quality economic development and protect the environment at a high level. Therefore,
improving energy efficiency is still one of the main means to achieve energy conservation
and emission reduction at this stage.

Construction, as one of the pillar industries in China, greatly promoted the development
of the Chinese economy. However, as a resource-intensive industry, construction realizes its
development at the cost of consuming a huge amount of energy. Consequently, improving
the energy efficiency of the construction industry is conductive to reducing CO2 emissions,
alleviating environmental pollution, and finally realizing the “double carbon ” goal.

Furthermore, the difference in technological competitiveness and economic develop-
ment levels of each province in YREB results in unbalanced development and differentiated
distribution in the energy efficiency of the construction industry. Thus, it is essential to
study the spatial-temporal evolution characteristics of energy efficiency in YREB’s con-
struction sector. Exploring the energy efficiency of various provinces can contribute to
better understanding YREB’s energy utilization status and provide policy implications for
improving YREB’s energy utilization efficiency [1].

However, existing studies have rarely focused on the regional differences and the
spatial analysis. So, this paper is committed to making the following contributions: First, to
scientifically and objectively estimate the CIGTFEE of YREB. This paper measures CIGTFEE
considering bad output from an input-output perspective. Which enriched the research on
evaluation of the efficiency of energy resources exploitation in the YREB; Second, exploring
its spatial-temporal heterogeneity from a multidimensional perspective. This article fills
the research gap in the temporal-spatial differences between regional CIGTFEE; Third,
identifying the relevant driving forces. This paper fills up the research gap on the factors
driving the spatiotemporal dynamics of CIGTFEE. Considering the spatial dependence
between observations, a spatial econometric model was established to identify these driving
factors. The results obtained through this model are more consistent with the actual results
of YREB and better than non-spatial econometric model methods, such as the ordinary
least squares (OLS) model or Tobit model.

The rest of this paper is organized as follows. Section 2 reviews and combs the related
literature. Section 3 introduces the method, indicators, and datasets used in this paper. The
measured results, spatiotemporal dynamics, spatial correlations, and spatial econometric
regression, are described and discussed in Section 4. The results are summarized, and
policy implications are given in the last section.

2. Literature Review

With the rapid development of the economy and the acceleration of urbanization in
China, the construction sector has grown into the main energy consumer and pollutant emitter.
The energy efficiency of the construction industry has attracted much attention from the
government and academia. Promoting energy efficiency in the construction industry is the
key to alleviating resource, energy, and environmental constraints, improving development
quality, and achieving the goal of energy saving and emission reduction [2]. Therefore, an
effective evaluation of the energy efficiency of the construction industry is necessary.

In terms of existing research of the energy efficiency issue, single-factor energy effi-
ciency (SFEE) and total-factor energy efficiency (TFEE) were the two major categories [3].
SFEE has two main shortcomings, one is that it only considers the impact of energy inputs
on production output, ignoring the substitution of other factors of production for energy [4];
the other is that it does not reflect the role of technological progress. Thus, SFEE cannot
comprehensively evaluate the entire production system’s energy efficiency. To solve the
defects, the TFEE concept [5] and data envelope analysis (DEA) [6] were proposed, in
which, DEA, as a non-parametric analytical approach, utilizes mathematical programming
to solve the relative efficiency problem of decision-making units (DMUs) with multi-inputs
and multi-outputs. This model is also characterized by many advantages. For instance, it
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can be used to evaluate the efficiency value with no need to make a priori assumptions
on the underlying functional form and information on prices. Therefore, when measur-
ing TFEE, the DEA model is the most popular calculating tool that scholars choose. The
DEA model has been widely applied to evaluate the energy efficiency or environmental
performance assessment of many sectors, such as industrial sectors [7–9], agricultural
sectors [10,11], energy-intensive industries [3], and so on. However, the traditional DEA
model has two concerns: the disposal of undesirable outputs and the impact of external
factors and random error, which promoted the evolution of the DEA model [2]. Tone ex-
tended the traditional DEA method and put forward a non-radial, non-angle SBM model,
which perfectly solved the problem of undesired output [12]. Chen [2] and Zhang [13]
applied a three-stage undesirable SBM-DEA model to measure the energy efficiency in
the construction industry of China. Subsequently, Tone improved the SBM model to the
Super-SBM model because it further solved the problem of cannot ranking DMUs whose
efficiency are all one [14]. The Super-SBM model is widely applied to estimate the en-
ergy efficiency of the construction industry [15,16]. However, the Super-SBM model, as
a derivative method of SBM, had the same deficiency: not taking into account the radial
and non-radial compatibility of the input-output variables, causing the low efficiency of
the evaluation decision unit. To overcome the defects of Super-SBM, Tone [17] further
improved the SBM model into the EBM model. Yang evaluated the regional ecological
energy efficiency for 30 regions in China and its three major areas for the period 2007–2015,
applying an EBM model [18]. Similarly, the Super-EBM model, as a further optimization
of the EBM model, fully integrates EBM with super-efficiency DEA [7]. Compared with
traditional DEA model and the Super-SBM model, the Super-EBM model can evaluate
industrial energy efficiency scientifically. Nonetheless, few scholars have applied this
model to evaluate the energy efficiency of the construction industry. To provide objective
results for efficiency comparison, the Super-EBM model would be adopted to evaluate the
CIGTFEE of YREB’s 11 provinces in this paper.

