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G W N e

Abstract: The high number of fatal crashes caused by driver drowsiness highlights the need for
developing reliable drowsiness detection methods. An ideal driver drowsiness detection system
should estimate multiple levels of drowsiness accurately without intervening in the driving task.
This paper proposes a multi-level drowsiness detection system by a deep neural network-based
classification system using a combination of electrocardiogram and respiration signals. The proposed
method is based on a combination of convolutional neural networks (CNNs) and long short-term
memory (LSTM) networks for classifying drowsiness by concurrently using heart rate variability
(HRV), power spectral density of HRV, and respiration rate signal as inputs. Two models, a CNN-
based model and a hybrid CNN-LSTM-based model were used for multi-level classifications. The
performance of the proposed method was evaluated on experimental data collected from 30 subjects
in a simulated driving environment. The performance and the results of both models are presented
and compared. The best performance for both three-level and five-level drowsiness classifications
was achieved by the CNN-LSTM model. The results indicate that the three-level and five-level
classifications of drowsiness can be achieved with 91 and 67% accuracy, respectively.

Keywords: ECG; respiration; deep learning; drowsiness detection; multi-level classification

1. Introduction

Drowsiness is one of the leading causes of road accidents. Driving is a complex
process that needs the driver’s full attention and awareness, which can be highly affected
by drowsiness. It is estimated that falling asleep at the wheel accounts for approximately
7% of road accidents and 17% of fatal crashes [1]. Even with ever-increasing progress in
automated driving technologies, driver drowsiness is not negligible. Studies focused on
the human factors of automated driving have shown increased levels of mental fatigue and
drowsiness during automated driving [2,3]. In current automated driving technologies,
based on the automation level in vehicles, the driver’s intervention might be needed in
takeover situations. Thus, even in some levels of automated driving, drowsiness is still an
important issue that needs to be addressed until fully autonomous driving becomes feasible.

To reduce the number of crashes caused by drowsy driving, several countermeasures
have been introduced by researchers. Measures such as having sufficient sleep, reduction
of the continuous driving period, and short naps after several hours of driving have
long been advised by researchers to prevent driver drowsiness. Drivers’ misjudgment
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and overconfidence highlight the need for in-vehicle drowsiness countermeasures. There
are three broad categories in in-vehicle drowsiness detection methods: physiological
signals, the driver’s facial characteristics, and vehicle dynamics [4]. Among these methods,
physiology-based drowsiness detection systems have been shown to yield more reliable
accuracy compared to other drowsiness detection methods [4]. Physiological signals such
as electroencephalography (EEG), electrooculography (EOG), electrocardiography (ECG),
electromyography (EMG), respiration, galvanic skin resistance, and body temperature have
all been used for drowsiness detection and have shown high accuracy [5,6]. However,
the use of these methods is still limited due to the intrusive nature of signal acquisition
methods. Despite efforts to enable non-intrusive measurement of EEG, EMG, and EOG
signals, acquisition methods for these signals still require direct contact and permanent
placement on the driver’s body causing discomfort. Fortunately, ECG can be achieved
by embedding measurement sensors in the steering wheel [7], driver’s seat [8], and small
wearables such as armbands [9], causing the least discomfort to the driver. On the other
hand, contactless measurement of the respiration signal is achievable through non-contact
methods in driving conditions [10-14]. Thus, ECG and respiration signals can be considered
good choices for drowsiness measurement.

ECG signals are used in a vast variety of applications related to the estimation of
a driver’s state. In previous studies, ECG was used to examine mental workload [15],
emotion [16], stress [17], and drowsiness [18]. The main feature of the ECG signal used for
drowsiness detection is the heart rate variability (HRV) as it corresponds to the autonomic
neural system (ANS) regulation. ANS activity alters during stress, extreme fatigue, and
drowsiness episodes [19]. The HRV signal is defined as the variation of time intervals
between two consecutive heartbeats and it can be analyzed in both time and frequency
domains. The common frequency domain analysis of HRV is the power spectral analysis
comprising four main components: ultra-low frequency (0.0-0.0033 Hz), very low frequency
(0.0033-0.04 Hz), low frequency (0.04-0.15 Hz), and high frequency (0.15-0.4 Hz). The low-
frequency (LF) component of the HRV power spectrum is influenced by parasympathetic and
sympathetic activity. The high-frequency (HF) component is influenced by parasympathetic
activity. The ratio of LF to HF components is considered a description of sympathovagal
balance [19]. The LF to HF ratio decreases progressively as drowsiness increases [4].

Various analyses of the HRV signal have been used for drowsiness detection. Patel
et al. [20] used the frequency component of the HRV signal derived from the power
spectrum density as the input to an artificial neural network. Some studies used a mixture
of the time and frequency parameters of HRV [21,22]. Gang li et al. [23] and Babaeian
et al. [24] used the wavelet transform and short-time Fourier transform for analyzing the
time-frequency components of the HRV. Some studies focused on fusing HRV parameters
with other physiological signals. Vicente et al. [19] used HRV and respiration signals for
two-level drowsiness classification and Al-Libawy et al. [25] combined HRV measures with
driver’s skin temperature and skin conductance to detect drowsiness.

