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Abstract: The openly released and measured data from automatic hydrological and water quality
stations in China provide strong data support for water environmental protection management
and scientific research. However, current public data on hydrology and water quality only provide
real-time data through data tables in a shared page. To excavate the supporting effect of these data
on water environmental protection, this paper designs a water-quality-prediction and pollution-
risk early-warning system. In this system, crawler technology was used for data collection from
public real-time data. Additionally, a modified long short-term memory (LSTM) was adopted to
predict the water quality and provide an early warning for pollution risks. According to geographic
information technology, this system can show the process of spatial and temporal variations of
hydrology and water quality in China. At the same time, the current and future water quality of
important monitoring sites can be quickly evaluated and predicted, together with the pollution-risk
early warning. The data collected and the water-quality-prediction technique in the system can be
shared and used for supporting hydrology and in water quality research and management.

Keywords: water quality evaluation; pollution risk; water-quality early-warning system; machine
learning; web crawler; LSTM

1. Introduction

Environmental monitoring is a fundamental component of environmental protection
and a key tool for advancing ecological development. China has had an established national
surface-water monitoring network since 1991. Since 1999, it has begun to conduct pilot
automatic monitoring of the surface-water quality in some river basins [1]. Currently, it has
thousands of national surface-water environmental-quality-monitoring sections, forming
a national surface-water environmental-quality-monitoring network, which established
a monitoring mode. This combines the manual monitoring of collection and separation
with the automatic monitoring of water quality, and discloses these real-time monitoring
data [2]. It is of great significance to fully dig out the value of real-time monitoring data
of national surface-water quality, which provides a better comprehension of the changing
trends in China’s water environment [3].

With the rapid development of the global network, a large amount of information
and data has flooded into the Internet [4]. Understanding how to effectively acquire
useful information from network public data has emerged as a main issue. Web crawler
technology was created in order to extract the relevant data in batches from the vast amount
of data on the Internet automatically, and it is currently widely used in search engines,
large-scale data mining and analysis, artificial intelligence and machine learning dataset
production, among other fields [5]. A lot of methods have been created for data crawling
and gathering from the web, such as the autonomous crawling and analysis tool from the
dark web [6], the query-based crawler [7] and the web-crawled literature [8]. It is feasible
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to readily and swiftly obtain real-time monitoring data from the opened national surface-
water quality data through the robust data-crawling, processing and analysis capabilities
of a web crawler.

In reality, several researchers are now using the national surface-water-quality-monitoring
dataset as a data source and a support for their work. For example, the evolution of water
quality in Ma’an City [9], Zhujiang River [10] and Taizi River [11] have been analyzed by
crawled data from the open dataset. In recent years, the spatial distribution of river-water
quality and its affecting factors at a national level has been conducted based on these
data [12]. The aforementioned research demonstrates that, although the national surface-
water quality-monitoring dataset has been fully utilized in the assessment of surface-water
environmental quality and the analysis of historical water-quality changes, they are rarely
used in the field of surface-water quality prediction [13]. In reality, employing historical data
to predict and analyze water quality has substantial practical implications for successfully
reducing the likelihood of water contamination incidents, assisting with environmental
management and protection, etc. Massive, high-frequency and real-time monitoring data
should not only participate in the evaluation, assessment and ranking of surface-water
environmental quality, but it should also be applied to the early warning and prediction
of water environmental quality [14,15]. Water-quality assessment and prediction are the
basis of water-pollution prevention, as well as control and environmental management.
Meanwhile, the statistics on water quality in the entire nation and in various regions are
currently missing from China’s public datasets on water quality, and the visualization
quality is subpar. On the other hand, forecasting capabilities are lacking in the current
national data sharing system for water quality monitoring.

Numerical models are used extensively in water quality prediction and early warn-
ing [16,17]. However, numerical models need a lot of condition data, which adds a lot of
labor. Artificial neural networks (ANNs) have the following characteristics: strong nonlin-
ear mapping ability, high learning accuracy and strong robustness. They represent a better
modeling method for water quality prediction nationwide. Among these, long short-term
memory (LSTM) networks have a good performance in processing data with time series
characteristics [18]. They addresses the issues of gradient explosions and the gradient
disappearance of conventional recurrent networks; LSTM networks are presently used
in many fields, such as trend predictions of COVID-19 [19], sudden change simulations
in financial markets [20] and water quality prediction [21,22]. This research has verified
that the LSTM model has better prediction accuracy than the traditional numerical models.
The LSTM neural network has been utilized extensively in the field of water environment,
although the majority of these networks are only employed in theoretical research projects
and cannot be integrated with monitoring data for real-time prediction, which has no prac-
tical application. In fact, pollution control, environmental governance and environmental
protection all benefit significantly from real-time prediction using monitoring data. As a
result, it is necessary to build a real-time water-quality-prediction system with the help of
the LSTM neural network.