The regional spatial structure is the key to sustainable development of the YREB [19].
The differences in natural resources, geographic location, and market environment in each
region of the YREB have led to uneven development of the regional construction industry
and an ensuing substantial disparity in regional energy utilization and CIGTFEE. Thus,
regional differences in energy efficiency have been studied by some scholars. Xue [20]
estimated the total energy consumption efficiency in construction industry and found
that energy conservation gaps exist between the northeastern, western regions and the
central, eastern regions. The results of several studies also indicate that energy efficiency in
the building sector has spatial agglomeration and spatial-temporal heterogeneity [21,22].
However, prior studies on the CIGTFEE have not considered the two major geographical
characteristics of spatial correlation and regional differences. Xu [23] believed that only
understanding regional distribution and its evolution, can we develop distinctive and
effective strategies for improving energy efficiency for different provinces. Consequently,
studying the evolution characteristics of spatial and temporal distribution in the CIGTFEE
will not only reveal changes in the distribution of CIGTFEE, but will also enable further
exploration of the causes of regional differences and ultimately provide a basis for the
development of regional carbon reduction policies.

The current studies of the driving forces on energy efficiency of construction indus-
try have focused on different scales and methods. Some scholars have investigated how
energy poverty [24], technological progress [25], environmental regulation [13,26] and
urbanization [27] exert the influence on energy efficiency of construction industry in China.
Some discussed composite factors that influence energy efficiency of construction industry.
For example, Wang [28] utilized production-theoretical decomposition method to explore
the driving factors of energy-related CO2 emissions (ECE) from the construction indus-
try, including industrial activity; advances in industrial output technology; the effects
of potential energy intensity changes; industrial output technical efficiency; changes in
spatial structure;energy-saving technology; and energy consumption structure and energy
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usage efficiency. Liang [29] used a stochastic frontier method and constructed an external
evaluation system from the four aspects of economic growth, technological development,
policy support, and industrial development level, and found that construction industry
energy efficiency is promoted by GDP per capita, energy consumption structures, indus-
trial development degrees, and industrial concentrations, and inhibited by urbanization
levels, technical equipment, policy support, and marketization. All these empirical analysis
aboutinfluencing factors, carried out most are based on non-spatial econometric models.
These models might have serious bias in estimation because of their failure to consider
the potential spatial correlations between observations. The spatial econometric model
making the analysis results of influencing factors more in line with reality. Therefore, the
spatial econometric model has been favored by more and more scholars. For example,
Xie employed the spatial econometric model to empirically measure the drivers of energy
efficiency of construction industry (CIEE) and reveal that CIEE is significantly promoted by
enterprise scale, property right structure, and environmental regulation, greatly inhibited
by economic growth and technical level, and not greatly affected by production level
or urbanization level [15]. However, there is still little research on applying the spatial
econometric model to energy efficiencyof construction industry.

Based on the above, existing research mostly took China as the research object and
explored the energy efficiency of the construction industry without considering undesirable
output and spatial-temporal evolution. In addition, empirical analysis of driving factors
not considered the potential spatial correlations between observations. To solve these
problems, this study intends to carry out related research work from two aspects. (1) this
study aims to measure the CIGTFEE of 11 provinces in YREB, China, from 2003 to 2018,
by employing Super-EBM model with full consideration of bad outputs and exploring the
spatial and temporal characteristics of CIGTFEE in YREB. (2) From the perspective of spatial
heterogeneity, this study uses a spatial econometric model to reveal the driving factors of
CIGTFEE in the Yangtze River Economic Belt. Then, the study proposes countermeasures
and suggestions.

3. Materials and Methods
3.1. Study Area

As one of the “three major strategies” implemented by the central government, the
Yangtze River Economic Belt (YREB) passes through the eastern, central, and western
plates, covering Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, Hunan, Chongqing,
Sichuan, Guizhou, and Yunnan. Relying on the resource advantages of the Yangtze River
Golden Waterway, the YREB has achieved rapid economic development and become the
main force driving China’s high-quality economic development. It accounts for about 40%
of the country’s total economy, and it is in a relatively strong position. It is an inland river
economic belt with global influence. However, serious environmental problems arise with
the development of the YREB. The environment is relatively fragile, and the ecological
development of industry has a long way to go. There is still room for improvement in the
development of the construction industry. The location map of the study area is shown
in Figure 1.
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Figure 1. The location map of the study area.

3.2. Methods

To truly and objectively estimate CIGTFEE in YREB, Super-EBM was used in this
study. The spatial-temporal differences were visualized by applying R Studio and ArcGIS
software to the results of Super-EBM model. In addition, a spatial econometric model was
implemented to explore driving factors of CIGTFEE. The method and tool used in this
paper were structured as shown in Figure 2.

Figure 2. Overview of this study.
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3.2.1. The Super-EBM Model Based on Undesirable Output

Radial DEA models, such as BCC and CCR (named after Charnes, Cooper, and
Rhodes), are widely used to measure energy efficiency. However, these models take the
maximization of output as the precondition, which not only fails to take into account the
non-radial slack variables but also fails to include undesirable outputs such as environmen-
tal pollution, which often leads to bias in the evaluation results. To solve these problems,
Tone proposed a non-radial and non-angle SBM model, which perfectly solves the problem
of undesirable output. However, the SBM model did not consider the compatibility of
radial and non-radial input-output variables at the beginning of its establishment, which
resulted in the evaluation of DMU being lower than it actually was. Therefore, Tone and
Tsutsui further improved the SBM model into the EBM model, which is perfectly compati-
ble with the radial and non-radial relationships of input-output variables. However, when
the efficiency values of multiple DMUs are all one, it is impossible to effectively distinguish
the efficiency of their DMUs. At this time, the appearance of the Super-EBM model is a
further optimization of the EBM model. Its biggest advantage is that it breaks through the
restriction that the maximum efficiency value of DMUs is one, and can more accurately
and effectively sort multiple DMUs with an efficiency value of one.