Respiration is also affected by the ANS and is altered during drowsiness. In previous
works, it has been shown that respiration undergoes notable changes from wakefulness
to drowsiness as the respiration rate decreases at higher levels of drowsiness [13,26,27].
Studies focused on respiration analysis for drowsiness detection used respiration rate or
respiration rate variability [14,28,29]. Furthermore, some studies focused on deriving respi-
ration parameters directly from the HRV signal [30,31] or using respiration in combination
with other physiological signals [32,33]. Thus, the availability of contactless respiration
acquisition methods makes it suitable for monitoring drowsiness. Thermal imaging was
also used in several studies as a contactless device to monitor physiological parameters
such as the respiration and facial temperature pattern of the drivers during drowsiness
and showed promising results [13,14,34,35]. Accordingly, thermal imaging for monitoring
respiration parameters during driving has been proven as a reliable method.

Drowsiness classification has been performed with various methods, ranging from
state-of-the-art machine learning and deep learning methods to traditional statistical
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methods. Machine learning methods such as support vector machines (SVM) [36], ar-
tificial neural networks (ANN) [20], K-nearest neighbor (KNN) [37], ensemble logistic
regression [24], and decision trees [38] have been used for drowsiness detection. There
are several studies for drowsiness detection that use deep learning methods such as con-
volutional neural networks (CNNSs) [39], recurrent neural networks (RNNs) [40], deep
belief networks (DBNs) [41], and hybrid networks [42-44]. Although traditional machine
learning methods are not inferior to the deep learning methods, the ability of deep learning
methods to fuse the feature extraction, feature selection, and model construction steps of a
classification problem has made these methods favorable for optimal classification and the
capture of the non-linear correlations across data modalities.

Most drowsiness studies focus on whether the driver is wakeful or sleepy rather than
investigate the multi-level transition from wakefulness to the last stage of drowsiness. This
transition can be divided into multiple stages and each stage can be assigned a scoring
level based on different drowsiness scoring methods. For instance, the Karolinska Sleep
Scaling (KSS) method suggests nine levels of drowsiness from extremely alert to extremely
sleepy [45], while the Stanford Sleepiness Scale (SSS) and the Observer Rating of Drowsiness
(ORD) methods made this classification within seven and five levels, respectively [46,47].
Usually, drowsiness detection studies focus on choosing a threshold to reduce this multi-
level classification to binary states, i.e., wakefulness and sleepiness. This binary classification
increases the detection accuracy; however, it may detect drowsiness too late, resulting in
accidents, particularly at higher levels of drowsiness. Consequently, detecting multiple
levels of drowsiness would help to assign appropriate countermeasures before the driver
becomes extremely drowsy. Proper drowsiness detection warning systems could then be
utilized to prevent accidents with a long lead time.

This work is concerned with proposing a multi-level driver drowsiness detection
method based on simultaneous analysis of respiration and ECG data. Even though some
parameters of respiration signals are extractable from ECG signals, we recorded each
signal independently. This source independency would reduce errors and false detections.
In order to achieve a high accuracy and optimal multi-level classification, deep neural
networks (DNNs) were used in this work. In this study, drowsiness was categorized into
five levels: wakeful, slightly drowsy, moderately drowsy, very drowsy, and extremely
drowsy. Two multi-level drowsiness classifications based on three levels and five levels
were studied. The experiments were conducted on 30 subjects to evaluate the proposed
drowsiness detection system.

This work contributes to the field of driver drowsiness detection on three grounds.
First, it targets multi-level classification of drowsiness with three and five levels instead of
binary classification using physiological data of ECG and respiration. Detecting drowsiness
at multiple levels would help to assign appropriate countermeasures before the driver
becomes extremely drowsy. Second, it proposes a DNN architecture based on the combina-
tion of CNN and long short-term memory (LSTM) networks for the classification problem
to achieve higher detection accuracies. Third, it uses two physiological signals one of which
is acquired through imaging techniques and the other can be recorded non-intrusively
by embedding into the vehicle steering wheel or through small wearables, thereby it is
applicable for industrial use.

The structure of the subsequent sections of this paper is as follows: Section 2 covers
the details of the experimental design and methodology. The experimental results are
presented in Section 3. Finally, the discussion of the results is presented in Section 4 and
the paper is concluded in Section 5.

2. Materials and Methods

In this paper, two multi-level (i.e., 3-level and 5-level) classification schemes were
studied for detecting drowsiness. Driving tests were performed in a driving simulator
to study variations in respiration and HRV related to the drivers’ levels of drowsiness.
Facial thermal images and ECG signals were used to extract respiration and HRV signals.



