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Abstract: China is undergoing an urbanization process at an unprecedented scale, and low-carbon
urban development is of great significance to the completion of the “dual carbon goals”. At the
same time, the digital economy has become an important engine for urban development, and its role
in environmental improvement has become increasingly prominent. While the digital economy is
booming, can it promote the low-carbon development of cities? Based on the panel data of 278 cities in
China from 2011 to 2019, this paper discusses the impact of the digital economy on carbon emissions
and the long-term development trend between the digital economy and carbon emissions, the impact
of differences in the development level of the digital economy on carbon emissions reduction, and
the impact of green energy efficiency in the relationship between the digital economy and carbon
emissions. The results show that the digital economy has a significant inhibitory effect on carbon
emissions, and with the development of the digital economy, more and more cities show an absolute
decoupling of the digital economy and carbon emissions and are turning to low-carbon development.
The development level of the digital economy has a heterogeneous impact on carbon emissions. With
the improvement of the development level of the digital economy, the effect on emission reduction is
more significant. As a threshold variable, green energy efficiency affects the relationship between
digital economy and carbon emissions. When green energy efficiency is low, the digital economy
promotes carbon emissions, and when green energy efficiency is high, the digital economy reduces
carbon emissions.

Keywords: carbon emission; digital economy; green energy efficiency; decoupling effect; interaction
effect; threshold model

1. Introduction

The increase in carbon emissions is one of the important factors of global warming [1],
leading to frequent natural disasters, food production reduction, ecological environment
imbalance, and other problems, which seriously threaten the sustainable development of
human society. In recent years, China’s carbon emissions have continued to increase. World
Bank data show that China emitted 9809.2 million tons in 2019. China is one of the countries
with high carbon emissions in the world. The acceleration of urbanization has significantly
increased carbon emissions. Government infrastructure projects, people’s living consump-
tion, and urban transportation consume a lot of energy. Cities have become one of the main
sources of carbon emissions growth, accounting for 70% of carbon emissions [2]. At the
same time, the rapid development of the digital economy has widely concerned all sectors
of society. The “digital economy” was first proposed by the American scholar Tapscott [3].
In the subsequent development process, OECD, the US Department of Commerce, and
other authoritative institutions have expounded on the definition and accounting of the
digital economy. With the development of information technology and the continuous
improvement of economic and social digitization, the connotation and scope of the “digital
economy” are being further expanded. In 2016, the G20 summit of Hangzhou adopted
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the G20 Digital Economy Development and Cooperation Initiative, which defined the digital
economy as a series of economic activities that includes using digitized information and
knowledge as the key factors of production, modern information networks as the important
activity space, and the effective use of information and communication technology (ICT) as
an important driver for efficiency-enhancing and economic structural optimization. The
report on the construction and development process of Digital China (2019) shows that
China’s digital economy has shown a rapid development trend, with an added value of
RMB 35.8 trillion and a contribution rate of 67.7% to GDP growth. The digital economy
plays an important role in reducing regional differences, coordinating regional develop-
ment, improving economic resilience, and forming a sustainable development ecosystem.
It also plays an irreplaceable role in improving the regional environment [4]. Therefore,
can the digital economy help reduce carbon emissions? What are the impacts of different
levels of the digital economy on carbon emissions? What is the action mechanism of the
digital economy on carbon emission reduction? By clarifying the above three issues, the re-
lationship between the digital economy and carbon emissions is clearer, and corresponding
policy recommendations are put forward to provide policy references for the completion of
the goal of “carbon peaking and carbon neutrality”.

Since the “carbon peaking and carbon neutrality goal” was put forward, the rela-
tionship between the digital economy and carbon emissions has become a key topic of
concern among all walks of life, and academia has also carried out extensive research.
Scholars’ research shows that China’s carbon emissions have increased year by year and
show obvious characteristics of uneven spatial distribution. The carbon emissions in
eastern China are significantly higher than those in the west [5,6]. China is rich in coal
resources and short of natural gas and oil [7]. Therefore, coal has long dominated China’s
energy structure [8]. According to World Bank data, China’s coal accounted for 87.4%
of primary energy consumption in 2019. The massive use of coal has led to serious en-
vironmental problems, and carbon emissions continue to increase [9]. The adjustment
of the energy structure, the optimization and upgrading of the industrial structure, and
technological progress can promote the use of clean energy, thereby reducing the use of coal
and ultimately reducing carbon emissions. Therefore, energy structure adjustment [10,11],
industrial structure optimization and upgrading [12,13], and technological progress [14]
are effective means to reduce carbon emissions. However, scholars have different research
conclusions on the relationship between the digital economy and carbon emissions. Most
scholars believe that the digital economy has promoted the development of e-commerce
industry and internet industry, squeezed out emission-intensive industries, optimized the
urban industrial structure [15,16], improved the environmental situation, and provided
impetus for emission reduction. Wang et al. [17] find that the development of the digital
economy is conducive to reducing carbon emissions. Zhang et al. [18] believe that the digi-
tal economy plays a significant role in carbon emission reduction based on China’s urban
data. However, some scholars also believe that the digital economy has a heterogeneous
impact on carbon emissions. For example, the research of Xu et al. shows that the digital
economy has different impacts on cities in the eastern, central, and western regions of
China, significantly inhibiting the eastern region, while promoting the central region [16].
However, some scholars [19,20] believe that, as the core foundation of the digital economy,
the development of digital technology will lead to a large amount of power consumption
and energy consumption, thereby increasing carbon emissions.

