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Abstract: Ambient air pollutants reportedly increase inflammatory responses associated with multiple
chronic diseases. We investigated the effects of long-term exposure to ambient air pollution on high-
sensitivity C-reactive protein (hs-CRP) using data from 60,581 participants enrolled in the Korean
Genome and Epidemiology Study-Health Examinees Study between 2012 and 2017. Community
Multiscale Air Quality System with surface data assimilation was used to estimate the participants’
exposure to criteria air pollutants based on geocoded residential addresses. Long-term exposure was
defined as the 2-year moving average concentrations of PM10, PM2.5, SO2, NO2, and O3. Multivariable
linear and logistic regression models were utilized to estimate the percent changes in hs-CRP and
odds ratios of systemic low-grade inflammation (hs-CRP > 3 mg/L) per interquartile range increment
in air pollutants. We identified positive associations between hs-CRP and PM10 (% changes: 3.75
[95% CI 2.68, 4.82]), PM2.5 (3.68, [2.57, 4.81]), SO2 (1.79, [1.10, 2.48]), and NO2 (3.31, [2.12, 4.52]), while
negative association was demonstrated for O3 (−3.81, [−4.96, −2.65]). Elevated risks of low-grade
inflammation were associated with PM10 (odds ratio: 1.07 [95% CI 1.01, 1.13]), PM2.5 (1.08 [1.02, 1.14]),
and SO2 (1.05 [1.01, 1.08]). The odds ratios reported indicated that the exposures might be risk factors
for inflammatory conditions; however, they did not reflect strong associations. Our findings suggest
that exposure to air pollutants may play a role in the inflammation process.

Keywords: ambient air pollution; particulate matter; gaseous pollutant; long-term exposure;
high-sensitivity C-reactive protein; systemic low-grade inflammation; cross-sectional study

1. Introduction

Air pollution is a complex mixture of particulate and gaseous materials that vary
depending on their source and physicochemical composition [1,2]. Ambient air pollution
has become a major public health burden worldwide, contributing to increased morbidity
and premature death, and loss of disability-adjusted life-years [3,4]. Air pollutants have
detrimental effects on human health, resulting in multiple chronic diseases including
respiratory, cardiovascular, ischemic stroke, and other neuro-metabolic dysfunctions [5–8].
The underlying mechanisms inducing adverse health outcomes by inhaled air pollutants
have not been clearly elucidated, but it is hypothesized that pollutants may activate cellular
signaling networks, leading to systemic inflammatory responses [9,10].

Inflammasomes activated by air pollutants induce increased secretion of pro-inflammatory
cytokines (e.g., interleukin-6 and tumor necrosis factor α [TNF-α]), and further mediate
the hepatic production of acute-phase proteins, including C-reactive protein (CRP) and
fibrinogen [11,12]. Among the acute-phase reactants, CRP is a robust marker of low-
grade inflammation and is one of the most intensively studied biomarkers associated with
cardiovascular health [13,14]. The assessment of high-sensitivity CRP (hs-CRP) is more
precise than the conventional measurements, and improved sensitivity makes hs-CRP
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suitable for detecting low-grade inflammation and the risk of cardiometabolic disorders in
the general population [15,16].

Many studies have reported the short-term exposure effects of air pollutants on
CRP [17,18]. Increased systemic levels of CRP have been reported after a delay of two days
following pollutant exposure because the liver requires time to process acute-phase pro-
teins [19,20]. A recent meta-analysis comprising 40 observational studies with 244,681 par-
ticipants reported on the association of particulate matters (PMs; particulate matter with
aerodynamic diameter < 10 µm [PM10] and <2.5 µm [PM2.5]) and circulating CRP level. In
this study, long-term exposure to particulate air pollution was reported to have a stronger
effect as compared to short-term exposure on CRP levels. This indicates substantial cu-
mulative effects of tissue damage and inflammation over longer durations [17]. Moreover,
a meta-analysis that included 27 studies on the associations between gaseous pollutants
(sulfur dioxide [SO2], nitrogen dioxide [NO2], and ozone [O3]) and CRP levels have yielded
inconclusive results and reported that there was a limited number of studies, especially
with regards to long-term exposure [18].

In the context of inflammatory markers, PMs have been frequently investigated [14],
while prior studies on gaseous materials are limited, and further studies are required [18].
Aggregated long-term concentrations of gaseous pollutants based on daily concentrations
of NO2, SO2, and O3 have been suggested as suitable indicators of air pollution, as they
often share the same sources, and their levels tend to be highly correlated over time [21].
Various sources of air pollutant measures have become accessible, and the air quality
prediction model enabled spatially detailed exposure in domestic areas, including places
where the monitoring sites are sparse [22,23]. Moreover, a previous study in a single capital
city in Korea assessed the inflammatory effect of a series of air pollutants and suggested that
further studies are required to generalize the results obtained to other domestic regions [24].

Accordingly, the current study aimed to fill these gaps by examining the associations
between long-term exposure to air pollutants, including PM10, PM2.5, SO2, NO2, and O3,
with the circulating concentrations of hs-CRP in participants from domestic regions.

2. Materials and Methods
2.1. Study Population

This cross-sectional study was based on the data from the first phase of the follow-up
examination (2012–2017) of the Health Examinee (HEXA), a nationwide population-based
cohort among the Korean Genome and Epidemiology Study (KoGES).

The study design has been described in detail previously [25]. Briefly, the inclusion
criteria were: participants enrolled in KoGES-HEXA; aged over 40 years at baseline; and
who visited the health examination centers and hospitals located in metropolitan areas
and major cities. Participants underwent a series of anthropometric measurements and
clinical examinations. A self-administered questionnaire including socio-demographic
information, lifestyle factors, and medical history of diseases was also obtained.

Written informed consent was obtained from all participants prior to the examinations,
and the study protocol was approved by the Institutional Review Boards of the National
Institute of Health, Korea (2019-05-04-2C-A; 2022-04-04-P-A).