Int. |. Environ. Res. Public Health 2022, 19, 10736 40f17

Two night-vision cameras were used to monitor drivers’ conditions and estimate their
drowsiness level by three human observers. Signals were pre-processed and prepared
before applying the classification. Finally, two DNN models were utilized for multi-level
classification based on CNN and LSTM networks.

2.1. Participants

The driving tests were conducted for 30 male subjects with a mean (£standard devia-
tion, SD) age of 31 (£2.6) years. The mean (+5SD) body mass index (BMI) of the participants
was 27.2 (+2.3) kg/m?. All participants were volunteers and they were recruited through
the K. N. Toosi University of Technology’s social media channels. All subjects had driving
licenses and a minimum of 2 years’ driving experience. They were asked to have regular
sleep and refrain from using stimulants and caffeinated substances for 48 h before the
tests. Neither of the subjects was addicted to drugs or alcohol and all were non-smokers.
Moreover, the subjects reported no previous history of diabetes, respiratory, cardiovascular,
or neurological diseases. The subjects signed consent forms prior to the test and observed
the experimental protocol. The study protocol was approved by the K. N. Toosi University
of Technology in accordance with the Declaration of Helsinki.

2.2. Test equipment

The tests were performed in a driving simulator in a dark and controlled room to
ensure drivers’ safety and decrease measurement errors. The subjects drove in a driving
simulator built at K. N. Toosi University of Technology consisting of a set of pedals, steering
wheels, a gear stick, and a monitor (Figure 1). The simulator’s software simulated the
dynamic model of a 14 degree-of-freedom vehicle solved in real-time and a graphical
rendering engine operating at a frame rate of 30 Hz. Two night-vision cameras were
installed to monitor the driver’s drowsiness. A thermal camera with a sensitivity of 50 m
Kelvin, a resolution of 640 x 480, and a frame rate of 7.5 frames per second was used to
record thermal images of the driver. A biomedical signal acquisition device was installed to
record ECG data of the drivers through electrodes attached to the driver. Data acquisition
devices were all controlled through a central computer, and the data was synchronized
based on a trigger signal issued at the onset of data recording.

| Thermal camera

[ Infrared camera

Biomedical signal
acquisition device

Figure 1. Nasir Semi 003TM driving simulator and placement of data acquisition devices. In this
study, only data measured from thermal camera and ECG signals were used.

22.1. ECG

The ECG signal was recorded during driving by a portable digital recording system.
The portable data acquisition system was eWave32D from ScienceBeamTM Company with
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a sampling rate of 1 kHz. The electrodes were disposable Ag/AgCl Skintact F WA10C with
rectangular leads. The skin was rubbed with isopropyl alcohol before attachment to the
electrodes. The data acquisition device and electrode placements are shown in Figure 2.

(b)

Figure 2. (a) Biomedical data acquisition device; (b) ECG lead placement.

The ECG signal was filtered and processed to extract the HRV signal. First, the Grubbs
outlier detection method [48] was used to detect and remove the outliers and movement
artifacts from the signal. Then, a fourth-order Butterworth band-pass filter with a bandpass
frequency of 2-40 Hz was used to remove baseline wander, muscle movement noise, power-
line interference, and high-frequency noise. The Pan-Tompkins method [49] was used to
detect R-peaks from the ECG signals. Then, the HRV signal was formed by sequencing the
time intervals between each two consecutive R-peaks. RR intervals with a relative difference
greater than 30% of the mean of the most recent four previous intervals were considered
outliers [50]. The fast Fourier transform was used to obtain the power spectral density
(PSD) of the HRV signal. Then the frequency range of the calculated PSD was capped to the
frequency range corresponding to the changes in drowsiness (0.04 Hz to 0.4 Hz).

2.2.2. Respiration

A thermal camera was used to monitor the driver’s respiration. The respiration
region—the nostrils and the region beneath—was localized by using spatial continuity in
the thermal image sequences and cumulating temporal changes in the first few frames of
the thermal sequence [14]. After localizing the respiration region, the region was tracked in
subsequent frames by a spatiotemporal context learning tracker [51]. In this method, the
tracking takes place using a confidence map that represents an estimate of the probable
location of the region and maximizes the value of the region [51]. The mean of the pixels
in the tracked region was considered the respiration signal and was calculated for each
frame. The respiration signal extraction in this work was based on [14]. The procedure for
extracting the respiration signal from thermal images is shown in Figure 3.

Facial thermal Respiration region
image detection

Thermal
image

I . . .
5 o 15 20 25 30 35 40 45 50 55 60
Time(s)

sequence

e,

4

e mm e e ————————— Respiration signal
Tracking respiration region

Figure 3. Respiration signal extraction procedure: First, the respiration region was extracted by
cumulating temporal changes in the first few frames of the thermal sequence. Then, it was tracked in
thermal image sequences, and finally, the signal was formed by calculating the mean temperature of
the respiration region in each frame.
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After forming the respiration signal, the signal was filtered and processed. The Grubbs
outlier detection method [48] was used to remove outliers and minor driver movement
artifacts. Next, a fourth-order Butterworth low-pass filter with a cutoff frequency of 0.6 Hz
was used to reduce high-frequency noises. Afterward, a synchrosqueezing transform
was used to extract time-frequency components of the respiration signal as instantaneous
respiration rate [52]. The respiration rate signal was downsampled to 1 Hz before using for
classification in order to reduce the size of the input signals for classification.

