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Abstract: In this manuscript, we present an analysis of COVID-19 infection incidence in the Indian
state of Tamil Nadu. We used seroprevalence survey data along with COVID-19 fatality reports from
a six-month period (1 June 2020 to 30 November 2020) to estimate age- and sex-specific COVID-19
infection fatality rates (IFR) for Tamil Nadu. We used these IFRs to estimate new infections occurring
daily using the daily COVID-19 fatality reports published by the Government of Tamil Nadu. We
found that these infection incidence estimates for the second COVID wave in Tamil Nadu were
broadly consistent with the infection estimates from seroprevalence surveys. Further, we propose a
composite statistical model that pairs a k-nearest neighbours model with a power-law characterisation
for “out-of-range” extrapolation to estimate the COVID-19 infection incidence based on observed
cases and test positivity ratio. We found that this model matched closely with the IFR-based infection
incidence estimates for the first two COVID-19 waves for both Tamil Nadu as well as the neighbouring
state of Karnataka. Finally, we used this statistical model to estimate the infection incidence during
the recent “Omicron wave” in Tamil Nadu and Karnataka.

Keywords: COVID-19 infection incidence; machine learning; statistical modeling of COVID-19

1. Introduction

India, like the rest of the world, has suffered severe consequences from the COVID-19
pandemic from a public health as well as economic perspective. As with many infectious
diseases, the level of infection is commonly underestimated since a significant number of
individuals infected remain undetected, either because they are asymptomatic or have very
mild symptoms, and hence do not get tested and reported [1]. There may also be disad-
vantaged or neglected groups of the population who are less likely to receive healthcare
or testing. Case underdetection may be aggravated during an epidemic because testing
capacity may be limited and restricted to those with severe illnesses and priority risk
groups that include front-line healthcare workers, elderly people and individuals with
comorbidities [2].

Without a reliable assessment of infection incidence, it is difficult to forecast the true
impact of COVID-19 in any particular vulnerable population, which may hinder policy
development and have major ramifications for decision-making in the future. Access to
credible estimates of the true number of infections is critical for risk assessments and
developing effective solutions. Due to the unavailability of timely access to representative
samples, reliable approaches for estimating the number of infections during an epidemic
are required, particularly for transferring internationally developing knowledge to local
contexts where such data are lacking [3]. As a result, quantifying the infection incidence is
crucial for every region in order to analyse COVID-19 health inequalities in the community
and influence public health, health system, and community-based interventions. This study
attempts to estimate infection incidences for the Indian state of Tamil Nadu across waves
of COVID-19.
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There have been many attempts to infer this true infection incidence of COVID-19 from
deaths, confirmed cases, tests, and sero-surveys. Previous studies have used observable
data sources such as cases, fatalities, tests, and sero-surveys to create a basic Bayesian frame-
work for estimating infection incidence [4,5]. Moreover, susceptible-exposed-infectious-
recovered (SEIR)-based model has been used as well to estimate the infection incidence [6].
Similarly, infection incidences is also widely estimated using the infection fatality ratio
(IFR) based on current seroprevalence data to infer the number of true infections and
age-wise fatalities. IFR refers to the ratio of COVID-19 fatalities relative to the number of
true COVID-19 infections within a population. While the case fatality ratio (CFR) is a more
generally used metric and is well understood by specialists, IFR provides key information
for policymakers, especially given the huge fluctuation in CFR estimates. However, since
the number of true infections is not directly observable, IFR must also be inferred indirectly
through statistical methods. Further, the importance of age-specific IFRs has been empha-
sised in determining public policy in a systematic survey of 27 studies conducted across
the globe [7]. In the Indian context, publicly accessible data on reported number of cases
and national seroprevalence surveys have been utilised to estimate an under-reporting
factor of 11.11 and 26.77 for Wave-I and Wave-II infections, respectively [8]. However, the
above study did not include age-split or sex-wise distribution based on the seroprevalence
rate and fatalities to estimate true infections. To address this, age-specific IFR using data
from seroprevalence surveys in Mumbai and Karnataka as well as a random sample of
economically disadvantaged migrants in Bihar were estimated [9]. In general, detailed
age/sex-specific fatality data are not accessible in India. However, Tamil Nadu is one of the
few states with daily media COVID-19 bulletins available in conjunction with age-specific
sero-surveys, allowing us to estimate IFR-based infection incidences.