2.2. Participant Selection

In the first phase of follow-up between 2012 and 2017, 65,616 participants residing in
16 administrative divisions of South Korea (seven metropolitan cities and nine provinces)
were enrolled. Those with incomplete information on residential address, or participants
residing in Jeju, the province that differs from other administrative divisions environmen-
tally [26], and participants without linkage with air pollutants data were excluded from the
study (2601 observations). We also excluded participants with missing values of hs-CRP
and levels higher than 10 mg/L indicating potential acute infections [13] (768 observations).
We further excluded participants with missing values in any of the covariates including
blood lipid profiles and fasting glucose, blood pressure, body mass index, health-related
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behaviors, socio-demographic factors, and self-reported physician-diagnosed diseases
(1666 observations). The final sample of the study comprised 60,581 participants (Figure 1).
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2.3. Ambient Air Pollution and Meteorological Factors

• Geographic estimation of air pollution and meteorological factors

To estimate the ambient air pollutants and meteorological parameters, first, the con-
centrations of criteria air pollutants (PM10, PM2.5, SO2, NO2, and O3) were calculated in a
spatial resolution of 9 km using the Community Multiscale Air Quality (CMAQ) model
based on the meteorological and emission models. The meteorological values were gener-
ated using the Weather Research and Forecasting model (WRF) and used as the input for
the emission and chemical transport models and as final meteorological variables for the
analysis. The detailed configurations for the meteorological, emission and CMAQ models
in this study are presented in Table S1. Second, surface data assimilation, a method of com-
bining the estimated values with the observed values was applied by assigning a weight to
each observation within the radius of influence. The ambient air quality monitoring stations
in China and Korea were used in the model. Pun’s interpolation was used for assimilation
to produce realistic gradients with sparse air quality data. Third, the spatial resolution of
PM10 and PM2.5 were improved from 9 km to 1 km grid unit by using the aerosol optical
depth (AOD) observations from the National Aeronautics and Space Administration Terra
and Aqua satellites. Fourth, PM10, PM2.5, and O3 were adjusted for normalized difference
vegetation index and meteorological data using the multiple linear regression method.
Additionally, to improve the probable overestimation of PM2.5 concentrations during the
periods when the air quality monitoring data for PM2.5 were unavailable (before 2015),
the ratio of PM2.5 to PM10 for dust storm days and several districts of Seoul with PM2.5
monitoring data were further extrapolated to all of the regions.

The final daily average levels of meteorological data (e.g., temperature [◦C] and
humidity [%]) and gaseous pollutants (SO2, NO2, and O3) were presented in every 9 km-
grid; and PMs are provided as 1 km-grid unit. All the air pollution and meteorological data
were generated as a geocode. The modeling grid points where the air quality monitoring
stations are located were extracted; and the performances of modeled concentrations of
criteria air pollutants were tested against the measured data from the monitoring stations
in Korea. The results of the model performance evaluation for 2010–2017 are provided in
Table S2. The average R2 for PM10, PM2.5, SO2, NO2, and O3 were 0.76, 0.66, 0.42, 0.74, and
0.66, respectively. A more detailed methodology and descriptions for the models have been
described in the previous studies [22,27].
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• Geocoding of the study participants

Participants’ residential addresses were converted into latitude and longitude using
a geocoding software, GeoService-Xr (GeoService, Seoul, Korea). If the address for the
first phase of follow-up was missing, the address from the baseline survey was used as
a substitute. When the detailed address was unavailable or out of date, the address was
replaced with the nearby public administrative institution.

• Merging the estimated air pollution and meteorological data with the participants

The geocoded addresses of participants were matched to air pollutant and meteorolog-
ical data with corresponding grid units using the ArcGIS program (ESRI, Inc., Redland, CA,
USA). To estimate the individual exposure of each participant, the data from the KoGES and
air pollution and meteorological factor database were combined based on the participants’
date of examination and their geocoded units of residential address.

Long-term exposures to ambient air pollutants were defined as the 2-year moving
average (lag 0 to 729 days) and short-term exposures were defined as the 3-day moving
average (lag 0 to 2 days). To minimize the exposure misclassification errors due to the
residential relocation of study participants between baseline data collection and follow-up,
we considered the residential mobility during the first visit and follow-up, by using time-
weighted average concentrations [28,29]. We assumed that the participants change their
place of residence at the midpoint between baseline and the follow-up examination. For
instance, if a person had reported residing in “place A” at the baseline exam (1 January 2007)
and “place B” at the first follow-up exam (31 December 2008), then the air pollutant
exposure in the first half period (from 1 January 2007 to 31 December 2007) was calculated
based on place A, and second half period (from 1 January 2008 to 31 December 2008) was
based on place B.

2.4. Inflammatory Marker

Venous blood samples were drawn after a minimum of 8 h overnight fasting for
biochemical analysis, and samples were immediately separated by centrifugation and
then sent to a central laboratory authenticated via external quality assessment. The serum
hs-CRP levels were quantified by turbidimetric immunoassay method using an automated
analyzer (Roche/Hitachi Modular P800; Roche Diagnostics, Tokyo, Japan), with a detection
threshold of 0.01 mg/L. Hs-CRP was dichotomized at the level of 3 mg/L, a cutoff point
commonly used as a clinical indicator for systemic low-dose inflammation and high-risk
cardiovascular disease as well [13].

2.5. Covariates

The individual-level covariates were selected a priori and included in the main model
following a variance inflation factor (VIF) test with a cut-off value of <5.0 to avoid multi-
collinearity. The continuous covariates included were age (years), body mass index (BMI,
kg/m2), and 2-day moving average of meteorological factors (temperature [◦C] and relative
humidity [%]) and the categorical covariates included were sex, visit year, season, weekday
of examination, place of residence (metropolitan and non-metropolitan) [30], smoking sta-
tus (non, ex, and current), drinking status (non, ex, and current), regular exercise (yes and no
to whether the study participants regularly exercise to make their bodies sweat at least once
a week), occupation (professional, administrative; office, sales, and service; laborer, agricul-
tural; and others, unemployed), education (less than middle school [9 years], middle-high
school [9–12 years], and college or more [>12 years]), marital status (married/cohabiting;
and single/divorced/widowed/separation, or others), medical history of diabetes (defined
as self-reported physician-diagnosed diabetes, or fasting blood glucose ≥ 126 mg/dL),
hypertension (defined as self-reported physician-diagnosed hypertension, or systolic blood
pressure ≥ 140 mmHg, or diastolic blood pressure ≥ 90 mmHg), dyslipidemia (defined
as self-reported physician-diagnosed dyslipidemia, or triglyceride ≥ 200 mg/dL, or total
cholesterol ≥ 240 mg/dL, or low-density lipoprotein-cholesterol ≥ 160 mg/dL, or high-



Int. J. Environ. Res. Public Health 2022, 19, 11585 5 of 19

density lipoprotein-cholesterol < 40 mg/dL) [31], cardio- and cerebrovascular disease
(defined as self-reported physician diagnosis of ischemic heart disease or cerebral stroke),
and cancer (defined as self-reported physician diagnosis of any types of cancers).