2.3. Experimental protocol

All subjects had similar test conditions. Before the test, each driver had a 15 min drill
session to become familiar with the simulator. The tests were conducted in two 80 min
sessions between 1:00 p.m. to 2:30 p.m. after having lunch and between 3:30 p.m. to
5:00 p.m. The drivers were asked to drive on a three-lane highway with a quasi-circular
path, keep on the middle lane, and drive as fast as 70 km/h to 90 km/h. If the subject
failed to control the vehicle in the middle lane and diverged to the guardrail or the road’s
shoulder three times, the test session was terminated. The highway was designed with no
obstacles or vehicles along the way to minimize distractions. The specific design of the
road parameters (i.e., monotonic road, no other vehicles) made the driver more prone to
drowsiness. Furthermore, drowsy drivers departed from the middle lane because of the
existence of soft turns in the road. The road map and the road scene are shown in Figure 4.

4
| 107
0.5
0
—_
E0s
-
-1
-1.5
-2
-1.5 l 0.5 0 0.5 1
X{m}
(a) (b)

Figure 4. (a) Quasi-circular map of the three-lane highway with an average radius of 10 km;
(b) graphical view of the road.

2.4. Drowsiness Scale

The Observer Rating of Drowsiness (ORD) [47] was used to label the level of drowsi-
ness. The ORD method was based on the mean assessments of three trained human
observers without using any physiological signals. Observers used the driver’s body move-
ment and facial changes to score the drowsiness level from 1 to 5 corresponding to wakeful,
slightly drowsy, moderately drowsy, very drowsy, and extremely drowsy. Each observer
rated drowsiness separately and the mean of the scores was used as the final score. Each
observer filled the ORD behavior and mannerism checklist (Appendix A) for each 1 min
segment of driving. Based on the severity of facial and behavioral features of the driver
in the checklist and definitions of the drowsiness levels in the ORD method, one of the
drowsiness levels was assigned to each segment.

2.5. Deep Neural Networks

The pre-processed data obtained from the experiments were used to classify differ-
ent levels of drowsiness using DNNs and classifiers were selected as a combination of
CNN, RNN, and fully connected (FC) layers. Three input signals were considered for the
classifiers: HRV, power spectral density of HRV (HRV-PSD), and the respiration rate (RR).
The classification was conducted individually for two different outcome configurations: a
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3-level classification and a 5-level classification. Classification levels were based on drowsi-
ness levels in the ORD method. In the 3-level classification, ORD < 3 was considered as
wakeful, ORD = 3 as moderately drowsy, and ORD > 3 as extremely drowsy. For the 5-level
classification, all 5 levels of ORD scores were considered for the classification. The overall
pipeline of the process is shown in Figure 5.

ECG

Thermal image scquenee

Respiration

CNN layers RNN layers FC 5 Levels 3 Levels
—. r=me———_—_—_—— | | === 1 = ===-=
HRV :. ! O ! Wakeful |
Wakeful
wll I O : s [ N 1
| Drowsy. |
HRV-PSD * : O *I ;! I
1 C) I| Moderately I 1 | Moderately
1 | o 1 Drowsy 1 Drowsy 1
| 1 |
1 | |
- '
R . I cry Drowsy I
Respiration 1 : o X 1 |
- Drows
Rate = 1 | O I Extremely 1 I TOWS 1
1 _Druws L 1

Data acquisition

Pre-processing DNN for drowsiness detection Classification

Figure 5. Overall flowchart of the proposed method for 3-level and 5-level classifications. ECG:
electrocardiogram, CNN: convolutional neural network, RNN: recurrent neural networks, FC:
fully connected.

The input to the neural networks was the pre-processed data split into 2 min epochs.
Epochs were formed with 60% overlap. The dataset was then normalized using z-score
normalization by subtracting the data from its mean and dividing by the standard deviation
of the training data. Across all data, 80% were randomly selected as the training set and
the remaining 20% as the test set for adopting 5-fold cross-validation.

Model Architecture

Drowsiness level classification was carried out with the combined CNN and LSTM.
The CNN part of the network was utilized to extract local invariant features, while the
LSTM was utilized to consider temporal distribution features.