As for the influencing factors of the digital economy, the literature covers a wide
range, such as digital infrastructure [21], digital application [21], education [22], science
and technology [23], etc. From the existing literature, there are great differences in the
development levels of infrastructure, education, technology, and so on among Chinese
cities, so there are great differences in the development of the digital economy. The digital
development level of the eastern coastal cities is significantly higher than that of the
central and western regions, and the polarization characteristics of the eastern and central
regions are particularly obvious [24,25]. When digital technology is at different levels of
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development, it has a different impact on the intelligent and networked development of
society and then affects the upgrading of industrial structure and changes the economic
paradigm [26]. Under the new economic paradigm, emerging industries have gradually
become the pillar industries and leading industries of regional development. Characterized
by high technology content and intensive resources, emerging industries have greatly
reduced carbon emissions, and this has been confirmed by scholars’ research. The research
of Wang et al. [27] shows that the driving effect of the development level of the digital
economy on low-carbon development has regional heterogeneity; Li et al. [28] finds that
the digital economy has a significant heterogeneous impact on carbon emissions. Different
from the eastern and central regions in China, the digital economy in the western region
promotes carbon emissions.

Adhering to the idea of low-carbon green development, scholars have included envi-
ronmental pollution in the analysis of energy efficiency. This input–output efficiency con-
sidering the emission of environmental pollutants is defined as green energy efficiency [23].
Green energy efficiency comprehensively considers environmental and resource factors
and promotes urban low-carbon development [29]. The digital economy represented by
digitalization has affected green energy efficiency [30], thus promoting the transformation
of the industrial structure to energy conservation and low carbon. Specifically, digital
technology has greatly improved the basic production conditions such as equipment and
technology, optimized the factors other than energy input, and promoted the development
of green energy efficiency. Areas with better development of the digital economy tend to
have developed digital technology, higher green energy efficiency, and higher utilization of
clean energy, and have ultimately reduced carbon emissions.

Although scholars have made rich achievements in exploring the relationship between
the digital economy and carbon emissions, and have relatively unified opinions on the
factors affecting the development of the digital economy, there are still some questions to be
answered: the role of the digital economy in reducing carbon emissions needs to be verified;
it is necessary to verify the impact of different levels of digital economic development on
carbon emissions; and the role of green energy efficiency in the relationship between the
digital economy and carbon emissions needs to be clarified. Based on the panel data of
278 cities in China from 2011 to 2019, this paper makes an in-depth study of the relationship
between the digital economy and carbon emissions and analyzes the role of green energy
efficiency in it.

The rest of this paper proceeds as follows. Section 2 performs the theoretical analysis and
research hypotheses; Section 3 introduces the models and related data used in the research
methods; Section 4 contains the analysis and discussion of the research results; Section 5
carries out the robustness test; and Section 6 concludes and presents the implications.

2. Theoretical Analysis and Research Hypotheses

Tapscott [3] believes that in a modern economy information exists in a digital form.
Thanks to digital technology, the digital economy can reduce carbon emissions in many
ways. First of all, the digital economy is widely used in life services, industrial development,
transportation and so on, penetrating all aspects of production and life. Regional and time
constraints are important factors affecting the allocation of resources and factors [31] and
are important reasons for the waste of resources and energy. The internet, cloud computing,
and big data are the key technologies for the development of the digital economy [32]. These
key factors break through the boundaries of region and time, accelerate the flow of factors,
ease the constraints of region and time on the allocation of resources and factors [33], reduce
the waste of resources and energy, and thus reduce carbon emissions. Second, with the
rapid development of the digital economy, the construction of new infrastructure around
the country continues to improve. Enterprises, universities, scientific research institutes,
governments, and other application subjects can enjoy the convenience brought by the
development of new infrastructure. Each application subject applies digital technology
to their own development, digitally improves the process, and finally realizes emission
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reduction. For enterprises, the construction of digital platforms and digital assembly
lines can enable industrial processes to achieve self-control and optimization, as well as
enterprise resources to achieve coordinated and orderly development, thereby reducing
carbon emissions. Universities and scientific research institutes are the inexhaustible
driving force of digital innovation [34]. The application of digital technology reduces the
cost of knowledge acquisition, facilitates knowledge management, breaks down barriers
to information flow, and optimizes the management efficiency of R&D teams, thereby
improving digital innovation [35]. Digital innovation achievements are applied to the field
of digital technology, breaking through key technical problems, further accelerating the
development of the digital economy, and strengthening emission reduction.

The decoupling model is an important method to measure whether there is a syn-
chronous relationship between economic growth and material consumption. It is widely
used in the research on the decoupling relationship between economic growth and car-
bon emissions [36]. Scholar’s research shows that the synchronous relationship between
Chinese economic development and carbon emissions is weakened, which is manifested
as a decoupling effect [37,38]. From the perspective of the long-term development trend,
the development level of China’s digital economy continues to improve, while carbon
emissions are gradually reduced. There may not be a synchronous relationship between the
digital economy and the long-term trend of carbon emissions. Based on the above analysis,
hypothesis 1 is proposed.

Hypothesis 1 (H1). The digital economy significantly reduces carbon emissions and, with the
development of the digital economy, the digital economy and carbon emissions show a decoupling effect.

When the digital economy is in its infancy, local governments increase the construction
of new infrastructure, including information infrastructure, innovation infrastructure,
and integration infrastructure represented by information centers, big data centers, 5G
stations. New infrastructure construction has increased energy consumption, which leads
to an increase in carbon emissions to a certain extent [39,40]. When the digital economy
develops to a higher level, the role of digital application and digital innovation in industrial
development is more obvious, and the industrial structure with low energy consumption
and low emissions is further developed to promote the development of a low-carbon
economy and reduce carbon emissions [41]. Therefore, carbon emissions may be increased
when the development level of digital economy is low, and carbon emissions may be
reduced when the development level of the digital economy is high. In addition, the urban
grade and spatial distribution reflect the development level of the digital economy to a
certain extent, and have different effects on regional carbon emissions. Based on the above
analysis, hypothesis 2 is proposed.