According to Tone [14], this paper constructs a production system composed of n DMUs.
Each DMU has m production factors as inputs X = (x1, x2, . . . , xn) ∈ Rm×n

+ , and produces s1 de-
sirable output Y = (y1, y2, . . . , yn) ∈ Rs1×n

+ , s2 undesirable output B = (b1, b2, . . . , bn) ∈ Rs2×n
+

separately. Pt(x) = {(x, y, b) : x can produce y and b} indicates all possible production sets
produced. The decision unit j to be estimated is DUMj = (xj, yj, yj). The Super-EBM model
containing the undesirable output is as follows:

η∗ = min
γ + σx

m
∑

i=1

w−i s−i
xij

ω− σy
s1
∑

p=1

w+
p s+p
ypj

+ σb
s2
∑

q=1

wb−
q sb−

q

bqj

s.t. γxij ≥
n
∑

j=1
xijλj − s−i , i = 1, . . . , m

ωypj ≤
n
∑

j=1
ypjλj + s+p , p = 1, . . . , s1

ωbqj ≥
n
∑

j=1
bqjλj − sb−

q , q = 1, . . . , s2

λ ≥ 0, s−i , s+p , sb−
q ≥ 0

(1)

where η∗ represents the score of CIGTFEE of Super-EBM; λj is linear combination coefficient
of j-th DMU, reflects the relative importance of j-th DMU; x, y, and b respectively represent
the input, desirable output, and undesirable output, therefore, xij, ypj, bqj corresponds to
the i-th input, p-th good output and q-th bad output of the j-th DMU, respectively; w−i ,
w+

p and w−q are the weights of input, good output and bad output, respectively; γ and ω
are the planning parameter of the radial part; σx, σy and σb respectively are the non-radial
weights of input, good output and bad output, respectively, and they are limited to [0, 1];
s−i , s+p and sb−

q are the slack term of input, good output and bad output, respectively.

3.2.2. Moran Index

Verifying the existence of spatial correlation of total factor energy efficiency of the
construction industry in YREB is an important question to be studied in this paper. Spatial
correlation, which can also be called spatial dependence, refers to the observation data
reflecting some variables, which may not be spatially independent of each other because
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of the influence of spatial interaction and spatial diffusion. Generally speaking, the global
Moran’s I index is used as a measure of spatial correlation. The formula is as follows:

Moran′s I =
n

n
∑

i=1
(xi − x)2

n
∑

i=1

n
∑

j=1
Wij(xi − x)(xj − x)

n
∑

i=1

n
∑

j=1
Wij

(2)

In Equation (2), n is the number of target provinces along YREB; xi and xj are the
observations of provinces i and j, respectively; x = (∑i xi)/n reflects the mean observation
of all provinces; The value range of Global Moran’s I is [−1, 1]. If the index surpass 0, and
passes a certain significant level test, this indicates a significant positive spatial correlation
among the observed provinces; If the Moran’s I index is less than 0 and passes the significant
level test, it means a negative spatial correlation among the observed provinces; If, and
only if, the index is 0, the provincial observations are independent in space; Wij is adjacency
matrix, to facilitate the characterization, the Rook adjacent space weight matrix composed
of 0 and 1 is used, the specific expression forms are as follows:

Wij =

{
1 province i and j are adjacent
0 province i and j are not adjacent

(3)

3.3. Construction of the Indicator System

The total factor energy efficiency of the construction industry reflects the ratio of the
optimal energy consumption of the construction industry to the actual energy consumption
of the construction industry when the economic output is optimal and environmental pol-
lutants are minimized, on the premise that the inputs of capital, labor, and other production
factors are unchanged. Based on the existing achievements and following the principles
of systematicness, scientificity, and data availability, this paper establishes the evaluation
index system of CIGTFEE in Table 1. The index system consists of input, good output, and
bad output, in which the input includes three elements: energy, labor, and capital; the
desirable output is the total output value of the construction industry; the undesirable
output is expressed by the carbon emissions of the construction industry. The specific
indicators are explained as follows:

(1) Energy input: The measurement of energy efficiency is the main objective of this paper.
Energy input is the core input element of the whole index system. There are abundant
types of energy consumption and a diversity of energy structures in the construction
industry of each province. Energy consumption in the construction industry is mainly
composed of 12 kinds of energy, such as coal, oil, natural gas, electric power, etc. If
all kinds of energy were incorporated into the index system directly, it would not
only be cumbersome but also the statistical caliber would be inconsistent. To unify
and facilitate calculation, the total amount of the twelve types of energy consumption
in the regional energy balance table is converted into standard coal according to the
energy conversion coefficient of “10,000 t of standard coal,” and takes the calculated
total energy consumption as an energy input.

(2) Labor input: The labor force is the main body of energy utilization in the construction
industry. Only when energy is combined with labor force elements, can it really play
its role. Generally speaking, labor hours are the best indicator to measure labor input,
but considering that data on labor hours cannot be obtained directly, this paper selects
“the number of employees in the construction industry” as the indicator to measure
labor input.

(3) Capital input: According to the production function in economics, capital is the basic
factor of production. When measuring the capital input, the perpetual inventory
method (PIM) [30] is often used to estimate the capital stock in research. However,
in view of the depreciation rate of fixed assets in the construction industry is not
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available, it is not feasible to directly estimate the capital stock of the construction
industry as a capital input. Therefore, this paper directly adopts “investment in fixed
assets of the construction industry” to measure capital input of the construction
industry and uses the deflator method to convert it into actual investment in fixed
assets of the construction industry, with 2003 as the base period.

(4) Economic output: The gross output of the construction industry, that is, the total
value created by construction enterprises, can best reflect the total output level of
the construction industry. On this account, this paper selects “total output of the
construction industry” as the economic output. Similarly, to eliminate the influence of
price factors, the current total output of the construction industry is transformed into
the actual total output of construction in the region using GDP deflators with 2003 as
the base period.