Two model architectures were used and the performances of the classifiers were
compared. The first model comprised a CNN block and fully connected layers. The second
model was a hybrid CNN-LSTM model in which an LSTM block was added to the first
model. The models were implemented in Python 3.6 using Keras API with TensorFlow
backend. As shown in Figure 6a, both models contain 3 identical parallel CNN blocks
for each of the 3 input signals. The information from the parallel CNN blocks was then
flattened and concatenated before passing it to the fully connected layers or LSTM block,
depending on the model type. The CNN block consisted of six 1D convolution layers, two
max-pooling layers, and a global average pooling layer as shown in Figure 6b. Each 1D
convolution was followed by batch normalization (BN) and a rectified linear unit (ReLU)
activation function. The pooling layers were placed after two CNN layers. The last 1D
convolution was followed by a global average pooling layer and a dropout layer. The
LSTM block in the hybrid CNN-LSTM model consisted two bidirectional long short-term
memory layers Figure 6¢. In both models, the information from two dense layers was fed
to a 3- or 5-way softmax layer to produce the output sequence of drowsiness level.

The optimization of hyperparameters was set to achieve the best performance. The
grid search method was used to adjust the hyperparameters of models. For simplicity, only
some of the model hyperparameters were selected through grid search (Table 1) and the
rest determined by the authors, based on trial and error and existing literature [44,53-57].
The weights and the hyperparameters of the trained model resulting in the lowest loss
of the training process were stored and selected as the final values. Table 1 shows the
optimized values of hyperparameters for both models.
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Figure 6. (a) The model architecture of the CNN and the hybrid CNN-RNN models. The model
selector block is a hypothetical block to show the difference between the two models: state 1 shows
the CNN model and state 2 shows the CNN-LSTM model; (b) details of the inner layers in the
CNN blocks; (c) details of the LSTM block. CNN: convolutional neural network, HRV: heart rate
variability, PSD: power spectral density, RR: respiration rate, LSTM: long short-term memory, FC:
fully connected, BN: batch normalization, and ReLU: rectified linear unit.
Table 1. Optimized hyperparameters applied to the models.
Hyperparameter Search Space Model 1 (CNN) Model 2 (CNN-LSTM)
Number of filters in the first CNN layer 64, 128, 256 64 64
Filter length of the first CNN layer 3-10 5 5
Number of cells in the first LSTM layer 64,128, 256 - 256
Batch size 32,64,128 64 32
Learning rate 0.001-0.00001 0.0001 0.0001

CNN: convolutional neural network, LSTM: long short-term memory.

For configuring the models, the number of filters used by the first two sets of convolu-
tion layers (i.e., CNN layers 1 and 2) was selected to be the same, and the hyperparameters
of the first layer were selected by a grid search. The other two subsequent pairs of convo-
lution layers were chosen to have twice the number of filters used in the previous layers
with the same length. Thus, each two adjacent CNN layers placed in series (Figure 6b)
have the same number of filters and twice the number of their predecessor layers (i.e., 128
for CNN layers 3 and 4 and 256 for CNN layers 5 and 6). The number of channels of the
batch normalization layer was chosen to be the same as the number of filters selected in
the convolution layer (i.e., 64). The pooling layers had a pool size of 2. A stride of one was
used for the convolution layers and a stride of two for the pooling layers. For the LSTM
layers, the number of cells in the first layer was selected by grid search and the subsequent
layer had half the cells of the first layer (i.e., 128). In the fully connected layers, the size of
the first layer was equal to the size of the previous layer—the last CNN layer for the first
model and the last LSTM layer for the second model (i.e., 256 for CNN model and 128 for
CNN-LSTM model). The subsequent dense layer was half the size of the previous layer.

The number of iterations for the training process was 300. The cross-entropy loss function
was selected as the cost function, and the Adam optimizer was exploited as the optimization
method. Class weights were used to compensate for imbalances in the dataset. Early stopping
was also used to halt the training process when there was no reduction in the loss function
for the validation data. The final classification performance was evaluated on the test dataset
in terms of the average classification accuracy, sensitivity, specificity, and precision.
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3. Results

The performance of both models for all combinations of input signals is presented
for three-level (Table 2) and five-level (Table 3) classifications. As expected, the best
performance was achieved with using all signals as an input. Using all input signals, the
CNN model achieved 84 and 62% accuracy for the three-level and the five-level drowsiness
classifications, respectively. The CNN-LSTM model achieved 91 and 67% accuracy for these
two levels. In both cases, the best performances were achieved by the CNN-LSTM model.

Table 2. Performance of the CNN and the CNN-LSTM models for the three-level drowsiness classifi-
cations for different combinations of input signals.

Model Name Input Signal Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)
HRV 55 58 59 56
HRV-PSD 63 61 61 59
RR 66 62 61 65
CNN HRV + HRV-PSD 65 63 60 62
HRV + RR 72 67 71 70
HRV-PSD + RR 68 64 65 65
All inputs 84 80 88 80
HRV 72 65 71 61
HRV-PSD 73 65 72 64
RR 81 76 83 74
CNN-LSTM HRV + HRV-PSD 78 71 81 70
HRV + RR 82 77 84 80
HRV-PSD + RR 77 71 79 70
All inputs 91 87 92 87
HRV: heart rate variability, HRV-PSD: power spectral density of HRV, RR: respiration rate.
Table 3. Performance of the CNN and CNN-LSTM models for the five-level drowsiness classifications
for different combinations of input signals.
Model Name Input Signal Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)
HRV 51 50 48 51
HRV-PSD 52 53 54 52
RR 55 59 56 52
CNN HRV + HRV-PSD 57 56 56 52
HRV + RR 59 60 61 56
HRV-PSD + RR 57 59 52 56
All inputs 64 62 67 62
HRV 54 50 51 50
HRV-PSD 58 56 63 54
RR 60 60 65 63
CNN-LSTM HRV + HRV-PSD 61 60 61 59
HRV + RR 63 62 62 63
HRV-PSD + RR 60 55 62 53
All inputs 67 67 70 66

HRV: heart rate variability, HRV-PSD: power spectral density of HRV, RR: respiration rate.