Artificial neural network technology has been widely used in the field of environmen-
tal management and prevention. Developing a real-time monitoring and early-warning
system by fusing it with water quality monitoring with the aid of the neural network’s
potent learning capabilities and the help of the powerful learning ability of the neural net-
work is a popular research issue. In fact, a number of established water-quality-prediction
and early-warning systems have surfaced both domestically and internationally [23]. How-
ever, the majority of these systems concentrate on water quality monitoring and early
warnings in local water and economic breeding fields, rather than establishing a national
water-quality-prediction and early-warning system. Therefore, this paper constructs a
water-quality-prediction and early-warning system, using web crawler technology to
obtain real-time monitoring data from national surface-water monitoring stations and
combining the LSTM neural network model to provide water-quality-prediction and early-
warning services. Comparatively speaking, this system makes full and effective use of
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the national water-quality-monitoring data and establishes a relatively complete national
water-quality-prediction and early-warning system, as well as a data sharing system, which
provides help for the prevention and control of national water environmental pollution
and environmental management.

2. Data and Methods
2.1. Data Sources

The hydrological and water-quality data mentioned in this article were collected from
the national water and rain information network of the Ministry of Water Resources of the
People’s Republic of China (http://xxfb.mwr.cn/sq_djdh.html accessed on 16 September
2022) and the national surface-water quality monitoring and publishing system of the
Ministry of Ecology and Environment of the People’s Republic of China (https://szzdjc.
cnemc.cn:8070/GJZ/Business/Publish/Main.html accessed on 16 September 2022).

2.2. The Philosophy of This System

The purpose of this system was to develop functions for data crawling, storage, water
quality prediction and early warnings based on the public hydrology and water-quality
dataset. One of the most significant features in this process was the ability to automatically
obtain public hydrology and water-quality data through data collecting, cleaning and
storing in real time. On this basis, the LSTM model could be constructed and trained to
accomplish the function of water quality prediction and early warnings. The philosophy of
this system is shown in Figure 1.
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2.2.1. Data Crawling

A monitoring script was set up in the target website through the distill web monitor
plug-in provided by the browser. Crawlers will be launched to acquire and store data
automatically once the update of the target website is detected.

2.2.2. Database

In this system, we chose MongoDB as the storage database for data storage and
maintenance functions, and to establish the data table shown in Table 1.

http://xxfb.mwr.cn/sq_djdh.html
https://szzdjc.cnemc.cn:8070/GJZ/Business/Publish/Main.html
https://szzdjc.cnemc.cn:8070/GJZ/Business/Publish/Main.html


Int. J. Environ. Res. Public Health 2022, 19, 11818 4 of 16

Table 1. The functions of tables used in the database.

ID Tables in the Database Functions

1 Hydrology and water quality
station information table

Store the names and geographical coordinates of
hydrology and water quality stations in China

2 Hydrology station table Store the names of the hydrology sites crawled

3 Water quality site table Store the names of the water quality sites crawled

4 Hydrological data table Store the hydrological data crawled

5 Water quality data table Store the water quality data crawled

Additionally, it also provided a data-cleaning service to remove redundant data and
store new data.

2.2.3. Model Service

The data services section provided data manipulation functions. It was used to
establish the connection session between the server and client, retrieve and analyze data
from the database according to certain conditions, and return prediction results of water
quality by using the LSTM neural network model.

2.2.4. Client

This module provided the functions of data interaction, including data upload, data
download, rendering and producing displays through words, tables or charts. Users could
log in to the system through a browser and make the related operations.

2.3. Process of Data Collecting by the Web Crawler

Web crawlers were used to periodically collect real-time monitoring data of water-
quantity- and water-quality-monitoring stations. The process of the crawler is shown in
Figure 2.
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2.3.1. Website Monitoring and Crawler Starting

A monitor mechanism was created to monitor the content change of the national water
and rain information network, and the national surface-water-quality-monitoring and
publishing system through the Distill Web Monitor plug-in provided by the browser. An
e-mail is sent to a specified mailbox if there are some data updates. The measurement time,
used for data update judgment, of water quality data is monitored by Xpath syntax. The
crawler starts once an update e-mail is captured and parsed by a mailbox-monitoring script.

2.3.2. Data Crawling

The URL of the target website is first parsed through the network data-catching tool
after launching the crawler. Then, a POST request is sent to the object URL through the
request library in Python. After that, the browser receives a response in JSON data from
the object URL. Water quality data is obtained from the JSON data.

2.3.3. Data Cleaning and Storing

Data cleaning is essential before data is stored in a database. After obtaining the water
quality data from the crawler module, the next step is to optimize them. The repeating data
are deleted, as well as the null data. After that, the data are stored in MongoDB, which
is accomplished by calling PyMongo through Python. Firstly, query the monitoring time
of the site and estimate whether the current monitoring time is the same as that stored in
the database table. If so, it can be considered that the data under the corresponding site
was crawled and updated. The storing step will not be started. Otherwise, update the
corresponding site data with the new crawled and cleaned data. Secondly, if the current
traversal site is not recorded in the site data table, create corresponding site records in the
site data table and store the data.