(5) Carbon dioxide emissions: At present, the development of the construction industry
depends on the support of fossil fuel, but the utilization of fossil fuel will inevitably
emit a large amount of direct and indirect emissions. Among them, carbon dioxide, as
a typical representative of environmental pollutants, is the main control and emission
reduction object in the energy utilization of the construction industry advocated by
most scholars. It should be noted that because the relevant statistical yearbook has
not yet given the direct data of carbon emissions from the construction industry, this
paper estimates the energy carbon emissions by multiplying the physical quantities
of various energy consumption in the regional energy balance tables in the China
Energy Statistical Yearbook by the reference coefficients of each energy converted into
standard coal in the General Principles for Comprehensive Energy Consumption Cal-
culation, and then multiplied by the respective carbon emission coefficient, published
in the IPCC (2006) document internationally.

Table 1. Measurement index of CIGTFEE of the construction industry.

Input/Output Variable Meaning (Units)

Inputs

Energy input Comprehensive energy consumption of the construction industry (1000 t)

Labor input The number of employees of industrial enterprises in the region
(1000 people)

Capital input The actual net construction fixed assets in the region with 2000 as the
base period (CNY 100 million yuan)

Desirable output Economic output The actual total output of construction in the region with 2003 as the base
period (CNY 100 million yuan)

Undesirable output Carbon dioxide emissions The carbon dioxide emissions of construction in the region (10,000 t)

3.4. Data Source

Based on the availability and comprehensiveness of data, this paper takes 11 provinces
along YREB as the basic research unit, and the research period is from 2003 to 2018. All
variables in this paper are from China Statistical Yearbook, China Labor Statistical Yearbook,
China Energy Statistical Yearbook, and China Construction Industry Statistical Yearbook
from 2004 to 2019. In addition, some missing data is filled in by the simple average method
and the moving average method.

3.5. Driving Factors on CIGTFEE

To explore the factors driving CIGTFEE is another important objective of this research.
Inspired by existing research, this paper selects Economic growth (EG), Technological
progress (TP), Urbanization (UL), Energy structure (ES), Human capital (HC), Technology
and equipment level (TL) serve as the driving factors of CIGTFEE. These factors are
described as follows:
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(1) Economic growth (EG): Previous studies have shown the relationship between energy
consumption and economic growth is highly related to the actual social development
in the study area [31,32]. EG is often accompanied by the agglomeration of talent,
capital, and technology, and these factors are crucial to the development of the con-
struction industry. However, the effects of EG on the ecosystem might be considerably
more harmful. Thus, it is essential to investigate the correlation between EG and
CIGTFEE. EG was measured by the per capita GDP of each province and city, and at
the same time, in order to eliminate the influence of collinearity, the natural logarithm
of this index was taken. Therefore, the nexus between EG and CIGTFEE is uncertain.

(2) Technological progress (TP): As a dominant contributor, TP is conductive to reducing
energy consumption intensity [25,33]. Relevant research shows that TP improves the
quality of energy inputs, significantly reduces the associated cost, frees up resources,
and maximizes output [34]. Moreover, TP can upgrade the traditional high-energy
equipment and improve the production efficiency of enterprises, and then promote
the rational utilization of energy in the construction industry and reduce the energy
consumption intensity, thus promoting the green transformation and growth of re-
gional industries.TP is expressed by the ratio of regional R&D expenditure to GDP,
and it is expected that TP promotes CIGTFEE.

(3) Urbanization level (UL): The level of urbanization is closely related to the energy
efficiency of the building sector, and there are two contrasting views on the rela-
tionship between the two. One thing, urbanization is accompanied by population
migration from rural to urban areas, stimulating housing demand and promoting the
continuous expansion of the construction industry, which increases building energy
consumption and emits a lot of carbon dioxide [27]. For another, the increasing level
of urbanization may have facilitated the inflow of high-quality educational resources
and skills, raising labor value, facilitating the development of energy-saving technol-
ogy, and enhancing energy efficiency [29]. Therefore, the relationship between UL and
CIGTFEE is uncertain. Here, UL is expressed by the ratio of the resident population
in urban areas to the total population.

(4) Energy structure (ES): The optimization and adjusting of ES are conducive to slowing down
energy consumption growth and are crucial to green construction development. Compared
with traditional fossil fuels such as coal and oil, an increase in the proportion of elec-
tricity consumed could significantly enhance labor and energy efficiency [29]. The
clean energy represented by electricity has higher energy conversion efficiency and
lower carbon dioxide emissions. By increasing the ratio of electric energy consump-
tion in the construction sector, it is possible to upgrade the ES and promote emission
reduction in the construction sector. Therefore, ES can be expressed by the ratio
of electric energy consumption to the total energy consumption in the construction
industry and is expected to promote CIGTFEE.

(5) Human capital (HC): Scientific production skills, advanced production equipment,
and well environmental consciousness are better mastered by high-quality employees,
who can provide the necessary intellectual support for reducing energy consumption
and promoting the green transformation of enterprises [35]. Therefore, this paper
substitutes HC with the per capita years of education of the labor force in a region,
and it is expected that HC promotes CIGTFEE.

(6) Technology and equipment level (TL): The increase in the ratio of technical equipment
indicates an increase in investment in fixed capital [29]. This value is a measure of
the level of technological development of the construction industry in terms of the
value of fixed assets and equipment per person employed in the construction industry.
The higher the technical equipment ratio in the construction industry, the higher the
level of technology, and vice versa, the lower [36]. Therefore, it is expected that TL
will promote CIGTFEE.
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4. Results and Discussion
4.1. Regional Differences

According to Equations (1) and (2), Super-EBM was used to measure the CIGTFEE of
11 YREB’s provinces and cities from 2003 to 2018. The specific results are shown in Table 2.

Table 2. Details of the CIGTFEEs of 11 provinces in YREB from 2003 to 2018.