2.6. Statistical Analyses

For multivariable linear models, hs-CRP was loge-transformed before the analysis
to better approximate normality. We assessed the association of long-term exposure to
ambient air pollutants with the level of loge-transformed hs-CRP. The pollutant effects
were expressed as (exp(β) − 1) ∗ 100, where β was the estimated regression coefficient,
and the results of the analyses were presented as a percentage difference of hs-CRP per
interquartile range (IQR) increase in air pollutants. For multivariable logistic regression
models, we examined the probability of hs-CRP > 3 mg/L [13].

Sensitivity analyses were performed to evaluate the robustness of our findings. We
evaluated three models, each with incrementally more covariates: model 1 included age,
sex, time, and meteorological factors; model 2 included the covariates in model 1 as well
as for lifestyle factors; and model 3 (main model) included the covariates in model 2 as
well as for the medical history of diseases. We conducted subgroup analyses by age (<65
or ≥65 years), sex (male or female), BMI (<25 or ≥25 kg/m2; obese was defined as a BMI
of 25 kg/m2 or higher based on the Asian-Pacific criteria [32]), smoking status (non-, ex-,
or current smokers), regular exercise (yes or no), and self-reported medical history of
diabetes, hypertension, dyslipidemia, and cardio- and cerebrovascular disease (yes or no)
for multivariable-adjusted linear and logistic regression models, and subgroup analysis by
drinking status (non-, ex-, or current drinkers) was also carried out for logistic models. The
effect modification was evaluated by including multiplicative terms between each pollutant
and potential effect modifier in the adjusted models. We also examined the association after
adjusting for short-term exposure, defined as the 3-day average of each pollutant, with
and without interaction terms between long- and short-term exposure of each pollutant,
to further consider whether the chronic effect was attenuated by the acute effect [24]; and
investigated the remaining predictive effects of pollutants by incorporating two-pollutant
models [33], with the restriction of Spearman inter-correlation between pollutants below
0.70 [14]. Furthermore, to examine whether there is a potential misclassification in exposure,
we conducted a subgroup analysis by only including participants who did not change their
residential address between the baseline and the first phase of follow-up.

All statistical analyses were performed using SAS software version 9.4, Cary, NC, USA.
Two-tailed p-values < 0.05 were considered significant except for the correlation analyses
with a more conservative level of significance (p < 0.001), and for interaction terms where
we accepted p < 0.10.

3. Results
3.1. Study Population

The characteristics of the participants are presented in Table 1. The mean age of the
participants was 58.7 ± 8.1 years, and 66.5% of them were women. Most of the participants
resided in metropolitan areas (62.5%), were non- or ex-smokers (92.3%), were non- or
ex-drinkers (58.9%), were non-obese (67.7%), and exercised regularly (58.8%). Most of the
participants had no history of diabetes (86.5%), cardio- and cerebrovascular disease (94.4%),
cancer (94.0%), or lung diseases (asthma [97.8%]; and chronic obstructive pulmonary
disease [99.8%]). When comparing the two groups according to the low-grade inflammation
status, a higher proportion of participants with inflammation (hs-CRP > 3 mg/L) were
above 65 years of age, men, obese, those who exercised less regularly, those with a history
of diseases, and those dwelling in a non-metropolitan area as compared to participants with
normal hs-CRP levels (hs-CRP ≤ 3 mg/L). Additionally, a lower proportion of participants
with inflammation were non-smokers and non-drinkers as compared to participants with
normal hs-CRP levels. The groups also differed in occupation distribution, education
attainment, and season of enrollment.
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Table 1. General characteristics of the study participants.

Characteristics Total
(n = 60,581)

Hs-CRP ≤ 3 mg/L
(n = 57,630)

Hs-CRP > 3 mg/L
(n = 2951) p-Value a

Age [years (mean ± SD)] 58.7 ± 8.1 58.6 ± 8.1 60.1 ± 8.3 <0.001
Age in categories [n (%)]

41–64 years 44,856 (74.0) 42,855 (74.4) 2001 (67.8) <0.001
≥65 years 15,725 (26.0) 14,775 (25.6) 950 (32.2)

Sex [n (%)]
Males 20,282 (33.5) 19,110 (33.2) 1172 (39.7) <0.001
Females 40,299 (66.5) 38,520 (66.8) 1779 (60.3)

Body mass index [kg/m2 (mean ± SD)] 23.9 ± 2.9 23.8 ± 2.9 24.9 ± 3.4 <0.001
Body mass index in categories [n (%)]

<25 kg/m2 40,993 (67.7) 39,370 (68.3) 1623 (55.0) <0.001
≥25 kg/m2 19,588 (32.3) 18,260 (31.7) 1328 (45.0)

Smoking status [n (%)]
Non-smoker 45,647 (75.4) 43,601 (75.7) 2046 (69.3) <0.001
Ex-smoker 10,252 (16.9) 9699 (16.8) 553 (18.7)
Current smoker 4682 (7.7) 4330 (7.5) 352 (11.9)

Drinking status [n (%)]
Non-drinker 31,544 (52.1) 30,036 (52.1) 1508 (51.1) 0.023
Ex-drinker 4118 (6.8) 3881 (6.7) 237 (8.0)
Current drinker 24,919 (41.1) 23,713 (41.2) 1206 (40.9)

Regular exercise [n (%)]
Yes 35,617 (58.8) 34,058 (59.1) 1559 (52.8) <0.001
No 24,964 (41.2) 23,572 (40.9) 1392 (47.2)