Therefore, through our study, using seroprevalence data, age/sex wise fatality data,
and cases, we estimate the infection fatality ratio and infection incidences for the state of
Tamil Nadu for Wave-I and Wave-II.

Although a seroprevalence survey assists in calculating IFR for earlier waves of the
virus, the same methodology is not feasible for subsequent waves, on account of vacci-
nations leading to a change in the relationship between infections and fatalities. After
large-scale vaccinations and the changing severity of variants, the correlation between
infection and fatalities is significantly weakened. The Union Health Ministry of India
reported that one vaccination dose alone is 96.6% effective in avoiding COVID-19 fatalities,
while two doses are 97.5% effective, after analysing fatality data for Wave-II [10]. Since fa-
tality data are the foundation of IFR computation, newer techniques for infection incidence
calculation must be explored. Chiu and Ndeffo-Mbah [11] hypothesised that passive case
detection resulted in preferential diagnostic testing for those at greater risk of infection,
and that this could be represented as a convex function of the overall testing rate. They
illustrated that as the incidence of test positive rate (TPR) rose in the community, so did the
prevalence of undiagnosed infections. Thus, we developed a statistical model to estimate
infection incidences for Wave-II and Wave-III (Omicron wave) in Tamil Nadu based on
observed data (cases, test positivity ratio (TPR)) excluding fatalities.

2. Materials and Methods

Estimating infection fatality rates necessitates a reliable assessment of the number of
infections and fatalities caused by COVID-19 in the community. As a result, the age- and
sex-wise split of fatality data in this study were obtained by utilising the Health and Family
Welfare Department of the Government of Tamil Nadu’s (TN) daily media bulletins [12]. The
media bulletins are delivered in PDF format (with death cases including age, sex, and date),
and the text information was extracted using the Python programming language’s pdfminer
package. For each “Death Case” in the media bulletin, we collected the case number, date of
death, and age of the deceased using relevant keyword searches. The data for this study were
extracted for the period of 16 May 2020 to 30 June 2021. Out of the 410 days in this time frame,
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we were able to process 407 daily bulletins; the rest were either unavailable on the website or
were formatted such that our software was unable to process them.

From the 19th of October to the 30th of November 2020, the Tamil Nadu state gov-
ernment conducted population-level seroprevalence surveys in all districts of the state
(excluding Chennai). Selvavinayagam et al. [13] presented estimates of seroprevalence for
Tamil Nadu by district, demographic category, and urban status. We used the seropreva-
lence survey disaggregated by sex and age in this study. The Tamil Nadu seroprevalence
rates were separated by age (10-year age bins) and sex.

Finally, to develop our statistical model, we utilised data from the crowdsourcing
website covid19india.org for COVID-19 reported cases and test positivity ratio (TPR) in
Tamil Nadu (TN) and Karnataka (KA).

2.1. IFR Calculation

First, we computed the age- and sex-based fatalities over Wave-I (1 June 2020 to
30th November 2020) using the daily bulletins published by the Government of Tamil
Nadu. The cumulative deaths for the respective age (10-year age bins as in the sero-
survey) and sex during the previous 6 months (1st June 2020 to 30th November 2020) were
considered. Shioda et al. [14] showed that within 6 months after seroconversion, more
than 85% of infected people were projected to be seronegative due to declining antibodies.
Immunoglobulins targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
have been observed to wane below the detectable level of serologic tests, hence the time
period is believed to be just 6 months. In addition, infection incidence was calculated based
on Census of India 2011 [15] age-wise (%) population distribution estimates according to
the age-wise split in the sero-survey. For example, individuals aged 18–29, constituted
20% of TN’s population, with a seroprevalence of 30.4% after Wave-I. As a result, the
total infection incidence in this age group was 30.4% of 20% of the entire population of
Tamil Nadu. The infection incidences based on seroprevalence rate were divided by the
cumulative fatality figures divided in identical 10-year bins. For all x ∈ D where D is the
set of all age- and sex-disaggregated demographic groups,