Despite the good accuracy obtained using all the three input signals together, single or
double usage of the inputs did not yield satisfactory results. According to Tables 2 and 3,
the results for single usage of the signals were not adequate with an exception of 81%
accuracy using the RR signal in the three-level classification by the CNN-LSTM network.
As for the pairwise combination of the inputs, the three-level classification by HRV and
RR was better than the other combinations. The other two pairwise combinations showed
nearly similar results. Therefore, the results indicate that the HRV and RR signals can be
considered the main factors for classification.
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True label

Figures 7 and 8 show the normalized confusion matrices for the three-level and the
five-level classifications using CNN and CNN-LSTM models with all signals used as an
input. For three drowsiness levels, the sensitivities were 80% for wake, 76% for moderately
drowsy, and 88% for extremely drowsy in the CNN model (Figure 7a). In the CNN-LSTM
model, the sensitivities were 88% for wake, 82% for moderately drowsy, and 91% for
extremely drowsy (Figure 7b). The sensitivities for five-level drowsiness detection were
65% for wake, 61% for slightly drowsy, 70% for moderately drowsy, 55% for very drowsy,
and 60% for extremely drowsy in the CNN model (Figure 8a). In the CNN-LSTM model,
the sensitivities were 68% for wake, 57% for slightly drowsy, 69% for moderately drowsy,
65% for very drowsy, and 74% for extremely drowsy (Figure 8b).
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Figure 7. Normalized confusion matrices for the 3-level drowsiness classification in the (a) CNN model
and the (b) CNN-LSTM model. For this classification, we considered ORD < 3 as wakeful, ORD = 3 as
moderately drowsy, and ORD > 3 as extremely drowsy. ORD: observer rating of drowsiness.
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Figure 8. Normalized confusion matrices for 5-level drowsiness detection in the (a) CNN model and

the (b) CNN-LSTM model.

The CNN-LSTM model resulted in the highest accuracy and sensitivity in the three-
level classification with the combined usage of HRV, HRV-PSD, and respiration rate signals.
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This model achieved an accuracy of 91%, sensitivity of 87%, specificity of 92%, and precision
of 87%. For five-level classification, on the other hand, the results for both models were
not sufficient enough for detecting all five levels of drowsiness. For example, the CNN-
LSTM resulted in an accuracy of 67%, which is 24% less than the accuracy achieved by the
three-level classification.

4. Discussion

Both ECG and respiration signals can be acquired non-intrusively without interfering
with the driving task. In this paper, the respiration signal was extracted from the thermal
imaging sequence, while the ECG signal was recorded with three leads attached to the
driver’s chest. The ECG signals can also be recorded using sensors embedded in the
steering wheel, seatbelt, or wristband. The results obtained in this work can be further
strengthened by combining the two signals with other non-intrusive physiological signals
such as EMG, facial temperature, or photoplethysmography (PPG).

A summary of the recent research works that performed multi-level drowsiness classi-
fication using physiological signals is presented in Table 4. For a fair comparison and to
avoid any possible biases, this table only summarizes the studies that classified multiple
levels of drowsiness using physiological data. Barua et al. [58] employed a support vector
machine for the three-level classification of drowsiness. A combination of features from
EEG and EOG signals were used for classification and the results were further strengthened
by adding contextual data including awake time, driving condition, and lighting condition.
Persson et al. used a combination of 24 HRV-derived features using a random forest clas-
sifier for three-level classification in a large dataset comprising three separately recorded
datasets [22]. Arefnezhad et al. utilized scalograms of ECG signals using CNN for three-
level classification [59]. In comparison, our presented CNN-LSTM method outperformed
these methods in three-level drowsiness detection (91 vs. 79% [58], 91 vs. 64% [22], and 91
vs. 79% [59]). Lemkaddem et al. employed an SVM with a combination of PPG signal and
camera-derived EOG parameters [60]. The results were comparable to those of our work in
the three-level classification (91 vs. 89% [56]). Hultman et al. used a combination of raw
EEG and EOG signals as inputs of a CNN-LSTM network for a five-level classification of
drowsiness in an extensively large dataset comprising 12 separate datasets from different
published works [53]. In comparison, the results obtained from the five-level classification
in our work outperformed that study by 21%. One of the possible causes related to the poor
performance achieved in that work could be the variations between different datasets. Jeon
et al. used raw EEG signals as input of a deep spatiotemporal convolutional bidirectional
LSTM network for five-level drowsiness detection [54]. Our proposed method slightly
underperformed (2%) compared to that work, which could be due to the more sophisticated
designs of DNN.