Occupation [n (%)]
Professional, administrative 6339 (10.5) 6072 (10.5) 267 (9.1) 0.015
Office, sales, and service 13,578 (22.4) 12,946 (22.5) 632 (21.4)
Laborer, agricultural 9037 (14.9) 8569 (14.9) 468 (15.9)
Others, unemployed 31,627 (52.2) 30,043 (52.1) 1584 (53.7)

Education [n (%)]
Less than middle school (<9 years) 9158 (15.1) 8606 (14.9) 552 (18.7) <0.001
High school (9–12 years) 32,834 (54.2) 31,211 (54.2) 1623 (55.0)
College or more (>12 years) 18,589 (30.7) 17,813 (30.9) 776 (26.3)

Marital status [n (%)]
Married, cohabitating 53,778 (88.8) 51,181 (88.8) 2597 (88.0) 0.186
Single, divorced, widowed, separation,

others 6803 (11.2) 6449 (11.2) 354 (12.0)

Medical history
Diabetes [n (%)]
Yes 8161 (13.5) 7584 (13.2) 577 (19.6) <0.001
No 52,420 (86.5) 50,046 (86.8) 2374 (80.4)
Hypertension [n (%)]
Yes 20,982 (34.6) 19,690 (34.2) 1292 (43.8) <0.001
No 39,599 (65.4) 37,940 (65.8) 1659 (56.2)
Dyslipidemia [n (%)]
Yes 25,092 (41.4) 23,746 (41.2) 1346 (45.6) <0.001
No 35,489 (58.6) 33,884 (58.8) 1605 (54.4)
CCVD [n (%)]
Yes 3390 (5.6) 3183 (5.5) 207 (7.0) 0.001
No 57,191 (94.4) 54,447 (94.5) 2744 (93.0)
Cancer [n (%)]
Yes 3637 (6.0) 3427 (5.9) 210 (7.1) 0.010
No 56,944 (94.0) 54,203 (94.1) 2741 (92.9)
Asthma [n (%)]
Yes 1348 (2.2) 1255 (2.2) 93 (3.2) 0.001
No 59,233 (97.8) 56,375 (97.8) 2858 (96.8)
COPD [n (%)]
Yes 110 (0.2) 98 (0.2) 12 (0.4) 0.007
No 60,471 (99.8) 57,532 (99.8) 2939 (99.6)
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Table 1. Cont.

Characteristics Total
(n = 60,581)

Hs-CRP ≤ 3 mg/L
(n = 57,630)

Hs-CRP > 3 mg/L
(n = 2951) p-Value a

Season [n (%)]
Spring (March–May) 8815 (14.6) 8413 (14.6) 402 (13.6) <0.001
Summer (June–August) 20,781 (34.3) 19,854 (34.5) 927 (31.4)
Fall (September–November) 23,693 (39.1) 22,478 (39.0) 1215 (41.2)
Winter (December–February) 7292 (12.0) 6885 (12.0) 407 (13.8)

Residential area [n (%)]
Metropolitan 37,860 (62.5) 36,068 (62.6) 1792 (60.7) 0.044
Non-metropolitan 22,721 (37.5) 21,562 (37.4) 1159 (39.3)

Hs-CRP [mg/L (mean ± SD)] 0.89 ± 1.14 0.68 ±0.57 4.95 ±1.77 <0.001

Values are presented as mean ± standard deviation for continuous variables and n (%) for categorical variables;
SD: standard deviation; CCVD: Cardio- and cerebrovascular disease; COPD: chronic obstructive pulmonary
disease; Hs-CRP: high-sensitivity C-reactive protein; a Student’s t-test for continuous variables and Chi-square
test for categorical variables.

3.2. Air Pollutants

The summary statistics of environmental factors including 2-year average exposure
measures of air pollutants and a 2-day average of meteorological factors are summarized in
Table 2 and Figure S1. The participants’ average exposure to PM10, PM2.5, SO2, NO2, and O3
were 48.34 µg/m3, 25.20 µg/m3, 5.40 ppb, 23.46 ppb, and 25.86 ppb, respectively. The expo-
sures in all participants exceeded the annual World Health Organization (WHO) air quality
guideline (AQG) levels for PMs, which has been updated in 2021 (PM10 < 15 µg/m3; and
PM2.5 < 5 µg/m3) [34]. As per the Korean AQG for annual average limits (PM10 < 50 µg/m3;
and PM2.5 < 15 µg/m3) [35], 20,328 (33.56%) and 60,567 (99.98%) participants exceeded the
limits of PM10 and PM2.5, respectively. With regards to annual WHO AQG levels for NO2
(<10 µg/m3) [34], 36,397 (60.08%) participants exceeded the limit. As per the Korean AQG
for annual average limits (SO2 < 20 ppb; and NO2 < 30 ppb), 7 (0.01%) and 15,435 (25.48%)
participants exceeded SO2 and NO2 levels, respectively [35]. No annual guidelines or limits
have been established for O3.

Table 2. Summary statistics of the residential air pollution exposure (2-year average) and meteorolog-
ical factors (2-day average), and corresponding Spearman correlation coefficients.

Pollutant
(Unit) Mean ± SD Max Q3 Median Q1 Min IQR

Spearman’s Correlation Coefficient

PM10 PM2.5 SO2 NO2 O3 Temp RH

PM10 (µg/m3) 48.34 ± 4.25 79.07 51.62 48.14 45.67 29.54 5.95 1.00 0.59 * 0.17 * 0.50 * −0.66 * 0.002 −0.03 *
PM2.5 (µg/m3) 25.20 ± 2.69 39.07 26.85 24.89 23.15 12.95 3.70 1.00 −0.10 * −0.13 * −0.09 * −0.001 0.13 *

SO2 (ppb) 5.40 ± 2.07 26.03 5.84 4.82 4.04 1.65 1.80 1.00 0.62 * −0.22 * 0.02 * −0.16 *
NO2 (ppb) 23.46 ± 7.96 40.81 30.13 21.28 17.60 1.00 12.54 1.00 −0.78 * 0.05 * −0.24 *
O3 (ppb) 25.86 ± 2.97 44.27 28.23 26.16 23.71 18.07 4.52 1.00 −0.04 * 0.14 *

Temp (◦C) 16.73 ± 8.60 33.08 23.21 18.95 11.35 -18.40 11.86 1.00 0.31 *
RH (%) 70.76 ± 12.32 99.95 79.84 71.73 62.82 18.96 17.02 1.00

SD: standard deviation; Max: maximum; Min: minimum; Q1: first quartile; Q3: third quartile; IQR: interquartile
range; PM10: particulate matter with aerodynamic diameter < 10 µm; PM2.5: particulate matter with aerodynamic
diameter < 2.5 µm; SO2: sulfur dioxide; NO2: nitrogen dioxide; O3: ozone; Temp: temperature; RH: relative
humidity; * p < 0.001.