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Mean

Shanghai 1.029 1.027 1.052 1.069 1.072 1.110 1.097 1.103 1.097 1.045 1.024 1.015 1.033 1.015 1.004 0.862 1.041

Jiangsu 1.009 1.015 1.244 1.133 1.156 1.186 1.162 1.169 1.340 1.164 1.174 1.163 1.276 1.337 1.398 1.377 1.206

Zhejiang 1.045 1.053 1.075 1.067 1.051 1.055 1.050 1.032 1.075 1.034 1.034 1.043 1.051 1.099 1.106 1.102 1.061

Anhui 0.607 0.619 0.762 0.772 0.737 0.732 0.728 0.736 0.754 0.795 0.807 0.837 0.852 0.784 0.776 0.734 0.752

Jiangxi 0.787 0.820 1.128 0.878 0.840 0.834 0.876 1.008 0.763 1.018 1.014 1.000 0.980 0.847 0.809 0.857 0.904

Hubei 0.623 0.675 0.763 0.802 0.799 0.803 0.821 0.841 0.775 1.053 1.070 1.074 1.057 1.057 1.070 1.087 0.898

Hunan 0.867 0.679 0.754 0.778 0.795 0.814 0.809 0.811 0.821 0.794 0.804 0.812 0.809 0.787 0.765 0.759 0.791

Chongqing 0.664 0.599 0.734 0.705 0.695 0.704 0.736 0.731 0.715 0.796 0.855 0.844 0.832 0.805 0.767 0.787 0.748

Sichuan 0.562 0.558 0.653 0.696 0.694 0.705 0.729 0.673 0.665 0.790 0.835 0.803 0.806 0.772 0.725 0.690 0.710

Guizhou 0.566 0.592 0.679 0.703 0.695 0.661 0.703 0.715 0.740 0.821 0.810 0.750 0.806 0.701 0.703 0.651 0.706

Yunnan 0.546 0.577 0.664 0.666 0.660 0.654 0.705 0.709 0.686 0.741 0.761 0.734 0.743 0.679 0.681 0.678 0.680

Figure 3a illustrates the provincial mean CIGTFEE across the period of observation,
revealing significant provincial differences in CIGTFEE. At the provincial level (Figure 3a),
the provinces in downstream, including Jiangsu, Zhejiang, and Shanghai, maintained high
CIGTFEE levels. Their CIGTFEE are satisfactory due to two main factors: To begin with,
these downstream regions are economically developed and pioneers in the construction
sector. They have a higher level of building science and technology than the other provinces
and cities of the YREB. Second, these provinces and cities aggressively executed the national
green development policy and explored the road of green development: emphasizing
the green and mechanized transformation of the construction industry, optimizing and
updating construction industry, research and development of clean energy technologies and
renovation of traditional construction equipment. These efforts effectively aided enterprise
energy conservation and pollution reduction.

The provinces in the Upstream and Midstream sectors kept their CIGTFEE low. In the
midstream and upstream of the YREB, developed provinces such as Chongqing, Hunan,
and Hubei have higher CIGTFEE values than underdeveloped provinces such as Guizhou
and Yunnan. Therefore, the economy facilitated the CIGTFEE. And relatively backward
clean production technologies are undoubtedly another reason why Guizhou and Yunnan
lag behind other provinces and cities in the upper and middle reaches.

From a regional level (Figure 3b), CIGTFEE were higher in downstream provinces than
in midstream and upstream provinces. In YREB, the provincial differences in CIGTFEE exist
and must be addressed to secure the overall effect of green construction transformation.

In Figure 3b, the CIGTFEE trends of YREB and those of downstream, midstream, and
upstream regions are compared to further investigate regional differences in CIGTFEE.
CIGTFEE in YREB was only 0.755 in 2003, but had climbed to 0.871 by 2018, representing
a 15.36% growth in 16 years. Except for a brief spike in a few years, the CIGTFEE of
downstream regions remained steady across the data period (2003–2005).

To further investigate the regional differences in the CIGTFEE, the CIGTFEE trends of
the YREB and those of the downstream, midstream, and upstream regions are compared
in Figure 3b. It can be seen that CIGTFEE during the research periods revealed an overall
growing tendency. The CIGTFEE of the downstream regions remained stable during the
sample period, except for a rapid grew in a few years (2003–2005). The CIGTFEE of the
midstream regions exhibited an “M” shape with “two peaks and one valley”;The CIGTFEE
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in the upstream regions have an obvious inverted “U” curve. The CIGTFEE of the three
regions differed markedly.

Figure 3. Regional and provincial level of the CIGTFEE in YREB. (a) shows the distribution of
CIGTFEE at the provincial level. (b) displays the overall and three regions’ average CIGTFEE curves.

In summary, CIGTFEE was much higher in the downstream than in the YREB, upstream,
and midstream zones. In the future, policymakers must pay more attention to regional
variations in CIGTFEE and develop effective localized green transformation programs.

4.2. Spatial Correlations
4.2.1. Global Spatial Correlations

Based on Equations (2) and (3), this paper calculated the average CIGTFEE of YREB
in the four periods from 2003 to 2018 and used Geoda to evaluate the Moran’s index. The
global auto-correlation results are given in Table 3.

Table 3. Spatial autocorrelation coefficient of the CIGTFEE of YREB in four periods.