Hypothesis 2 (H2). The difference in the development level of the digital economy has a heteroge-
neous impact on carbon emissions.

China has a vast territory and a large number of cities. When formulating policies
to improve green energy efficiency, local governments are bound to consider regional
development conditions, resulting in different policies. Coupled with the distortion and
friction of energy prices, green energy efficiency varies significantly across regions [42].
Due to differences in green energy efficiency, the impact of the digital economy on carbon
emissions may also be different. On the one hand, regions with low green-energy efficiency
are mostly concentrated in central and western China [43], where there are many zombie
enterprises or resource-intensive enterprises, which makes it difficult to achieve emission
reduction through the digital economy [23]; on the other hand, low green-energy efficiency
may affect the development of digitalization and ultimately inhibit the development of a
regional digital economy. In other words, regions with higher green-energy efficiency may
be more flexible in production, and digital technology is integrated into production as an
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important factor of production, thereby greatly reducing carbon emissions. Based on the
above analysis, hypothesis 3 is proposed.

Hypothesis 3 (H3). The effect of the digital economy on carbon emission reduction is affected by
green energy efficiency. The higher the green energy efficiency, the more obvious the effect of the
digital economy on carbon emission reduction.

3. Research Methodology, Variable Selection, and Data Sources
3.1. Model Settings
3.1.1. Fixed Effect Model

This paper establishes a panel data fixed-effect model to analyze the impact of the
digital economy on carbon emissions. The regression model is shown in Equation (1).

CEit = α0 + α1EDIit + ρZit + µi + εit (1)

where i denotes the city and t is the year. CEit and EDIit represent carbon emission and the
comprehensive index of the digital economy development level, respectively. Zit is a set of
control variables, including economic development (GDP), energy structure (Ener), urban
construction status (Road), industrial Development (Elec), and financial development level
(Fin). µi is the individual fixed effect, and εit is the random disturbance term.

3.1.2. Decoupling Model

A decoupling index can quantify the relative relationship between economic devel-
opment and carbon emissions [44]. This paper uses the Tapio model [45] to calculate and
classify the relative relationship between the digital economy and carbon emissions, and
analyzes the relative relationship between them. The Tapio model is shown in Equation (2).

Ds
it =

(CEi,t − CEi,t−1)/CEi,t−1

(EDIi,t − EDIi,t−1)/EDIi,t−1
(2)

where Ds
it represents the Tapio decoupling index, and s represents the standard decou-

pling index.
According to the value of the Tapio decoupling index, the decoupling status can be

divided into the following eight categories, and the classification is shown in Figure 1.
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3.1.3. SBM Model

In this paper, the SBM model considering unexpected output is used to calculate green
energy efficiency (GEE). Tone [46] improved the traditional data envelopment analysis
(DEA) and proposed the SBM model, in which relaxation variables are introduced to
accurately measure the efficiency in the presence of unexpected output. The SBM model is
a typical nonlinear programming problem. The method proposed by Charnes and Cooper
(1962) is used for linear improvement [47], and model (3) is obtained.

GEEit = min(t− 1
m

m
∑

i=1

s−i
xi0

)

1 = t + 1
p+q (

p
∑

r=1

sg
r

yg
r0
+

q
∑

r=1

sb
r

yb
r0
)

x0t = Xλ + s−

yg
0t = Ygλ− sg

yb
0t = Ybλ + sb

t > 0
s− ≥ 0, sg ≥ 0, sb ≥ 0, λ ≥ 0

(3)

where GEEit are the calculation results of green energy efficiency. m, p, and q are the
quantities of input, expected output, and unexpected output, respectively. s−, sg, and sb

are the relaxation variables of input, expected output, and unexpected output, respectively.
x, yg, and yb are input, expected output, and unexpected output, respectively, and their
element dimensions can be expressed as: x ∈ Rm, yg ∈ Rp, and yb ∈ Rq, respectively. X, Yg,
and Yb are the matrix composed of x, yg, and yb, respectively. λ is the weight vector; (x0, yg

0 ,
yb

0) is the decision-making unit.

3.1.4. Interaction Effect Model

Incorporating the interaction term between the digital economy and green energy
efficiency into the fixed-effect model can verify whether the role of the digital economy
on carbon emissions is affected by green energy efficiency. This paper uses the methods
of Peng et al. [48] to build an interaction effect model, and the specific model is shown in
Equation (4).

CEit = β0 + β1EDIit + β2GEEit + β3EDIit ∗ GEEit + ϕZit + µi + εit (4)

where EDIit∗GEEit refers to the interaction term between the digital economy and green
energy efficiency. If the regression coefficient of the interaction term is significant, it
indicates that the effect of the digital economy on carbon emission reduction will be
affected by green energy efficiency.

3.1.5. Threshold Model

Referring to the method of Hansen [49], the indicator function is introduced to con-
struct a threshold model to verify the impact of the digital economy on carbon emissions
under different green energy efficiencies. The specific model is shown in Equation (5).

CEit = γ0 + γ1EDIit · I(GEEit < θ1) + γ2EDIit · I(θ1 ≤ GEEit < θ2) + γ3EDIit · I(GEEit ≥ θ2) + τZit + µi + εit (5)

where GEEit is the threshold variable. θ is the threshold value. I(·) is the indicating function;
when the expression in brackets is true, the value is 1, otherwise the value is 0. γ1, γ2, and
γ3 represent the impact of the digital economy on carbon emissions under different levels
of green energy efficiency.
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3.2. Variable Description
3.2.1. Explained Variable

The explained variable is the carbon emissions (CE). China’s urban carbon emissions
include carbon emissions from energy consumption, as well as carbon emissions from
power and thermal energy consumption [50,51]. We use the conversion coefficient provided
by IPCC 2006 to calculate the carbon emissions of energy consumption [52]. We refer to
the methods of Glazer and Kahn [53] to calculate the carbon emissions generated by
power consumption. China’s power grid is divided into six regions, and each regional
power grid has only one emission coefficient. The benchmark emission coefficient of each
regional power grid has been released. Calculate the carbon emissions generated by power
consumption in each city by using the benchmark emission coefficient of each regional
power grid and urban power consumption. We use urban heating data, thermal efficiency,
and the raw coal calorific value coefficient to calculate the amount of raw coal required.
According to the carbon emission coefficient per kilogram of raw coal in IPCC 2006, the
carbon emissions generated by central heating can be calculated by using the amount of
raw coal consumed by thermal energy [50].