IFR(x) = ∑t∈Wave1 f (x, t)
Isero(x)

(1)

where IFR(x) is the estimated infection fatality ratio for demographic group x, f (x, t) is
the number of fatalities from demographic group x on date t, and Isero(x) is the number of
infections estimated by the sero-survey for demographic group x for Wave-I. The variable t
was iterated over all dates in Wave-I. This resulted in age-based and sex-specific IFR for
each age group, as seen in Table 1.

Furthermore, in order to get IFR-based daily estimates of infection incidence, daily
fatalities (15-day lag) split in the above age categories were divided by the aforementioned
IFR rates as follows.

Iest(t) = ∑
x∈D

f (x, t)
IFR(x)

(2)

where D is the set of all demographic groups, Iest(t) is the number of estimated infections
on date t, and f (x, t) and IFR(x) retain the same definitions as Equation (1). It is important
to note that we estimated the number of new infections occurring every day, not the number
of active cases. In this regard, we assumed a fixed lag of 15 days between onset of infection
and fatality. This is implausible and untested but should not introduce significant biases in
the larger statistics. We demonstrate evidence of the plausibility of these estimates in the
“Results” section.
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Table 1. Age- and Sex-wise IFR estimates for Tamil Nadu.

Age Sex IFR (95% CI)

18–29 M 0.003% (0.003–0.003%)
F 0.002% (0.002–0.002%)

30–39 M 0.013% (0.013–0.013%)
F 0.006% (0.006–0.006%)

40–49 M 0.040% (0.039–0.040%)
F 0.017% (0.017–0.017%)

50–59 M 0.150% (0.149–0.151%)
F 0.056% (0.055–0.056%)

60–69 M 0.363% (0.362–0.365%)
F 0.133% (0.133–0.134%)

70+ M 0.825% (0.824–0.826%)
F 0.258% (0.257–0.26%)

2.2. Statistical Model for Infection Incidence

With the advent of widespread COVID-19 vaccination among the population, the
relationship between daily fatalities and the underlying infection incidence has become
weaker and thus more complex to estimate. Further, with improvements in COVID-19
treatment protocols over time, it is no longer defensible to try to estimate infection incidence
by applying the IFRs determined in the first wave on recent fatality data. However, the
estimation of infection incidence still plays a crucial part in making public policy decisions
such as school closures and openings, mask mandates, and other public interventions meant
to control the spread of COVID-19. Thus, it is important to find alternative techniques to
estimate infection incidence without relying on the assumption of a strong relationship
between COVID-19 fatalities and infections. In this section, we propose an empirical
model using daily reported cases and the TPR to provide crude estimates of daily infection
incidence in the population.

The relationship between daily reported cases and corresponding new infections
occurring on that date can be represented by the equation:

I(t) = µ(t) · c(t) (3)

where I(t) corresponds to the new infections occurring on a given day, c(t) is the number
of COVID-19 cases detected on that day, and µ(t) is the ratio between the two. In practice,
there is a variable lag between acquiring infection and testing positive for COVID-19; but
we ignored this lag for the purpose of this analysis. We emphasise here that there was
reason to expect that the ratio between infections and detected cases was highly variable
over the course of the pandemic. We expected that a higher fraction of infections would be
detected while the pandemic was under control, whereas we expected a higher fraction of
undetected cases during periods of peak surge when the medical and public health systems
were under significant strain. One indicator of the instantaneous ratio between infections
and cases is the daily test positivity ratio (TPR), which is the ratio of tests conducted on
any given day that are reported positive. A high value of TPR (which occurred during
COVID-19 peak surges) suggests that only a small fraction of infections is being detected at
that point in time, whereas a low value of TPR is indicative of a more effective surveillance
of infections. The prevalence of undetected infections in the population rises as the test
positivity rate rises in the population [11].