The outcome of the five-level classification was not as accurate as that of the three-
level classification. The confusion matrices in Figure 8 show that most misclassifications
occurred between wakefulness and slightly drowsy states and also between very drowsy
and extremely drowsy states. These misclassifications show that despite behavioral dif-
ferences between sequential levels of the ORD method, the selected physiological signals
do not differ so much between these adjacent levels. As shown in the confusion matrices
of the three-level classification (Figure 7), bundling both wakefulness and slightly drowsy
states as wakefulness, and very drowsy and extremely drowsy states as extremely drowsy;,
classification results improved significantly by 24%. The ORD method is based on the
facial and behavioral changes of the drivers. Some subjects may not exhibit significant
changes in facial and behavioral features in adjacent levels when the pace of drowsiness
level change is high. This limitation does not exist in the three-level classification as there
is a time gap between adjacent levels. Furthermore, the low accuracy of the five-level
classification can originate from the mechanical inertia of the cardiorespiratory system that
causes slow changes at different levels of drowsiness. In other words, the time constant
of mechanical features such as respiration is longer than that of EEG signals and exhibits
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latencies. Therefore, a non-mechanical signal such as EEG could be more suitable for
detecting five distinct levels of drowsiness, though the EEG measurement device may lead
to driver’s discomfort and is prone to disturbances.

Table 4. Accuracy comparison of the proposed method with other multi-level drowsiness classifica-
tion methods based on physiological signals.

Study

Method Physiological Signal Variable Accuracy

EEG-PSD, blink duration,

Barua et al., 2018 [58] Support vector machine EEG and EOG and contextual analysis 79% (3-level)
Lemkaddem et al., 2018 [60] ~ Support vector machine PPG HRV and PERCLOS 89% (3-level)
Persson et al., 2020 [22] Random forest classifier ECG HRV 64% (3-level)
Arefnezhad et al., 2022 [59] CNN ECG Scalogram of ECG 79% (3-level)
Hultman et al., 2021 [53] CNN-LSTM ECG and EOG Pre-processed ECGand o 5 10
EOG signals
Deep spatiotemporal
convolutional . o
Jeon et al., 2019 [54] bidirectional LSTM EEG Pre-processed EEG signal 69% (5-level)
network (DSTCLN)

. e HRYV, HRV-PSD, and 91% (3-level)
This paper CNN-LSTM ECG and respiration respiration rate 67% (5-level)

EEG: electroencephalogram, EOG: electrooculogram, PPG: photoplethysmography, ECG: electrocardiogram,
EEG-PSD: power spectral density of EEG, HRV: heart rate variability, PERCLOS: percentage of eyelid closure over
the pupil over time, HRV-PSD: power spectral density of HRV, CNN: convolutional neural networks, LSTM: long
short-term memory.

There are several drowsiness evaluation methods in the literature, such as the ORD,
KSS, blink duration, and reaction time tests. Although the KSS method is well-respected
and used in many studies, it has major drawbacks. The KSS method is self-explanatory and
these self-introspections interfere with the natural progress of driver drowsiness. The KSS
method is also affected by the driver’s subjective interpretation of the level of drowsiness,
as the subject’s self-evaluation does not always reflect the accurate level of drowsiness.
Furthermore, KSS scoring is performed every 5 min, while the time constant of drowsiness
dynamics decreases at higher levels of drowsiness requiring shorter labeling epochs. Blink
duration measurement devices are not accurate at the early stages of drowsiness since the
blink duration would not change in the early stages. These methods perform well only at
higher levels of drowsiness where changes in blink duration are significant. Reaction time
tests are difficult to administer during driving as it requires repetitions, causing distraction
and discomfort to the driver. The ORD method used in this paper has certain advantages,
such as non-intrusiveness, short time intervals of scoring, and strict multi-aspect scoring
rules. However, a small percentage of subjects may not exhibit different facial expressions
in adjacent levels of drowsiness when the rate of drowsiness progress is rapid. This fact
could be one of the reasons for the lower accuracy of the five-level classification compared
with that of the three-level classification.

Driver drowsiness detection must be robust and accurate. Partial signal loss and environ-
mental disturbances may vastly affect the performance of a system that works solely based on
physiological signal analysis. One of the best solutions to compensate for these shortcomings
is to simultaneously use sensors from other sources. Previous studies have shown that
vehicle-based and facial measurements are rather accurate in multi-level drowsiness classi-
fications [44,61,62], but they can be affected by the road geometry and lighting conditions.
Fusing physiological features with vehicle dynamics and the drivers’ facial features improve
the classification accuracy and compensate for the temporary loss of signals.