Periods 2003–2006 2007–2010 2011–2014 2015–2018

Moran’s I 0.642 0.618 0.449 0.309
p-value 0.005 0.005 0.013 0.032
Z-value 3.523 3.580 2.767 2.241

As shown in Table 3, the CIGTFEE of YREB was always positive during four inspec-
tion periods, passing the significance level test, which fully shows that the CIGTFEE of
YREB shows a significant positive spatial correlation feature. At the same time, the result
also shows that CIGTFEE in neighboring provinces of YREB presents an obvious spatial
agglomeration situation, that is, the provinces with higher or lower CIGTFEE are relatively
concentrated in space, which indicates that the spatial distribution of CIGTFEE between re-
gions is not random, and there is a strong imitation effect among neighboring provinces. In
addition, over time, the global Moran index decreased, indicating the spatial agglomeration
degree of CIGTFEE of YREB had weakened, but this spatial effect still had an important
impact on the change of CIGTFEE. In a word, spatial correlation is an important driving
factor that cannot be ignored in the empirical analysis of CIGTFEE of YREB, otherwise it
will lead to a big deviation between the empirical results and the actual results.
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4.2.2. Spatial Distribution Evolution Characteristics

To analyze the CIGTFEE, this study divided the CIGTFEE range into five equal parts
by natural breaks, and referred to them as the lowest, low, medium, high, and highest
levels, respectively. The ArcGIS 10.8 software was used to visualize the results of the
CIGTFEE (Figure 4). The spatial situations of the regional and provincial level CIGTFEEs
were interpreted as follows:

(1) As shown in Figure 4, the spatial distribution of CIGTFEE in YREB generally presents
a ladder-shaped change trend, with the regional average CIGTFEE from high to low
levels was as follows: Downstream, Midstream, and Upstream. This is directly tied to
the variations in resource endowment and economic development between provinces.
It can be seen that the provinces in the downstream and upstream regions show
obvious polarization.

(2) During four periods, Jiangsu, Zhejiang were ranked in the highest efficiency range.
Although the CIGTFEE in Shanghai showed a downward trend, it still placed high on
the list.

(3) In contrast, Sichuan, Guizhou and Yunnan, which located in the economically and
technologically underdeveloped upstream, always in a state of inefficiency. Com-
pared with other upstream provinces, Chongqing’s CIGTFEE placed high during four
periods. Therefore, in the upstream region, Chongqing should play a good role in
leading the way, strengthen the cooperation between the upper, middle and lower
reaches, and narrow the gap.

(4) CIGTFEE has to some extent been enhanced in Hubei. Moreover, CIGTFEE has declined
to a certain extent in Hunan and Jiangxi.but Jiangxi still ranked first in the midstream.

Figure 4. Changes of the CIGTFEE in YREB from 2003 to 2018.
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Overall, the spatial spillover effect obviously exists in the YREB, CIGTFEE is compara-
ble across nearby provinces and cities as a result of knowledge and technological spillover.
This is fully reflected in Jiangxi and Chongqing. Spatial structure analysis offers a solid
scientific foundation for enhancing regional development effectiveness and advancing re-
gional sustainable development. Based on the above analysis, policymakers can rationally
optimize and adjust the Yangtze River Economic Belt’s spatial structure so that the spatial
interaction can reach its best state, maximizing the allocation of local resources and spatial
synergy and hastening the region’s sustainable development.

4.3. Analysis of Driving Factors

Based on above analysis of provincial CIGTFEEs in YREB, there exists a significant
temporal and spatial differentiation characteristics. The spatial econometric model per-
formed better than the non-spatial regression model (OLS model) and Tobit model when
dealing with the problem of spatial autocorrelation. That is, the spatial econometric model
is suitable for the analysis on CIGTFEE’s factors. In Equation (4), EG, TP, UL, ES, HC, TL
serve as the explanatory variable, and the CIGTFEE measured by Super-EBM serves as the
explained variable.

CITFEEi,t = αi + φt + β1EGi,t + β2TPi,t + β3ULi,t + β4ESi,t + β5HCi,t + β6TLi,t
+δ∑j Wij(CITFEEi,t) + µi,t

µi,t = λ∑j Wij × ui,t + εi,t

(4)

where δ are the spatial autoregressive parameters, λ is the spatial error parameter, and
the spatial econometric model can be expressed as the values of both. If δ = 0, and λ 6= 0,
then the form of spatial error model (SEM) should take; If λ = 0, and δ 6= 0, then the
form of spatial auto-regressive model (SAR) should take; if λ = δ = 0, then this model is
a common model without spatial effects; αi, φt are spatially-fixed and time-fixed effects
of the residual terms of the model, respectively; CIGTFEE, as an abbreviation for total
factor energy efficiency of the construction industry, is the independent variable of the
model. Economic growth, technological progress, urbanization level, energy structure,
human capital, technology and equipment level can be respectively expressed by EG, TP,
UL, ES, HC, TL; β1, β2, β3, β4, β5, β6 are coefficients of corresponding variables, that is,
the regression coefficient; i and t corresponding to the area and time respectively; µ is the
residual term; ε is a random error.

4.3.1. Spatial Correlation Test on Residual Terms

Based on Equation (4)., the regression analyses were conducted using the OLS, and
further test whether spatial autocorrelation is present in the residuals of regression models
estimated. The results of test are shown in Table 4. To further demonstrate the necessity
of controlling the fixed effects to improve the strength of the model interpretation, the
estimation and testing results from the non-fixed effects model, space fixed effects model,
time fixed effects model, and two-way fixed effects model are also presented in Table 4.
The best-fit model could be distinguished by comparing four model parameters.

As shown in Table 4, the R-squared value of the time-fixed effect model is 0.758, which
is significantly higher than that of non-fixed effects model (0.511), space fixed effects model
(0.334) and two-way fixed effects model (0.178), indicating that the goodness-of-fit of the
time-fixed effect model was best. In addition, the DW values of non-fixed effects model,
space fixed effects model, time fixed effects model, and two-way fixed effects model were
1.529, 1.822, 2.072, and 1.885, respectively. Likewise, time fixed effects model achieved the
largest DW value. Through the comparison of the above two parameters, it is shown that
the key parameters of time fixed effects model are better than those in other models. That
is, time fixed effects model has the best explanatory power in this paper. Thus, the time
fixed effects model was adopted for subsequent empirical analysis.