We used a k-nearest neighbours regression model [16] to estimate µ(t) using TPR
and daily reported cases as the predictor inputs. We used one-third of the available data—
selected randomly—as the training set. The training set consisted of data from 133 days
with daily TPR and daily reported cases as inputs and µ(t) as the predicted value. We
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used Euclidean distances to compute the 2 nearest neighbours from the training set for
each observation and assigned the average of their µ values as the estimated µ for the
observation. The averaging assigned uniform weights for each neighbour regardless of the
distance to the observation being considered.

One characteristic of the k-nearest neighbours model is that it is not valid for cases
where the predictor variables lie outside the range of predictors seen in the training set. To
address this issue, we paired the k-nearest neighbours model with a power-law characteri-
sation of the relationship between TPR, reported daily cases, and µ(t) for those data paints
which lie outside the range seen in the training set. We found through observation of TN
incidence and case data that the ratio µ(t) could be characterised empirically as follows:

µ(t) = 15.61+TPR(t) (4)

where TPR(t) is the daily test positivity ratio for the given day. It has a maximum value
of 1 (when all tests conducted for the day are reported positive) and a minimum value
of 0 (when all tests are reported negative). Thus, we propose a way of crudely estimating
infection incidence using easily observable and publicly reported variables. To substantiate our
statistical model, we used the infection fatality ratio (IFR) by age and sex for the neighbouring
state of Karnataka determined by Cai et al. [9,17], in addition to those we derived for Tamil
Nadu. A similar process to obtain daily infection incidences followed for TN was employed
for Karnataka. The results from these analyses are described in the next section.

3. Results

In the previous section, we described the procedure used to derive age- and sex-
wise IFR for the state of Tamil Nadu. These estimates are presented in Table 1. Overall
IFR for the state of Tamil Nadu was 0.078% for Wave-I, which was comparable to the
estimate by Levin et al. (2022) for Karnataka (0.08%) but lower than their estimate for
Chennai [18]. We must note here that undetected COVID-19 fatalities would mean that
our estimates of IFR were likely to be underestimated; however, the effect of this would
cancel out in Equation (2) as both the numerator and denominator would be similarly
underestimated. Thus, our estimates of infection incidence were relatively insensitive to
potential undercounting of COVID-19 fatalities, even if the IFR values reported in Table 1
were sensitive to undercounting errors.

We previously described the methods used to derive daily estimates of new COVID-19
infections for Tamil Nadu. First, we demonstrated that our estimates for daily infections
followed a similar temporal pattern to that of the reported cases. Figure 1 depicts the time
series of reported cases and infection occurrences—revealing broadly similar trends in both
variables, with cases accounting for approximately 1 in 15 infections. Further, we observe
that using IFR estimates derived solely from Wave-I, estimates for Wave-II also follow a
similar trajectory to that of the reported cases.

Additionally, seroprevalence estimates for Tamil Nadu post-Wave-II (1st March 2021 to
30th June 2021) were calculated from 28 June to 7 July 2021 with an overall seroprevalence
rate of 67.10% [13]. In Table 2, we compare the infection incidence estimates for Wave-II
derived using the IFR calculations with the corresponding estimates from the sero-survey
for each age category. The differences are highest (51%) for the 30–39 age group and the
lowest for the 50–59 age group (7%). Overall, the IFR-based estimates are higher than the
sero-survey estimates by ≈14%. These differences could arise due to several factors. Most
significantly, any significant undercounting of fatalities in the official estimates would lead
to artificially low estimates of the IFR and consequently an overestimation of the number
of infections for a given number of fatalities.
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Figure 1. Time-series graph of reported cases and IFR-based infection occurrence estimates for Tamil
Nadu from 21-May-2020 to 30-June-2021.

Table 2. IFR-based cumulative infection incidences in Wave-II.