3.2.2. Explanatory Variable

The explanatory variable is the comprehensive index of the digital economy develop-
ment level (EDI). Referring to the relevant literature [21–23,54,55], the four dimensions of
digital infrastructure, digital development status, digital development vitality, and digital
development application are selected to build the index system, and the entropy method is
used to measure the comprehensive index of the digital economy development level. The
indicator system is shown in Table 1.

Table 1. Comprehensive index of digital economy development level.

Primary Index Secondary Index Third Index

Digital economy
development level

Digital infrastructure Mobile phone penetration rate
Internet penetration rate

Digital development status
R&D expenditure

Total amount of telecommunications business
Number of employees in related industries

Digital development vitality
Proportion of education expenditure

Average number of college students per 100,000 population
Number of newly established information transmission,

software, and information technology service enterprises

Digital development application Digital inclusive financial index
Digital word frequency of listed companies

The rise of digital economy benefits from the wide application of digital technol-
ogy [21]. Improving the construction of digital infrastructure is not only the premise of
the application of digital technology but also the condition for the rapid development
of digital economy. Digital infrastructure indicators include two secondary indicators:
mobile phone penetration rate and internet penetration rate, which can directly reflect
the development level of regional informatization and the application degree of digital
technology in society [23,52]. The digital development status is an indicator that directly
reflects the degree of local digital development. R&D expenditure shows the importance
that the government and enterprises attach to the development of science and technol-
ogy. The total amount of telecommunications business shows the degree of integration
between the internet and traditional industries, and the number of employees in related
industries reflects the current industry capacity. It is a measurement index that reflects
the “hard power” of high-tech industries. Digital development vitality is an inexhaustible
driving force for the development of the digital economy and an indispensable dimension
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in the comprehensive index system. The stronger the innovation ability, the greater the
informatization development potential. The indicators of digital development vitality
are mainly expressed by the proportion of education expenditure, the average number of
college students per 100,000 population, and the number of newly established information
transmission, software, and information technology service enterprises each year, which
can reflect the importance attached to innovation by the local government and scientific
research institutes and can also reflect the local innovation output capacity [22]. The digital
development application [21] mainly examines the application of digital technology by
finance and listed enterprises, including two secondary indicators: the digital inclusive
financial index and the digital word frequency of listed companies. The digital inclusive
finance index reflects the development level of regional digital finance and green finance.
This paper selects the word frequencies of “digital economy”, “cloud computing”, “big
data”, “blockchain”, “artificial intelligence”, “AI”, “data mining”, and so on. The number
of digital word frequencies of listed companies obtained by the crawler of the annual
reports of Listed Companies in China from 2011 to 2019 is an important indicator of the
importance of listed companies to the digital economy.

3.2.3. Threshold Variable

In this paper, the total fixed investment, the number of employees at the end of
the year, and industrial power consumption are selected as input indicators. GDP is
selected as the expected output indicator. Industrial wastewater emissions, industrial sulfur
dioxide emissions, and industrial dust emissions are selected as unexpected indicators.
The SBM model is used to calculate green energy efficiency (GEE). Green energy efficiency
comprehensively considers the input, expected output, and unexpected output of resources
and fully considers the utilization of resources and environmental costs. The higher the
measured value, the higher the green energy efficiency, and vice versa. In the study of the
relationship between the digital economy and carbon emissions, green energy efficiency
is taken as a threshold variable to verify the impact of the digital economy on carbon
emissions when green energy efficiency is different.

3.2.4. Control Variables

To more accurately analyze the impact of the digital economy on carbon emissions,
the following control variables are set: (1) economic development level (GDP), expressed
in GDP; (2) energy structure (Ener), expressed by coal consumption per RMB 10,000 of
GDP; (3) urban construction status (Road), expressed by per capita road area; (4) industrial
development (Elec), expressed by the ratio of industrial power consumption to GDP; and
(5) financial development level (Fin), expressed by the ratio of financial deposits to GDP at
the end of the year.

3.3. Data Source

Based on the relevance, continuity, and authenticity of data, this paper establishes
a panel dataset with 278 cities in China from 2011 to 2019 to empirically investigate the
impact of the digital economy on carbon emissions and its mechanism. The digital inclusive
finance index is from the digital finance research center of Peking University. Other data
are from the China Urban Statistical Yearbook, the statistical yearbooks of various cities,
and the statistical bulletin of national economic and social development. Some missing
data are supplemented by linear interpolation.

Considering the data fluctuation of different dimensions, logarithms are taken for
carbon emissions and economic development to solve the heteroscedasticity problem.
Before regression analysis of panel data, a unit root test is needed to ensure data stability.
LLC, ISP, and Fisher tests show that the data are stable. The average VIF value is 1.66, and
there is no significant multicollinearity. Table 2 shows the descriptive statistical results of
the main variables.
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Table 2. Descriptive statistical results of main variables.