At the same time, the test results of spatial autocorrelation of model residual terms are
also given in the lower part of Table 4. In the time-fixed effects model, the LM-lag value of
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2.844 passed the significance test with p-values < 0.1, while the LM-err value of 2.340 also
passed the 10% significant level test, which fully shows that the residual term of time fixed
effects model has significant spatial autocorrelation. The premise of the establishment of the
traditional model is that the residual terms of the model are independent, and there is no
connection. However, the residual terms of the model have spatial autocorrelation, using
the least squares method can result in bias in the estimation results. Therefore, it is necessary
to re-estimate the model by using the spatial econometric method. In addition, because the
value of LM-lag is larger than LM-err, compared with the spatial error model, this means
SAR has a better explanation than SEM. Thus, SAR is a better choice for this paper.

Table 4. The estimation and test results of different fixed-effects models.

Variables Non-Fixed
Effects Model

Space Fixed
Effects Model

Time Fixed
Effects Model

Two-Way Fixed
Effects Model

EG 0.194 ***
(3.220)

0.094
(0.994)

1.273 ***
(13.849)

0.127
(0.709)

TP 0.007
(0.240)

−0.048 **
(−2.111)

−0.001
(−0.043)

−0.0027
(−0.078)

UL 0.532 ***
(2.598)

0.655 *
(1.836)

−1.472 ***
(−7.199)

1.286 ***
(3.534)

ES 0.108
(1.003)

−0.009
(−0.129)

0.475 ***
(5.808)

0.170 **
(2.372)

HC −0.017
(−0.628)

−0.015
(−0.683)

0.081 ***
(3.909)

0.020
(0.747)

TL −0.026
(−0.977)

0.006
(0.322)

0.017
(0.882)

−0.005
(−0.264)

R-squared 0.511 0.334 0.758 0.178

DW 1.529 1.822 2.072 1.885

LM-lag 9.080 *** 4.707 ** 2.844 * 1.052

Robust LM-lag 14.660 *** 8.979 *** 20.186 *** 5.067 **

LM-err 4.106 ** 7.195 *** 2.340 * 0.355

Robust LM-err 9.686 *** 11.467 *** 19.682 *** 4.369 **
Note: The t-statistic is bracketed; ‘*’, ‘**’, and ‘***’ are significance levels of 10%, 5%, and 1%, respectively; model
estimation and spatial auto-correlation test were conducted on MATLAB 7.12.

4.3.2. Analysis on Driving Factors of the CIGTFEE in YREB

The aforementioned study confirms the significant geographical correlations across
YREB provincial CIGTFEEs. Therefore, a spatial econometric model are adopted to over-
come the biased estimation results brought by traditional non-spatial econometric methods.
As shown in Table 5, the spatial autoregressive term W*dep. var and the spatial error term
Spat. aut., estimated by Maximum Likelihood Estimate (MLE), were 0.101 and −0.269, and
have passed the significance test at 10% and 1% level, respectively. This further demon-
strated the rationality of the spatial econometric model. Compared with the estimation
results of the OLS, the R-squared of the spatial econometric model was much higher, indi-
cating that the spatial econometric model has a better fit than the OLS. At the same time,
the t-test values of most independent variables in the spatial econometric model were
improved on the basis of the common model, which also indicated that the estimation
results of the model have been further optimized. In addition, by comparing the R-squared
values of SAR and SEM, it can be seen that the former is larger than the latter, indicating
that SAR had stronger explanatory power. Therefore, the estimation results of SAR should
be taken to interpret the coefficients of variables.
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Table 5. The estimation and test results of spatial econometric model (time fixed effects model).

Variables SAR SEM

EG 1.263 *** (14.013) 1.273 *** (13.592)

TP −0.006 (−0.311) 0.023 (1.237)

UL −1.490 *** (−7.430) −1.585 *** (−7.424)

ES 0.459 *** (5.727) 0.470 *** (5.676)

HC 0.078 *** (3.826) 0.091 *** (4.563)

TL 0.018 (0.997) 0.0010 (0.516)

W*dep. var 0.101 * (1.537)

Spat. aut. −0.269 *** (−2.609)

R-squared 0.781 0.774
Note: The t-statistic is bracketed; * and *** are significance levels of 10% and 1%, respectively.

Economic growth (EG) has a considerable positive impact on CIGTFEE at a significant
level of 1%, indicating that an increase in regional per capita GDP is favourable to enhancing
CIGTFEE. The more developed the economy, the more suitable support for the construction
industry’s expansion, in terms of technology, talent, market, and capital, will be accessible.
The more mature the regional construction industry’s development, the higher the level of
energy use in the building industry will be. The result also explains why CIGTFEE in the
downstream area of the economically developed Yangtze River Economic Belt is higher
than that in the upstream area.

Contrary to expectations, the computed coefficient of technological progress (TP) was
negative, failing every significance tests. This finding is directly tied to the current direction
of technology R&D activity. According to the findings of Acemoglu, D., original technology
research and development includes both clean technology and polluted technology [37].
If the firm is initially engaged in polluting technology, then technological research and
development operations will simply increase pollutant emissions without reducing them.
Although construction enterprises’ R&D investment of YREB is gradually increasing, most
construction enterprises prioritize the economic benefits of technology R&D over the
ecological benefits, resulting in the emergence of more pollution-oriented technologies that
are unfriendly to the environment and will exacerbate pollutant discharge.

As expected, Urbanization (UL) had a significant inhibitory effect on CIGTFEE, im-
plying that the excessive pursuit of urbanization had led to the rapid expansion of the
construction industry, resulting in extensive development of the construction industry,
which further aggravated the construction industry’s energy consumption and pollution,
and exerted downward pressure on energy conservation and emission reduction in the
local construction industry. It is clear that the development of the construction industry
is closely tied to the urbanization of the YREB. With the urbanization process speeding
up, paying close attention to the construction industry’s resource consumption is a critical
approach to successfully raising the industry’s green level, which helps to progressively
realize an efficient and energy-saving construction industry.