Age Estimate from Sero-
prevalence Survey

Estimate from IFR
Calculations

Relative Difference (95% CI)

18–29 9,748,800 8,910,474 8.60% (8.58–8.62%)

30–39 7,718,400 11,655,338 51.01% (50.97–51.04%)

40–49 6,507,252 8,723,826 34.06% (34.03–34.1%)

50–59 4,521,874 4,827,480 6.76% (6.73–6.78%)

60–69 2,995,200 2,602,739 13.10% (13.07–13.14%)

70+ 1,716,480 1,271,021 25.95% (25.89–26.02%)

Figure 2 plots the time series of IFR-based infection incidence estimates from Tamil
Nadu and Karnataka for both the first and second waves along with the corresponding
estimates from the TPR-based statistical model. We find that the statistical model matches
the IFR-based estimates to a high degree. In Tamil Nadu, the peak number of reported
infections are estimated to be approximately 210,000 (930,000) in Wave-I (Wave-II) which
corresponds to an overestimation (underestimation) of 15% (4%) relative to the IFR based
estimates. Similarly, the highest number of estimated infections in Karnataka are ≈260,000
(1.7 million) for Wave-I (Wave-II) compared to ≈217,000 (1.5 million) from IFR-based
estimates; an overestimation of 20% (11.7%). We note that while the match between the
statistical model and IFR-based estimates is variable and inexact, the total number of
infections estimated by the statistical model lies within ≈3% of those from the IFR-based
estimates for both Tamil Nadu and Karnataka.
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Figure 2. Comparison between the statistical model and IFR-based infection occurrence estimates for
Tamil Nadu and Karnataka from 24-June-2020 to 30-June-2021.

Figure 3 shows the estimated infections in Tamil Nadu and Karnataka for the “Omicron
Wave” in India, based on our statistical model for 5-January-2022 to 15-February-2022. The
cumulative estimated infections for Tamil Nadu are ≈15.4 million cases for this period with
the peak number of estimated daily cases at ≈790,000. Our model suggests that reported
cases account for only 1 in 23 infections in this wave, broadly similar to the first two waves.
On the other hand, our model suggests that Karnataka had over 23 million infections
during the corresponding period, approximately 25 times the number of reported cases.
These estimates were not validated due to the lack of available validation data sources and
hence must be used with caution. However, they are consistent with the global experience
of rapid spread of COVID-19 due to the Omicron variant.

Figure 3. Statistical-model-based infection occurrence estimates for Tamil Nadu and Karnataka for
Wave-III from 5th-January-2022 to 15th-February-2022.

4. Discussion

This manuscript contains a detailed analysis of COVID-19 infection incidence in the
Indian state of Tamil Nadu. We used seroprevalence survey data along with cumulative
COVID-19 fatality reports from the first COVID-19 wave in Tamil Nadu—1 June 2020 to
30 November 2020—to estimate age- and sex-specific COVID-19 infection fatality rates for
Tamil Nadu. This methodology has been used extensively globally and our IFR estimates
are broadly consistent with those estimated in other parts of the world. Next, we used the
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daily COVID-19 fatality rates in conjunction with the estimated IFRs to estimate the rate
of new daily infections in Tamil Nadu for the first and second COVID waves. We found
that these estimates for Wave-II were broadly consistent with the infection estimates from
seroprevalence surveys; we emphasise here that Wave-II seroprevalence data were not used
for our IFR estimates and hence could be considered an independent validation source.
However, we did not use fatality data to estimate infections post-June 2021 since widespread
COVID-19 vaccination in the population had resulted in greatly weakening the link between
COVID-19 infection and fatalities. To address this constraint, we proposed a composite
statistical model to estimate COVID-19 infection incidence based on observed cases and test
positivity ratio using a k-nearest neighbours model to estimate daily infections when the
observations fell within the range of those found in the training dataset. For observations
that fell outside the range of the training dataset, we utilised a power-law characterisation
to estimate the infection incidence. We found that that model matched closely with the
IFR-based infection incidence estimates for both Wave-I and Wave-II for both Tamil Nadu
as well as the neighbouring state of Karnataka. Finally, we used this statistical model to
estimate infection incidence during Wave-III of the pandemic—the “Omicron wave”—in
Tamil Nadu and Karnataka.