The strongest correlation was observed between NO2 and O3 (rs = −0.78), followed
by PM10 and O3 (rs = −0.66), NO2 and SO2 (rs = 0.62), PM10 and PM2.5 (rs = 0.59), and NO2
and PM10 (rs = 0.50). Temperature exhibited no significant correlation with PMs.

3.3. Effects of Long-Term Exposure to Air Pollutants on Inflammatory Markers

The results of the associations of long-term residential exposure to ambient air pol-
lutants with hs-CRP level are presented in Figure 2. Significant concentration-response
associations were observed in all pollutants. This was evident as participants with higher-
quartile exposure generally had higher levels of hs-CRP in PM10, PM2.5, SO2, and NO2,
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while a negative trend in the association was observed in O3 (all p < 0.001). Each IQR
increase in 2-year average concentrations of air pollutants was significantly associated with
percent changes in hs-CRP levels after controlling for potential confounders (PM10: 3.75%,
95% confidence interval (CI) 2.68, 4.82; PM2.5: 3.68%, 95% CI 2.57, 4.81; SO2: 1.79%, 95% CI
1.10, 2.48; NO2: 3.31%, 95% CI 2.12, 4.52; and O3: −3.81%, 95% CI −4.96, −2.65).
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Figure 2. Associations between hs-CRP levels and long-term exposure to air pollutants. The models
are adjusted for age, sex, BMI, smoking status, drinking status, regular exercise, occupation, educa-
tion, marital status, residential area, year, season, and weekday of examination, medical history of
diseases (diabetes, hypertension, dyslipidemia, cardio- and cerebrovascular disease, and cancer), and
meteorological factors (2-day moving average of temperature and relative humidity). Estimates are
presented as percentage changes with 95% confidence intervals in hs-CRP levels per IQR increase in
2-year average ambient air pollution exposure (corresponding IQR of each pollutant: 5.95 µg/m3 for
PM10, 3.70 µg/m3 for PM2.5, 1.80 ppb for SO2, 12.54 ppb for NO2, and 4.52 ppb for O3). PM10, PM2.5:
particulate matter with aerodynamic diameter < 10 µm and <2.5 µm, respectively; SO2: sulfur dioxide;
NO2: nitrogen dioxide; O3: ozone; Hs-CRP: high-sensitivity C-reactive protein; IQR: interquartile
range; Q1, Q2, Q3, Q4: first, second, third, and fourth quartile, respectively.
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Figure 3 shows the odds ratios (ORs) and 95% Cis for the association between long-
term exposure to ambient air pollutants with low-grade inflammation (level of hs-CRP
> 3 mg/L). Positive trends in the associations were observed between 2-year average
concentrations of PM10, PM2.5, and SO2 with hs-CRP levels, indicated by an increment
in the magnitude of point estimates (all p < 0.05). Each IQR increase in 2-year average
concentrations of PMs and SO2 was significantly associated with elevated risks of low-
grade inflammation in the fully adjusted model (PM10: 1.07, 95% CI 1.01, 1.13; PM2.5: 1.08,
95% CI 1.02, 1.14; and SO2: 1.05, 95% CI 1.01, 1.08).
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Figure 3. Associations between systemic low-grade inflammation and long-term exposure to air
pollutants. The models are adjusted for age, sex, BMI, smoking status, drinking status, regular
exercise, occupation, education, marital status, residential area, year, season, and weekday of exami-
nation, medical history of diseases (diabetes, hypertension, dyslipidemia, cardio- and cerebrovascular
disease, and cancer), and meteorological factors (2-day moving average of temperature and relative
humidity). Estimates are reported as the odds ratios and 95% confidence intervals of low-grade
inflammation (hs-CRP levels > 3 mg/L) per IQR increase in 2-year average ambient air pollution
exposure (corresponding IQR of each pollutant: 5.95 µg/m3 for PM10, 3.70 µg/m3 for PM2.5, 1.80 ppb
for SO2, 12.54 ppb for NO2, and 4.52 ppb for O3). PM10, PM2.5: particulate matter with aerody-
namic diameter < 10 µm and <2.5 µm, respectively; SO2: sulfur dioxide; NO2: nitrogen dioxide;
O3: ozone; OR: odds ratio; IQR: interquartile range; Q1, Q2, Q3, Q4: first, second, third, and fourth
quartile, respectively.
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3.4. Sensitivity Analyses

When we evaluated the models, each with incrementally more covariates, the direction,
strength, and significance of associations were maintained from the minimally adjusted
model (model 1) to the fully adjusted model (model 3; main model) (Table S3).

The effect modifications on the association between each air pollutant and hs-CRP
are presented in Table S4 for linear regression models and Table S5 for logistic regression
models. In our linear models, statistically significant effect modifications were observed
with age (PM2.5), sex (PM10, NO2, and O3), BMI (PM10, PM2.5, and SO2), smoking status
(SO2 and NO2), regular exercise (SO2 and NO2), and medical histories of hypertension
(PM10 and PM2.5), dyslipidemia (PM10), and cardio- and cerebrovascular disease (SO2 and
NO2) (all p-values < 0.10). In the logistic regression, similar effect modifying patterns
were observed for smoking status (SO2 and NO2), regular exercise (SO2), and histories of
hypertension (PM10, NO2, and O3) and cardio- and cerebrovascular disease (SO2 and NO2)
(all p-values < 0.10). However, no clear effect modifying patterns were observed across
all pollutants.