The estimation coefficient of Energy structure (ES) was positive, passing the significant
test at 1% level, indicating that the higher the proportion of electric energy consumption to
the total energy consumption in the construction industry, the greater the energy efficiency.
That is, electricity, as a type of clean and efficient energy, can effectively reduce the carbon
dioxide emissions of the construction industry with its wide application in construction,
thus playing a positive role in promoting the greening process of the construction industry
and improving CIGTFEE.

As expected, Human capital (HC) had a positive influence on the CIGTFEE at a signif-
icant level of 1%. The labor force is an essential input factor to support the development of
the construction industry, and how much advanced technology is applied is determined
by the education level of the labor force. Modern construction technology and equipment
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machinery have been applied with the gradual improvement of the labor force’s education
level in the construction industry, which undoubtedly improves the overall labor produc-
tivity of the construction industry, reduces energy consumption, and produces greater
economic benefits.

The effect of Technology and equipment level (TL) on CIGTFEE was positive, but not
statistically significant, which was consistent with the research conclusion of Wang [38]. The
possible reason is that, although improving the technical equipment rate of the construction
industry is conducive to the effective utilization of resources and the reduction of energy
consumption, the equipment of construction enterprises in some areas of the YREB has
some issues, such as low technical degree, serious aging, high energy consumption and
low production efficiency.

5. Conclusions and Policy Implication
5.1. Conclusions

Improving energy efficiency has become the key solution to deal with the energy-
economic-environmental challenges. This paper develops and constructs an evaluation
index system to evaluate the CIGTFEEs of 11 YREB provinces from 2003 to 2018 using the
Super-EBM model considering undesirable outputs. The spatiotemporal dynamics analysis
and spatial correlations analysis of the CIGTFEEs are performed to master the geographical
and temporal distribution characteristics. In addition, using a spatial econometric model,
this paper empirically tests the effects of six potentially important factors on CIGTFEE. The
primary conclusions are as follows:

(1) During the sample period, only Jiangsu, Zhejiang, and Shanghai’s CIGTFEE are in a
state of effective, while other provinces fail to achieve the effective state, and there is
room for improvement.

(2) In terms of temporal evolution, the CIGTFEE during the research periods revealed
an overall growing tendency. The CIGTFEE in the YREB’s upstream, midstream,
and downstream followed different trajectories. Prior to 2006, the CIGTFEE in the
downstream grew dramatically, then stayed rather steady. In the midstream, they
had an “M” shape with “two peaks and one valley”. The inverted “U” curve was the
trend of the upstream.

(3) Global Moran’s I testify the significant spatial correlations between provincial CIGT-
FEEs. The distribution of CIGTFEE in YREB generally exhibits a ladder-shaped change
trend, with the regional average CIGTFEE from high to low levels was as follows:
Downstream, Midstream and Upstream. Overall, the provinces in the downstream
are clearly polarized with those in the upstream.

(4) The results of spatial econometric model demonstrated that the CIGTFEE is signifi-
cantly promoted by EG, ES and HC, suppressed by UL, yet the impact of TP and TL is
not significant.

5.2. Policy Implication

Based on the above analysis, some policies should be put forward to boost YREB’s
CIGTFEE. To begin with, the environmental challenge should be included in the research
framework of energy efficiency in the context of green development. Otherwise, the es-
timate of efficiency may be skewed and misleading to policymakers. Next, owing to the
clear regional differences in CIGTFEEs, the government should formulate differentiated
support policies to guide different regions to accelerate energy conservation and emission
reduction of construction industry in light of its actual situation. On the one hand, the
government should support the downstream in its efforts to advance green industrial trans-
formation, improve environmental quality, achieve high-quality industrial development,
and promote energy efficiency of construction industry. On the other hand, the government
should increase its financial, human, and technological assistance for industrial energy
conservation and emission reduction in the upstream and midstream. Furthermore, the
government should concentrate on transforming conventional high-energy, high-emission
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sectors, facilitating the shift from extensive to intensive growth. Finally, given the clear
spatial correlation between provincial CIGTFEEs, spatial layout is a key factor that must
be taken into consideration in the planning of the construction industry in the YREB. A
cross-regional cooperation and exchange mechanism should be built to promote the free
flow of talents, technology, capital, and other factors across regions, particularly the trans-
fer of advanced construction technology, equipment, and management models from the
advanced downstream to the backward midstream and upstream, allowing the latter to
upgrade and transform their construction industryand then decrease the regional gap.

The results of the spatial econometric model demonstrate that four factors have a sig-
nificant impact on CIGTFEE. Accordingly, provinces in YREB must develop corresponding
active policies and strategies to improve the energy utilization level of the construction indus-
try. (1) Empirical results show that EG has a significant positive relationship with CIGTFEE.
Taking advantage of YREB’s high-quality economic development, there is a need to acceler-
ate the shifting of the traditional extensive development path of the “labor-intensive and
energy-intensive” construction industry, actively promote construction industry transforma-
tion and upgrading, and realize the transformation of construction industry development
from factor-driven to innovation-driven. (2) The improvement of UL hinders CIGTFEE
growth. Hence, each province should actively pursue new urbanism development that is
intensive, intelligent, green, and low-carbon to provide support for the coordinated growth
of new urbanization construction and the construction industry. (3) ES optimization can
greatly improve CIGTFEE. Each region should vigorously implement a green energy substi-
tution strategy in the construction industry, encouraging the use of clean energy and green
building materials while gradually reducing reliance on traditional fossil fuels like coal and
oil. (4) HC has a promoting influence on CIGTFEE. During the critical moment of transfor-
mation and upgrading of the construction industry, YREB’s fundamental shortcoming is a
small pool of high-tech expertise. It is critical to cultivate interdisciplinary innovation talent,
establish professional groups for the industrial chain, and give more sophisticated talent for
transformation and upgrade of the construction industry.
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