Variables Observations Mean Std.Dev. Minimum Maximum

CE 2502 6.0708 1.0792 2.4511 10.0372
EDI 2502 0.0678 0.0821 0.0080 0.8774
GDP 2502 16.4444 0.9325 12.7644 19.4112
Ener 2502 0.0933 0.3403 0.0041 14.9024
Road 2502 5.0855 6.4612 0.1812 73.0424
Elec 2502 0.0585 0.1127 0.0004 2.3764
Fin 2502 1.6744 1.3693 0.3711 24.8000

4. Empirical Results and Analysis
4.1. Regression Analysis of Benchmark Model

The result of the Hausman test is 254.64 (0.000), which shows that the fixed-effect
panel data model is selected for regression modeling. Table 3 lists the regression results
of the fixed-effects model of the digital economy on carbon emissions. The results show
that the digital economy reduces carbon emissions regardless of whether control variables
are added or not and has passed the significance test. The level of economic development
and the level of financial development play important roles in promoting carbon emis-
sions. This may be because cities with better economic development vigorously develop
the digital economy and increase investment in urban municipal construction and new
infrastructure construction, thus increasing the consumption of energy and chemical prod-
ucts, resulting in an increase in carbon emissions. The energy structure and industrial
development are closely related to the energy consumption and industrial structure of the
city. The unreasonable energy structure and the imbalance of the industrial structure will
lead to the production of a large amount of carbon dioxide, which will greatly promote
carbon emission.

Table 3. Benchmark regression results.

Variables
(1) (2)

CE CE

EDI −2.1049 ***
(−3.29)

−0.9237 *
(−1.82)

GDP 0.3559 ***
(7.21)

Ener 0.2941 ***
(4.93)

Road 0.0067
(1.38)

Elec 0.4755 **
(2.43)

Fin 0.0596 **
(2.50)

Constant −2.1049 ***
(−3.29)

0.0903
(0.11)

City FE Yes Yes
Year FE No No

R-squared 0.3446 0.6855
Observations 2502 2502

Note: *, **, and *** represent the 10%, 5%, and 1% significance levels, respectively.

4.2. Analysis of Decoupling Effect

The decoupling index between the digital economy and carbon emissions is calculated
through the decoupling model. The range of the coupling index corresponds to the type
of urban development one by one. The results are shown in Table 4. The results show
that the number of cities that are absolutely decoupled has experienced a change of first
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decreasing and then increasing. On the whole, carbon emissions have been significantly
decoupled from the development level of the digital economy in the past decade. There are
more and more cities where, from extensive expansion to low-carbon development, the
results of carbon emission reduction are remarkable. The benchmark regression results and
decoupling-effect results jointly verify hypothesis 1.

Table 4. Results of decoupling effect.

Year Decoupling Index Range Form of Expression Development Type EDI-CE

2011–2013

(−∞, 0) Absolute decoupling Low-carbon development 191
[0, 0.8) Relative decoupling of growth Intensive expansion 30

[0.8, 1.2) Growth link Inefficient expansion 4
[1.2, +∞) Relatively negative decoupling of growth Extensive expansion 53

2014–2016

(−∞, 0) Absolute decoupling Low-carbon development 143
[0, 0.8) Relative decoupling of growth Intensive expansion 52

[0.8, 1.2) Growth link Inefficient expansion 14
[1.2, +∞) Relatively negative decoupling of growth Extensive expansion 69

2017–2019

(−∞, 0) Absolute decoupling Low-carbon development 208
[0, 0.8) Relative decoupling of growth Intensive expansion 33

[0.8, 1.2) Growth link Inefficient expansion 11
[1.2, +∞) Relatively negative decoupling of growth Extensive expansion 26

4.3. Heterogeneity Analysis

Due to the difference of regional resource endowment and urban development level,
there are obvious differences in the development level of the digital economy between
cities. Therefore, this paper studies the heterogeneous impact of the digital economy on
carbon emissions according to the development degree of cities. According to the spatial
distribution, cities are divided into eastern cities, central cities, and western cities (see
Appendix A for provincial distribution of cities in each region), and the impact of the
digital economy on carbon emissions is discussed respectively. The results are shown in
columns 1–3 of Table 5. First, finance divides all cities in China into first tier cities, new first
tier cities, second tier cities, third tier cities, fourth tier cities, and fifth tier cities. In this
paper, first tier cities, new first tier cities, second tier cities, and third tier cities are defined
as more developed cities, and fourth tier and fifth tier cities are defined as less developed
cities. The impact of the digital economy on carbon emissions is discussed respectively.
The results are shown in columns 4–5 of Table 5.

Columns 1–3 of Table 5 are the fixed-effect-model regression results of the digital
economy and carbon emissions in the eastern, central, and western cities of China. From
the results, it can be seen that the regression coefficient of the digital economy on carbon
emissions in eastern cities is −0.5907, which significantly reduces carbon emissions. The
role of the digital economy in central cities is smaller and not significant compared to that in
eastern cities. The digital economy in western cities promotes carbon emissions. Columns
4–5 represent the fixed-effect-model regression results of more developed cities and less
developed cities, respectively. It can be seen that the digital economy of more developed
cities significantly reduces carbon emissions, while the development of the digital economy
of less developed cities has a negative effect on carbon emissions, but it is not significant.
To verify the impact of the digital economy on carbon emissions in the fourth and fifth
tier cities, fifth tier cities are regressed separately. The results are shown in column 6 of
Table 5. The results show that the digital economy promotes carbon emissions in the least
developed cities in China, which confirms the heterogeneous impact of the development
of the digital economy on carbon emissions and verifies hypothesis 2. The reason for the
heterogeneity may be that the eastern cities and more developed cities have had a relatively
high level of digital development earlier and use clean energy more effectively, so they have
a significant negative effect on carbon emissions. In addition, most of the less developed
cities are concentrated in the western and northeast regions of China. Most of these regions
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take firewood and coal as the main heating sources to ensure daily life, which is also an
important source of carbon emissions in the less developed regions.