The summary statistics of short-term exposure to air pollutants and Spearman’s
correlation coefficients among short- and long-term metrics are described in Tables S6 and
S7. The models simultaneously adjusting for the short-term exposure measures without
interaction terms remained stable or demonstrated slightly attenuated effect estimates
(Table S8). When additionally adjusting for the multiplicative interaction term between
long- and short-term exposure, it appeared that the effect estimates in our linear models
were stronger for SO2 and NO2, whereas O3 demonstrated an attenuated effect and was
no longer statistically significant. The significant association between SO2 and low-grade
inflammation identified in the main model changed to non-significant in models with and
without the interaction term. In two-pollutant models, some associations observed with
single pollutants were attenuated after adjusting for a second pollutant (Table S9). The
combined effect estimates for PMs were attenuated after adjusting for each other. Similarly,
the estimates for gaseous pollutants (SO2, NO2, O3) weakened substantially after adding
PM10 to the model.

We also considered another sensitivity analysis for participants who did not change
their residential address between baseline and the first phase of follow-up (Table S10). When
the level of hs-CRP was treated as a continuous or dichotomous variable, the estimated
effects remained stable, and the direction of the association did not differ largely from the
main model. The odds of low-grade inflammation became non-significant in PM2.5, while
in the case of O3, a marginally reduced risk of low-grade inflammation (OR 0.71, 95% CI
0.51, 1.00) was observed.

4. Discussion
4.1. Summary

This study investigated the association between long-term exposure to air pollutants
and hs-CRP level. When the hs-CRP concentration was treated as a continuous variable,
statistically significant and positive associations were observed for PM10, PM2.5, SO2, and
NO2, while a negative association was found for O3. Further, an increased risk of low-grade
inflammation (hs-CRP > 3 mg/L) was observed with PM10, PM2.5, and SO2. The odds ratios
reported indicated that the exposures might be risk factors for inflammatory conditions;
however, they did not reflect strong associations.

4.2. Comparisons of Findings

In this study, significant positive increases were observed in the 2-year average PMs,
and the magnitude of association was larger for PM2.5 compared to PM10: 10 µg/m3 in-
crease in PM10 and PM2.5 were associated with 6.38% (95% CI 4.55 to 8.24) and 10.27%
(95% CI 7.09 to 13.54) increase in hs-CRP, respectively. PM2.5 exposure may be more haz-
ardous to human health compared to PM10, as PM2.5 mainly originates from the secondary
aerosol sources via a chemical reaction of gaseous pollutants (e.g., SO2 and NO2), whereas
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the constituents of PM10 are mainly contributed by soil dust and natural sources [36]. PM10
can also be deposited majorly in the large conducting airways, while PM2.5 can penetrate
and reach the alveolar-capillary barrier, and then travel to other organs within the body;
and therefore, PM2.5 may have a higher potential for inducing inflammation and oxidative
stress [6,9].

Regarding the long-term exposure to PMs and the level of CRP, a meta-analysis with a
pooled estimate of five and nine studies of long-term exposure to PM10 and PM2.5 indicated
a significant 5.61% and 18.01% increase in CRP per 10 µg/m3 increase, respectively [17].
Several observational studies that examined both PM10 and PM2.5 have reported a greater
impact of PM2.5 compared to PM10 [37–39]. A panel study of the capital city in Korea
also demonstrated a slightly higher effect estimate in the association between CRP and
PMs; per 10 µg/m3 increase in the annual average concentrations of PMs with 0.34 and
0.47 percent changes of CRP for PM10 and PM2.5, respectively [24]. The larger magnitude
of the association of PMs with CRP in our study compared to that observed in a previous
Korean study [24] may be partially explained by the exposure assessment methods, as the
effect size of the subgroup of fixed-site monitoring studies tended to be lower than studies
which used other measurement methods (e.g., modeled data or personal monitoring) [17].

Among gaseous pollutants, significant positive associations were observed with the
hs-CRP levels in SO2 and NO2, while negative associations were observed in O3. Adjust-
ment for ambient PM10 substantially attenuated the associations with SO2 and NO2 in both
continuous and binary measures of hs-CRP, given that particles would partly capture the
complex combustion-related constituents [40]. This conforms with the source apportion-
ment of PMs in Korea that explained the secondary aerosol sources via the atmospheric
chemical reaction of SO2 and NO2 originated from fuel combustion [36]. Accordingly,
the significant effects of gaseous pollutants on hs-CRP in this study might have been
due to the shared emission sources, with significantly correlated particulate and gaseous
pollutants [21].

Several studies that measured multiple pollutants have also reported similar findings.
Cross-sectional studies representative of the English population demonstrated positive
but non-significant combined estimates for SO2 and NO2 with CRP, while the estimate
for O3 was in the opposite direction [41]. Moreover, another cross-sectional study of the
Chinese population reported that the annual ambient SO2 and NO2 concentrations were
positively associated with low-grade inflammation (statistically significant for NO2 and non-
significant for SO2), whereas O3 exposure exhibited a significant inverse association [42].
However, a recent meta-analysis on the association between gaseous air pollutants and CRP
has reported conflicting results across studies; and in both short- and long-term gaseous
pollutants and CRP levels, positive non-significant pooled estimates were observed for SO2,
NO2, and O3 as well [18]. A review on the health effects of O3 suggested that in contrast to
the well-established evidence from short-term studies, the evidence for the chronic effects
is less conclusive and lacks research; therefore, further investigations are needed to better
describe the relationship between O3 and chronic health endpoints [43].

Unlike other pollutants, long-term exposure to O3 demonstrated a decreased risk
of hs-CRP and systemic low-grade inflammation in this study. There are uncertainties
in interpreting this seemingly protective association, but several plausible explanations
may be offered. First, as protective effects are not expected according to the literature
and biological plausibility, the seemingly beneficial impact of O3 on the inflammatory
response might have been artifacts of pollutants that were positively correlated with other
factors and were negatively correlated with CRP (e.g., O3-derivatives) [44]. Second, O3
may have a threshold level for its effect on human health. A cross-sectional study in
Germany identified a J-shaped association between short-term exposure to O3 and hs-CRP
levels [45]. In particular, for participants with O3 concentration less than 120 µg/m3, the
level of hs-CRP was negatively associated with O3 [45]. All participants in our study were
exposed to O3 concentration far lower than 120 µg/m3. However, direct comparisons
of the results should be cautiously interpreted due to possible differences between the
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mechanisms underlying short- and long-term exposure to O3 [42]. Lastly, O3 may actually
show an inverse association with multiple metabolic abnormalities, including other markers
of inflammation or coagulation, blood lipid profiles, and glucose homeostasis. A cross-
sectional study in China found that long-term exposure to ambient NO2 and O3 were
risk and protective factors of low-grade systemic inflammation, respectively; and also
demonstrated that O3 was negatively associated with multiple metabolic indicators of lipid
metabolism and glucose homeostasis, while NO2 was positively associated with them [42].
We also performed additional analyses and found that the blood levels of white blood cells,
fibrinogen, triglycerides, and fasting blood glucose were positively associated with PMs,
SO2, and NO2, and inversely associated with O3 (Table S11).