The composite model proposed in this manuscript has several advantages. k-nearest
neighbour regression offers a computationally efficient means of transforming higher
dimension data into a one-dimension space and is agnostic to the dimensionality of the
predictor dataset [17]. It does not require explicit parametrisation of the relationship
between the predictor and predicted variables as long as the predictor variables lie with
the ranges observed in the training dataset. To account for “out-of-sample” data points, i.e.,
data points that lie outside the ranges observed in the training dataset, we used a power-law
relationship to characterise the infection incidence. We found that this extrapolation model
reasonably characterised the infection incidence in the second COVID-19 wave, where the
peak values substantially exceeded all previously observed values. Thus, we found that
the proposed model provided a robust and computationally efficient means to estimate the
infection incidence at all stages of the pandemic, which was the main objective of the study.

A few limitations of our analysis must be noted here. First, our analysis assumed
that the seroprevalence surveys that we used provided accurate estimates of the infection
incidence among the population and that they did not contain biases between different age
groups and sexes. Second, we did not account for differing severities of different variants
of COVID-19 in our analysis. The impact of this variability was seen statistically in our
IFR-based estimates of infection incidence in the second COVID-19 wave (“Delta” wave)
where our estimates of infection incidence significantly exceeded those derived from the
sero-survey for the 30–39 and 40–49 age groups. This error could be attributed in large
part to higher mortality rates during the Delta wave compared to the previous wave [19]
(the difference in mortality was more significant in middle-aged patients compared to
the elderly); thus, a given number of fatalities would be caused by significantly fewer
infections during the Delta wave compared to the earlier COVID-19 wave. Since our study
calculated IFRs from the data from the first wave, we significantly underestimated the
number of fatalities per infection caused by the Delta variant and conversely overestimated
the infections corresponding to the fatalities observed during the second COVID-19 wave.

Additionally, our analysis did not address the heterogeneity in infection incidence
between different districts, which could be quite significant. Finally, the accuracy and
validity of our statistical model was validated only indirectly using IFR-based infection
incidence estimates. Further data and validation are required to adequately validate the
robustness of this model. For example, future results from sero-surveys that estimate the
number of infections that have occurred in the third COVID-19 wave in India will allow us
to better validate the accuracy of our statistical model. Additionally, data on vaccinations
and on fatality rates among the vaccinated population will allow us to develop a more
sophisticated understanding of COVID-19 infection incidence. This further work will be
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especially valuable as we enter a stage where COVID-19 remains endemic along with
vaccinations becoming near-ubiquitous among the population.

Despite these limitations, our analysis provided approximate estimates of COVID-19
infection incidence in Tamil Nadu based on rather limited publicly available data. The
authors hope that this study will provide some insight to academics and policymakers
interested in studying the extent of COVID-19 spread in Tamil Nadu at different snapshots
in time.

5. Conclusions

This manuscript described the analysis and modelling of COVID-19 infection incidence
in the southern Indian state of Tamil Nadu. Age- and sex-disaggregated fatality data were
extracted from government reports and used in conjunction with COVID-19 seroprevalence
reports to derive infection fatality rates for different age groups disaggregated by sex. These
IFR estimates were then further used to estimate new daily infections in Tamil Nadu for the
first and second COVID waves in India. Finally, a composite statistical model combining
a k-nearest neighbour regression along with a power-law curve fitting of “out-of-sample”
inputs was proposed. This statistical model utilised the test positivity ratio along with
daily confirmed cases to estimate the daily infection incidence. We found that the statistical
model estimated the total number of infections to within 3% difference compared to the
estimates from the IFR-based model.

To summarise, this manuscript proposed a statistical method that generated plausible
estimates of infection incidence in Tamil Nadu and also demonstrated that these estimates
were consistent with age- and sex-disaggregated IFR values that were in line with those
previously reported in the literature.
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