Table 5. Heterogeneity impact results.

Variables
(1) (2) (3) (4) (5) (6)

CE CE CE CE CE CE

EDI −0.5907 *
(−1.67)

−0.2574
(−0.15)

0.7974
(0.30)

−0.9352 *
(−1.80)

−0.0623
(−0.10)

0.8842
(0.54)

GDP 0.5745 ***
(12.90)

0.3118 ***
(4.63)

0.4662 ***
(3.69)

0.5161 ***
(9.01)

0.4299 ***
(7.94)

0.5097 ***
(5.64)

Ener 5.7145 ***
(4.57)

0.2956 ***
(6.38)

0.2840 ***
(11.67)

4.6919 ***
(5.56)

3.3923 ***
(5.49)

0.2831 ***
(19.78)

Road 0.0080 ***
(2.75)

−0.0010
(−0.15)

−0.0115
(−1.60)

0.0121 **
(2.60)

0.0174
(1.48)

−0.0174 **
(−2.02)

Elec 0.7627
(1.06)

0.3993 **
(2.30)

0.1352
(1.14)

0.5089
(1.52)

0.5732 **
(1.91)

0.1045
(1.65)

Fin 0.0030
(0.16)

0.0477 *
(1.76)

0.1398 **
(2.52)

−0.0422
(−1.55)

−0.0098
(−0.48)

0.1510 ***
(4.51)

Constant −3.5700 ***
(−4.31)

0.5082
(0.45)

−2.1078
(−1.02)

−2.4752 **
(−2.44)

−1.5097
(−1.63)

−2.7413 *
(−1.84)

City FE Yes Yes Yes Yes Yes Yes
Year FE No No No No No No

R-squared 0.8967 0.3759 0.2514 0.8806 0.9312 0.3691
Observations 990 981 531 1035 1467 747

Note: *, **, and *** represent the 10%, 5%, and 1% significance levels, respectively.

4.4. Regression Analysis of Interaction Effect Model and Threshold Model

To verify the role of green energy efficiency in the impact of the digital economy on
carbon emissions, the interactive effect model and threshold model are used for verification.
The results are shown in Table 6. From the results in column 1 of Table 6, the estimated
coefficients of the digital economy and green energy efficiency are −2.1546 and −0.7926,
respectively, which have passed the significance level test of 1%, indicating that the digital
economy and green energy efficiency have significantly reduced carbon emissions. The
coefficient of the interaction term between the digital economy and green energy efficiency
is significantly positive, indicating that green energy efficiency strengthens the role of
the digital economy in promoting carbon emission reduction, and the role of the digital
economy in carbon emission is affected by green energy efficiency.

This paper selects green energy efficiency as the threshold variable and the digital
economy as the threshold dependent variable to explore the specific impact of the digital
economy on carbon emissions under different levels of green energy efficiency. First,
we verified whether there is a threshold effect according to the bootstrap method. The
results are shown in Table 7. The results show that the F statistic of the dual threshold
model with green energy efficiency as the threshold variable is significant and the triple
threshold model is not significant, indicating that there are two thresholds between the
digital economy and carbon emissions, which are 0.1872 and 0.2840, respectively.

According to the threshold value obtained, the total sample is divided into three
section samples of low efficiency of green energy, medium efficiency of green energy, and
high efficiency of green energy. The threshold model is used to test the differential impact
of the digital economy on carbon emissions in different sections of green energy efficiency.
The results are shown in column 2 of Table 6. The results show that when green energy
efficiency is in the low range, the impact of the digital economy on carbon emissions is
significantly positive; with the improvement of green energy efficiency, the impact of the
digital economy on carbon emissions turns to inhibition. When green energy efficiency is at
a medium level, the digital economy reduces carbon emissions, but the emission reduction
effect is not significant; When green energy efficiency develops to a high level, the digital
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economy can significantly inhibit carbon emissions, which verifies hypothesis 3. The main
reason for the existence of a threshold effect is that when green energy efficiency is low, the
extensive development of cities is more serious, and most enterprises are still in the digital
start-up or transformation stage, so green energy efficiency has difficulty playing a role in
it. When green energy efficiency develops to a certain level, and the digital economy is
integrated into the process of industrial development, the role of green energy efficiency on
carbon emissions becomes more and more significant, and ultimately significantly reduces
carbon emissions.

Table 6. Regression results of interaction effect model and threshold model.

Variables
(1) (2)

CE CE

EDI −2.1546 ***
(−3.47)

GEE −0.7926 ***
(−5.00)

EDI∗GEE 2.3405 ***
(3.05)

EDI (Th < θ1) 2.3137 ***
(3.32)

EDI (θ1 ≤ Th < θ2) −0.3092
(−0.56)

EDI (Th ≥ θ2) −1.3798 **
(−2.58)

GDP 0.4384 ***
(8.76)

0.4227***
(17.97)

Ener 0.3006 ***
(5.03)

0.2980 ***
(15.06)

Road 0.0052
(1.15)

0.0061 *
(1.91)

Elec 0.3983 **
(2.30)

0.4268 ***
(5.57)

Fin 0.0468 **
(2.13)

0.0513 ***
(7.75)

Constant −0.9411
(−1.14)

−0.9880 **
(−2.50)

City FE Yes Yes
Year FE No No

R-squared 0.7184 0.6621
Observations 2502 2502

Note: *, **, and *** represent the 10%, 5%, and 1% significance levels, respectively.

Table 7. Threshold test results of green energy efficiency.