4.3. Sensitivity Analyses on Effect Modifications

Along with variations in the concentrations of air pollutants, the susceptibility of a
population also plays a crucial role in inflammatory responses [14]. In this study, elderly
participants, women, obese participants, sedentary participants, current smokers, and
participants with comorbidities were potentially susceptible to air pollutants. However,
there were no clear effect modifying patterns across all air pollutants.

Elderly individuals are generally considered more susceptible to the adverse health
impacts of ambient air pollution [46]. Aging entails a substantial burden regarding the
onset and exacerbation of chronic disorders, perturbations in immune system function,
and changes in activity status [47,48]. These findings are consistent with the associations
between pollutants and CRP reported by several observational studies of susceptible
older individuals, including factors such as diabetes, obesity, hypertension, coronary heart
disease, and chronic obstructive pulmonary disease [49–52]. Sex-based differences in
immune and inflammatory responses may also partly explain the greater susceptibility
to air pollutants observed in women. Compared to men, women may have a higher
CD4+:CD8+ lymphocyte ratio; and when stimulated, their blood monocytes generate more
prostaglandin E2 and less TNF-α [53].

Participants who were ex-smokers appeared to be less vulnerable to air pollutants,
while current- or non-smokers exhibited greater vulnerability. Similar trends were reported
in a cross-sectional study in Germany; however, the study stated that the generalizability of
their results might have been limited because smokers tended to be younger and healthier
(lower percentages of diabetes or cardiovascular disease) than were ex- or non-smokers [14].
When we also stratified the participants by smoking status, current smokers were younger
and healthier (lower percentages of diabetes, hypertension, cardio- and cerebrovascular
disease, cancer, or lung diseases) compared to ex-smokers, suggesting that differences in
the participants’ characteristics may be the reason (Table S12). However, the potential
modifying role of smoking on the air pollution-associated inflammatory response remains
unclear. One hypothesis suggested that smoking itself may trigger anatomical damage,
which may exert additional harmful effects and exacerbate the adverse effects of ambient air
pollution [54–56]. Studies supportive of this perspective have suggested that inflammatory
responses to air pollutants appeared to be more pronounced in smokers [52,57–59]. A
controversial hypothesis explained that smokers may have elevated levels of oxidative
stress and inflammatory response, and relatively small variations in levels of inflammatory
markers could be attributed to ambient air pollution; on the other hand, non-smokers may
have minimal influence from smoking-induced inflammation [60]. Studies supportive of
this perspective have suggested that inflammatory responses to air pollutants appeared to
be more pronounced in non-smokers [38,60,61].

Moreover, participants who were not maintaining regular physical activity or were
obese appeared to be more vulnerable to air pollutants in this study. Similar results were
reported by a Taiwanese cohort study; compared with inactive participants with PM2.5
in the highest quartile, participants in other groups had lower white blood cell counts,
especially among those with higher levels of physical activity and lower exposure to
PM2.5 [62]. A higher frequency of moderate-to-vigorous physical activity was significantly
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associated with a lower risk of cardiovascular diseases in the groups of both high and
low PMs as well [63]. Except for the extremely polluted environments, the benefits of
physical activity may outweigh the health risks caused by air pollution [64]. According
to a systematic review of air pollution on obesity, the probable biological pathways in
the included studies involved enhanced oxidative stress and inflammatory responses of
adipose tissues, elevated risk of chronic comorbidities, and insufficient physical activity;
however, the impact of pollution on the body weight status remained unclear [65].

Cumulatively, the evidence on the extent to which individual characteristics modify
the effect of air pollution through inflammation remains controversial across studies. The
results should be interpreted cautiously due to complexities including geographic regions,
study design, selection of the subpopulation, and types, sources, composition, toxicity, or
dose of pollutants. However, it should be noted that the global health burden of air pollution
and lifestyle habits co-exists and the annual level of PM among participants exceeds the
annual AQG provided by the WHO [34]. Therefore, public health interventions to maintain
healthier lifestyles may potentially minimize the detrimental health impacts due to ambient
air pollutants (e.g., elevated inflammatory responses and increased risk of multiple chronic
diseases) and should be incorporated into air pollution reduction strategies.

4.4. Sensitivity Analyses on Extended Models including Short-Term Measures and Co-Pollutants

To examine the attenuation of the chronic effects of air pollutants by their acute effects,
we simultaneously adjusted for short-term exposure measures of corresponding pollutants
(3-day average) in our models. The results remained stable or demonstrated slightly attenu-
ated effect estimates. Short-term air pollution exposure may potentially affect the long-term
associations between inflammatory markers and outdoor air pollution exposure; however,
participants with potential acute infections (hs-CRP levels > 10 mg/L) were excluded before
analysis, which may have reduced the potential confounding effect of short-term exposure
to air pollutants on the chronic health effects of air pollutants [48]. Previous epidemiological
studies of long-term exposure to air pollutants on hs-CRP levels also included participants
with hs-CRP levels less than 10 mg/L and demonstrated stable estimates which were not
affected by adjusting for short-term exposure to air pollution [38,66]. A previous study in a
single capital city in Korea with participants with CRP levels ranging from 0.1 to 11.7 mg/L
did not report any significant changes after adjusting for short-term exposure, whereas the
white blood cell counts, another clinical marker of inflammation and a potential predic-
tor of cardiovascular risk, demonstrated significant changes in the long-term association
with air pollution after adjustment; further investigations are suggested to confirm these
findings [24].