There are many possible combinations of layer types, hyperparameters, activation
functions, and optimization functions in a DNN model. Not all possible solutions have
been investigated in this paper. For some parameters such as activation functions and
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optimization methods, selections were made based on common choices in the literature. To
determine the number of architecture layers, we first started with one pair of CNN layers
and then increased it by adding other pairs to raise the complexity of the network until
the accuracy was saturated. We opted for a similar procedure for the single LSTM and
FC layers. As for the model hyperparameters, three identical CNN blocks for each input
were considered and only a selected number of hyperparameters were investigated for all
parts of the model. For example, the number of filters and the kernel size were chosen by
applying a grid search. The rest of the parameters were determined by the authors based
on trial and error and existing literature [44,53-57].

Individual differences between subjects can affect the performance of drowsiness
detection methods. Although there are general trends in physiological processes during
drowsiness, these changes can be more or less sensitive for some subjects. Using a user-
specific method for detecting a driver’s drowsiness can vastly improve the performance of
these methods in real-world driving. Deep-learning methods similar to the one used in this
paper can enhance classification accuracy by taking data from a specific driver to retrain
the model with a new batch of data.

Several research works can be investigated to extend and enhance the methodology
used in this work. In this work, an identical CNN block was used for all inputs. The effects
of non-identical networks for each separate input can be further studied in future works.
Other types of DNNs such as the gated recurrent networks (GRUs) can be incorporated to
make the model less computationally expensive for real-driving conditions. The respiration
extraction in this work was based on temporal changes in the facial patterns. One can
train a DNN for faster and more precise detection of the respiration region. The method
presented in this paper for normal subjects could also be extended for detecting drowsiness
in drivers with sleep disorders, respiratory, or heart conditions.

5. Conclusions

The main objective of this work was to develop a method to classify multiple levels
of drowsiness using respiration and ECG signals. DNN-based models with different
combinations of cardiorespiratory features were used. The results from the CNN-LSTM
model showed 91 and 67% accuracy in the three- and five-level classifications, respectively.
It was shown that the accuracy of the drowsiness level estimations was higher than most
other physiological signal-based methods available in the literature. Moreover, the potential
availability of non-intrusive built-in sensors in the vehicle for both respiration and ECG
signals suggests that the developed algorithms can be employed for non-intrusive and
precise multi-level drowsiness classification with little interference to the driver.
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Appendix A
Descriptions of five levels of drowsiness in ORD method:

1.  Not Drowsy: A driver who is not drowsy while driving will exhibit behaviors such
that the appearance of alertness will be present. For example, normal facial tone,
normal fast eye blinks, and short ordinary glances may be observed. Occasional body
movements and gestures may occur [47].

2. Slightly Drowsy: A driver who is slightly drowsy while driving may not look as
sharp or alert as a driver who is not drowsy. Glances may be a little longer and eye
blinks may not be as fast. Nevertheless, the driver is still sufficiently alert to be able to
drive [47].

3. Moderately Drowsy: As a driver becomes moderately drowsy, various behaviors
may be exhibited. These behaviors, called mannerisms, may include rubbing the face
or eyes, scratching, facial contortions, and moving restlessly in the seat, among others.
These actions can be thought of as countermeasures to drowsiness. They occur during
the intermediate stages of drowsiness. Not all individuals exhibit mannerisms during
intermediate stages. Some individuals appear more subdued, they may have slower
closures, their facial tone may decrease, they may have a glassy-eyed appearance, and
they may stare at a fixed position [47].

4. Very Drowsy: As a driver becomes very drowsy, eyelid closures of 2 to 3 s or longer
usually occur. This is often accompanied by a rolling upward or sideways movement
of the eyes themselves. The individual may also appear not to be focusing the
eyes properly or may exhibit a cross-eyed (lack of proper vergence) look. Facial
tone will probably have decreased. Very drowsy drivers may also exhibit a lack of
apparent activity, and there may be large isolated (or punctuating) movements, such
as providing a large correction to steering or reorienting the head from a leaning or
tilted position [47].

5. Extremely Drowsy: Drivers who are extremely drowsy are falling asleep and usually
exhibit prolonged eyelid closures (4 s or more) and similar prolonged periods of lack
of activity. There may be large punctuated movements as they transition in and out of
intervals of dozing [47].

Table A1. ORD Behavior and Mannerism Checklist [47].

2 @
g s g g
g b= @ @
Z S 2 g
= =
Rubbing/scratching
Blank/fixed stare
w Squinting
3
e Excessive/hard blinking
S
S Slow closure
=
a Unfocused rolling
= Glassy/glazed
Raise/open wide
Lower /scowl
Slumping/slouching /leaning
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Body position change (restlessness)
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Table Al. Cont.

. i )
Z = § =
= Yawning
3 Biting /licking lips
= Tongue motion
Rubbing /holding
E Facial contortions
Slack muscle tone
Hair: scratching/straightening
E Rubbing/holding
% Head learning (back or side, unsupported)
;‘ Head position change
Head nodding/drooping
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