Threshold Variable Threshold Test F-Statistic p-Value
Critical Value

1% 5% 10%

GEE

Single threshold 50.58 0.0015 21.9011 26.7847 39.0671
Double threshold 23.35 0.0535 19.0074 23.6796 26.5915
Single threshold 50.58 0.0035 23.3312 27.5340 38.3423

Double threshold 23.35 0.0455 18.4858 23.1141 35.6531
Triple threshold 10.41 0.5910 23.5394 27.6029 38.6040

Note: p-value and critical value are obtained by repeated sampling 2000 times with the bootstrap method.

5. Robustness Test
5.1. Replace Econometric Model

To test the effectiveness of the fixed-effect model, this paper uses the GMM method
for verification, and the results are shown in column 1 of Table 8. The results of AR
(1) and AR (2) show that there is no second-order sequence correlation in the random
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disturbance term of the first-order difference equation. The Hansen test shows that there
is no over-identification problem. The regression coefficient of the GMM method for the
digital economy and carbon emissions is estimated to be −0.9936, which has passed the
10% significance test, indicating that the digital economy has significantly reduced carbon
emissions. The regression coefficient between the digital economy and carbon emissions
measured by the fixed-effect model is −0.9237. The coefficients estimated by the two
regression methods are not much different, indicating that the fixed-effect model is effective
and the results are robust.

Table 8. Robustness test results.

Variables
(1) (2) (3) (4)

CE CE CE CE

EDI −0.9936 *
(1.74)

EDI_fa −0.0918 **
(−2.14)

DID −0.0778 *
(−1.75)

−0.0765 *
(−1.68)

GDP 0.9892 ***
(16.46)

0.3092 ***
(5.54)

0.4224 ***
(8.26)

0.4350 ***
(8.33)

Ener 0.4014 *
(1.82)

0.2944 ***
(5.01)

0.1474 ***
(3.42)

0.1332 ***
(3.34)

Road 0.0410 ***
(3.39)

0.0048
(0.93)

0.0130
(1.11)

0.0144
(1.15)

Elec 1.9855 ***
(3.67)

0.4485 **
(2.46)

0.4284 **
(2.53)

0.4524 ***
(2.65)

Fin 0.0969 ***
(2.98)

0.0488 **
(2.03)

0.1481 ***
(5.36)

0.1533 ***
(5.24)

Constant −10.6737 ***
(−10.60)

0.8418
(0.89)

−1.2316
(−1.43)

−1.4408
(−1.64)

City FE Yes Yes Yes Yes
Year FE No No No No
AR(1) 0.000
AR(2) 0.505

Hansen 0.781
R-squared 0.6901 0.6912 0.6835

Observations 2224 2502 1872 1813
Note: *, **, and *** represent the 10%, 5%, and 1% significance levels, respectively.

5.2. Replace Variable Calculation Method

To evaluate the robustness of the model, this paper replaces the calculation method of
the comprehensive index of the development level of the digital economy, adopts the factor
analysis method to calculate the digital economy (EDI_fa), and incorporates it into the
fixed-effect model. The results are shown in column 2 of Table 8. The results show that the
regression coefficient of the digital economy is −0.0918 and has passed the significance test
of 5%. The digital economy has significantly reduced carbon emissions, which is consistent
with the regression result of the fixed-effect model, and the result is robust.

5.3. Replace Explanatory Variable

The “Broadband China” policy is an important measure to fully apply network in-
frastructure to the development of urban technology to promote the rapid development
of the digital economy. This paper uses the policy effect of “Broadband China” to replace
the digital economy to evaluate the policy effect and verifies the robustness of the results.
The State Council issued the measures for the implementation of the “Broadband China”
strategy in 2013, and set up pilot cities in 2014, 2015, and 2016, respectively. Based on the
practice of Shi et al. [56], the first batch of pilot cities in 2014 were taken as the experimental
group, and the pilot cities in 2015 and 2016 were deleted from the sample to ensure that the
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results of the DID method and PSM-DID method are the net effect (DID) of the “Broadband
China” policy in 2014. The results are shown in columns 3 and 4 of Table 7. In the third
and fourth columns, the DID and PSM-DID methods are used to evaluate the policy effect.
The results show that the coefficients of the DID and PSM-DID methods for policy effect
evaluation are −0.0778 and −0.0765, respectively. Through the 10% significance test, it
shows that the “Broadband China” policy has a significant negative impact on carbon
emissions, which is consistent with the regression results of the benchmark model, proving
the robustness of the results.

5.4. Instrumental Variable Method

To effectively alleviate the endogenous problem caused by two-way causality, this
paper uses the method of Shen et al. [57] for reference and uses the two-stage least square
method for testing. From the perspective of the development process of China’s digital
economy, the internet was accessed through telephone lines, and areas with high penetra-
tion of fixed-line telephones are likely to have high penetration of the internet. One of the
jobs of the post office in the last century was to lay fixed-line telephones. The number of
post offices also affects the popularity of fixed-line telephones to a certain extent. The total
volume of the post and telecommunications business is a measure of the development of the
post and telecommunications, which can integrate the penetration of fixed-line telephones
and the distribution of post offices. Carbon emissions are mainly closely related to energy
use, technological progress, and economic development, while the total volume of the post
and telecommunications business has basically no impact on carbon emissions. Based on
the above analysis, the total volume of the post and telecommunications business in 1999 is
selected as the instrumental variable of the digital economy.

Drawing on the methods of Nunn and Qian [58], this paper constructs the interaction
term between the total per capita post and telecommunications business in 1999 (related
to individuals) and the fixed-asset investment in the national information transmission,
computer service, and software industry in the previous year (related to time) as an
instrumental variable (Instr), and uses two-stage least square estimation to test. The results
are shown in Table 9. The results of the KP-LM statistics show that there is no problem
of insufficient identification of instrumental variables. CD Wald statistics are significantly
greater than the critical value of 16.38 at the 10% level; there is no problem of weak
instrumental variables. Therefore, the instrumental variables constructed in this paper are
effective. The results in column 2 of Table 9 show that the digital economy has significantly
reduced carbon emissions. The regression results considering instrumental variables are
consistent with the benchmark regression results, indicating that the results of this paper
are still robust after considering endogenous problem.