As humans are exposed to polluted air containing a complex mixture of particle and
gaseous pollutants rather than an isolated single pollutant, multi-pollutant concepts should
also be considered [67,68]. Therefore, to evaluate the remaining predictive effects of air
pollutants, we simultaneously adjusted for other co-pollutants by adding one pollutant
at each time in our two-pollutant models. The effect estimates for PMs were attenuated
after adjusting for each other and the effect estimates of PM10 decreased from 6.38 to
5.69 while PM2.5 estimates decreased from 10.27 to 1.73 (units: per 10 µg/m3 increase).
Similar two-pollutant associations were also observed in the previous cross-sectional study
with PMs controlled for each other; the effect estimates of PM10 increased slightly from
5.15 to 7.34 while PM2.5 estimates decreased largely from 0.16 to −5.61 (units: per IQR
increase) [14]. This phenomenon suggests non-independent effects of PM10 and PM2.5 on
hs-CRP and may strengthen the importance of PM10 based on the substantial heterogeneity
of exposure levels across the study regions compared to PM2.5 [14]. We also observed that
the effect estimates for gaseous pollutants (SO2, NO2, O3) weakened substantially after
adding PM10 to the model: the effect estimates were largely attenuated from 30.77 to 16.81,
5.22 to 1.74, and −16.13 to −7.74 for SO2, NO2, and O3, respectively (units: per 10 µg/m3

increase). Compared to PM10, adjustment for PM2.5 attenuated the effect estimates of
gaseous pollutants to a lesser extent and the estimates changed to 24.94, 5.69, and −15.46 for
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SO2, NO2, and O3, respectively (units: per 10 µg/m3 increase). The greater change of effect
estimates in the two-pollutant models compared to single-pollutant models may possibly
be due to the stronger correlation coefficients of gas phase pollutants with PM10 than that
of PM2.5. However, the two-pollutant associations should be analyzed and interpreted
cautiously. As a strong correlation within pollutants in the regression models may become
highly unstable, we incorporated the restriction of Spearman inter-correlation between
pollutants below 0.70 [14,69]. Therefore, the results for the combination of NO2 and O3
with high correlation (rs = −0.78) were not reported. Investigating multi-pollutant model
to air pollutant research is also challenging due to the other factors including complicated
formation pathways, diverse classes of measurement errors (e.g., differential errors across
pollutants), and complex epidemiological interpretation (e.g., health effects due to ambient
gaseous pollutants which may actually be a result of PM exposure) [69–71].

4.5. Strengths and Limitations

The strengths of this study are as follows. First, the participants exhibited spatial
variability, indicated by their diverse domestic geographical residence around the country.
Second, diverse individual-level information (e.g., variables of socioeconomic status and
lifestyle factors) was available. Third, the ambient air quality prediction model enabled air
pollution research not only for the residents in capital or metropolitan areas, but also for
those in non-metropolitan areas, where the measurement points are scarce [22]. Especially,
the model that incorporated satellite-based reanalysis enabled the estimates of PMs with
high resolution, despite the absence of air quality monitoring station data of PM2.5 before
2015. Lastly, we attempted to account for residential mobility by considering time-weighted
average concentrations of air pollutants. However, the follow-up time between the baseline
and follow-up differed for each participant (mean and standard deviation: 4.9 ± 1.7 years).
Further linkage with personal records that contain each participant’s annual residential
mobility, and the length of exposure needs to be traced [72].

The potential limitations of this study should also be considered. First, due to the
cross-sectional design, temporal trends and causal effects of air pollutants on hs-CRP are
difficult to determine. Circulating inflammatory markers are in a physiologically varying
state; and studies with longitudinal designs or multiple measurements may diminish
potential biases more effectively and identify the associations more accurately [73]. Second,
potential exposure measurement errors might exist because of the use of the predictions
of air pollutants as proxy exposure measurements assigned to the participants’ residences
to evaluate the inflammatory effects of pollutants. The exposure misclassification can be
increased by the absence of the individuals’ specific activity patterns; however, the exposure
data based on indoor combustion sources and occupational contributions were unavailable.
Accordingly, both classical and Berkson errors might arise; however, the errors can bias
toward the null, suggesting the estimated effect is unlikely to be exaggerated [74,75]. The
high-resolution ambient air quality prediction models may result in a smaller bias, which
suggests robustness against the exposure error [75]. However, the performance of SO2 in
our CMAQ models (R2 = 0.42) should be discussed. A similar trend was also observed
for SO2 in the US prediction models which utilized CMAQ with a 12 km grid; even after
utilizing the data fusion methods to correct the biases associated with the model output
by combining observed data to the CMAQ model, SO2 still performed the worst with
the lowest R2 among the modeled pollutants [76,77]. SO2 predictions with CMAQ had
the most error due to the challenges of coal combustion plumes [70,76]; and SO2 might
have a less homogeneous spatial distribution [77]. Further optimization for the emission
inventories is needed to improve the prediction accuracy of SO2 [78]. Third, our study
lacked information on medication. Hs-CRP is largely affected by medication, such as non-
steroidal anti-inflammatory drugs or lipid-lowering drugs, including statins [14]. Statins
may reduce the associations between long-term pollutant exposure and hs-CRP due to the
anti-inflammatory actions of HMG-CoA reductase inhibitors [38]. However, no clear effect
modifying patterns with regard to medications were observed in several studies [24,38].
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Lastly, residual confounding might have existed in this study. One example is uncontrolled
factors with regard to pollutants. In particular, O3 concentration is largely affected by
local-scale as it is rapidly scavenged by nitric oxide near roadways; thus, considering
the roadway proximity is important [42]. However, we could not control for residential
distances from main roadways in our models and assess whether the association between
ambient O3 and hs-CRP remains stable.

5. Conclusions

This study investigated the association between long-term exposure to air pollutants
and hs-CRP, which is a non-specific marker of inflammation, among participants residing
in domestic regions in Korea. Most of the outcomes persisted when hs-CRP was treated
as either a continuous variable or as a dichotomous variable using a threshold of 3 mg/L
(positive associations for PM10, PM2.5, SO2, and NO2, and negative associations for O3).

Further well-designed research (e.g., longitudinal, or multiple measurements) with
sufficient information on annual residential changes, occupation, indoor exposure, and
geographical factors may help elucidate the relationship between inflammatory markers
and long-term exposure to gaseous pollutants or chemical constituents involved in the
probable mechanistic pathways.
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