Table 9. Results of instrumental variable method.

Variables
First-Stage Second-Stage

CE CE

EDI −0.9025 ***
(−2.88)

Instr 1.02 × 10−8 ***
(8.55)

GDP 0.0532 ***
(23.21)

0.8545 ***
(34.38)

Ener 0.0049
(1.47)

0.2047
(1.52)

Road 0.0011 **
(2.33)

0.0326 ***
(8.63)
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Table 9. Cont.

Variables
First-Stage Second-Stage

CE CE

Elec −0.0117
(−0.58)

3.3471 ***
(6.90)

Fin 0.0141 ***
(6.21)

0.0982 ***
(3.50)

Constant −0.8519 ***
(−22.47)

−8.3473 ***
(−19.82)

City FE Yes Yes
Year FE No No

KP-LM 8.411
(0.0037)

CD_Wald F 546.141
(16.38)

R-squared 0.6723 0.6700
Observations 2034 2034

Note: **, and *** represent the 5%, and 1% significance levels, respectively.

6. Conclusions and Policy Implications
6.1. Conclusions

This paper mainly studies the impact of the digital economy on carbon emissions
and their long-term development trends, the heterogeneous impact of the difference in
the development level of the digital economy on carbon emission reduction, and the role
of green energy efficiency in the relationship between the digital economy and carbon
emissions. Therefore, based on the panel data of Chinese cities from 2011 to 2019, this
paper constructs an index system to measure the comprehensive development index of the
digital economy, and uses a fixed-effect model and threshold model to test the impact of
the digital economy on carbon emissions and the role of green energy efficiency in multiple
dimensions. The main research conclusions are as follows:

First, the development of the digital economy can significantly reduce carbon emis-
sions. After a series of tests, the results are robust. The regression results show that the
digital economy has a significant inhibitory effect on carbon emissions, while the levels
of economic development, financial development, energy structure, and industrial devel-
opment have a significant role in promoting carbon emissions. This may be due to the
increased investment in new infrastructure construction, which increases carbon emissions,
or it may be due to the imperfect industrial structure, which leads to a large amount of
carbon emissions. The results of the decoupling effect show that with the development
of the digital economy more and more cities have absolute decoupling, from extensive
expansion to low-carbon development.

Second, due to the differences in the development level of the digital economy among
cities, the impact on carbon emissions is also different. When the development of the
digital economy is at a low level, the digital economy increases carbon emissions. When the
digital economy develops to a higher level, the digital economy reduces carbon emissions.
The results of heterogeneity analysis also show that the development level of the digital
economy has different effects on carbon emissions. This may be related to the stage of the
development of the digital economy. When the digital economy is in its infancy, a large
amount of investment leads to an increase in carbon emissions. With the development of
the digital economy, the dividends of the digital economy on carbon emissions gradually
emerge and reduce carbon emissions.

Third, the interactive-effect model shows that the effect of the digital economy on
carbon emissions is affected by green energy efficiency. When green energy efficiency
is in a low sector, the digital economy promotes carbon emissions to a certain extent.
However, when green energy efficiency develops to a higher level, the digital economy can
significantly inhibit carbon emissions.
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6.2. Policy Implications

The research conclusion of this paper has a reference role for unswervingly developing
the digital economy to reduce carbon emissions.

First, while vigorously developing the digital economy, cities across the country should
pay attention to improving the quality of development. China has reached a consensus
to accelerate the development of the digital economy from top to bottom, but it does not
pay enough attention to the quality of the digital economy development. For the further
development of China’s digital economy, the government should combine local advantages,
play a guiding and supporting role, create a good business environment, further attract
foreign investment, absorb foreign advanced digital technology and ideas, give full play to
the spillover effect of knowledge and technology, improve the quality of the labor force,
accelerate the application of 5G commercialization, and stimulate enterprises to explore the
application scenarios of the digital economy to further release the dividends of the digital
economy and lead the digital economy to a higher level.

Second, there is a large gap in the development of the digital economy among cities
in China, and the different development levels also have a huge heterogeneous impact on
carbon emissions. Therefore, recognizing the current situation of regional development and
adapting measures to local conditions are important prerequisites for the development of
the digital economy. Build new urban agglomerations around high-level cities with digital
economic development to drive the development of the surrounding cities. For low-level
cities with digital economy development, although there is a temporary increase in carbon
emissions we cannot ignore the huge dividends brought by the development of the digital
economy. The development of the digital economy requires leading enterprises to take the
lead and expand the digital industrial chain. In particular, high-tech enterprises should be
given incentives and loan interest subsidies for key industries and projects.

Third, enterprises should form the concept of green development, integrate digital
technology into industrial development, speed up the transformation of achievements, and
improve the utilization rate of green energy. Focus on low-carbon-energy technology and
green digital technology to improve the effect of technology emission reduction. Support
the digital transformation of enterprises and increase the use of clean energy. In the process
of promoting the development of the digital economy, we should break the regional and
time constraints, take urban agglomeration as the basic unit, improve the collaborative
governance capacity of the digital economy, promote regional common development, make
the digital economy an important engine of carbon emission reduction, and speed up the
realization of the goal of carbon neutrality.
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Appendix A

The eastern cities are located in Hebei, Liaoning, Jiangsu, Zhejiang, Fujian, Shan-
dong, Guangdong, Guangxi, and Hainan; the central cities are located in Shanxi, Jilin,
Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan, and Shaanxi; the western region is
located in Inner Mongolia, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia,
and Xinjiang.
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