2.4. Model Services Development for Water Quality Assessment and Early Warnings Based on the
LSTM Neural Network

The long short-term memory (LSTM) network is an improved and solvable special
RNN model [24]. By introducing a new internal state and gate mechanism, LSTM networks
have a good performance in solving the problems of gradient disappearance and long-term
dependence, which makes LSTM have selective memory functions [25]. The construction
process of the water-quality-prediction model for river pollution accidents based on LSTM
is shown in Figure 3.

2.4.1. Dataset Organization and Analysis

The dataset contains water quality data from 1863 key monitored sections in China.
The first step is to pretreat the obtained data. The input variables corresponding to
the model output variables are determined through correlation analysis. After that, the
dataset is divided into the training set, test set and validation set. Then, all of these data
are standardized.

2.4.2. Model Developed by LSTM

The LSTM model is an advanced recurrent neural network (RNN) that includes
specialized memory blocks for capturing multi-timestep relationships [26]. The model
structure used in this system is shown in Figure 4.
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Where ct−1 is the cell state at time t−1, ht−1 is the output at time t−1, xt are new
inputs at time t, ot is the value that the output gate produces to determine which parts of
the cell state to output, tanh denotes the tanh function, c̃t is the candidate cell state and it is
the coefficient of c̃t.

The LSTM cell state is the memory space of the whole model, which changes over time.
Three control gates, namely the neural network layer, are the core modules controlling
what information is transferred. In the system, the LSTM model was built based on
the TensorFlow framework. Water quality parameters, such as pH, ammonia nitrogen
(NH+

4 ), dissolved oxygen (DO), water temperature (WT), potassium permanganate index
(CODMn) and turbidity (TU), are set for water environment evaluation. Future water quality
parameters at time t+1 are simulated by LSTM using the historical value of water quality
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parameters. The whole dataset in China is divided to 10 watersheds. Every watershed
is divided into three parts: upstream, middle, and downstream sub-watershed. Every
sub-watershed is modeled by a single LSTM model. Every water quality index has its own
LSTM model. There are 210 developed LSTM models in the whole of China.

2.4.3. Model Training and Testing

After the model is built, the training set of these data is put into the LSTM model for
model training. Optimal hyperparameters parameters are then determined according to
the verification based on the model validation dataset. Finally, the test model accuracy
performance of water quality prediction is made on the test set.

2.4.4. Model Services Deployment

After model testing, the adequate model is picked as a TensorFlow Server to the
system as a model service.

2.5. Client Structures

In order to fulfill the need for a water-quality-assessment and pollution-risk early-
warning system, the client module was designed to include a data visualization module, a
water quality evaluation module and a water-quality pollution-risk early-warning module,
as shown in Figure 5.
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2.5.1. Data Visualization Module

This module is mainly used to visualize the spatial location information of water-
quality-monitoring stations, data analysis and prediction results. Two important func-
tions are designed in the data visualization module. For map display and operation, the
GeoServer and webGIS are used to build a GIS map, which provides the function for map
display, query and spatial data rendering. For data visualization, the time series data is
visualized in the form of a table, chart and animation.

2.5.2. Water-Quality-Assessment Module

This module is mainly used to integrate and analyze the current water-quality-
monitoring data and generate water quality reports within a certain time range, according
to the historical monitoring data. The function of the current water quality analysis is
developed. The water-quality-attainment-standard analysis, proportion of water quality
categories analysis and the link relative ratio analysis are provided, which allows users to
retrieve any site by watershed name, province name or cross-section name. Meanwhile,
water quality reports can be made automatically according to the user’s demands. The
annual water quality report, monthly water quality report and customized definition report
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can be made after determining the parameters, time range and evaluation methods selected
by users.

2.5.3. Water-Quality-Prediction and Early-Warning Module

This module is mainly used to forecast the tendency of water quality in a specified
cross-section or watershed through LSTM. An early warning is made based on the predic-
tion result. The indicators of prediction can be selected from water quality indexes. The
prediction module has two kinds of water-quality-prediction and early-warning modes.

Firstly, there is the automatic prediction and early warning: The water quality con-
centration and water quality grade for every water quality station, sub-watershed and
watershed are made automatically for 24 h at intervals of one hour. The function is auto-
matically started at 0:00 every day. The detail information of water quality trends can be
obtained via the form of a table, chart, etc. The system raises a warning in time once the
predicted indicator is over the standard. At the same time, a water quality report containing
water quality station and watershed information whose water quality is unqualified is
made and sent to the managers.

Secondly, there is the manual prediction and early warning: The system provides
a user-defined prediction function. Based on user-specified water-quality parameters,
stations and time periods, the LSTM model is launched. The prediction results, as well as
early warning reports, are made.

3. Results and Discussion
3.1. Datasets That Were Crawled
3.1.1. The Spatial Distribution of Monitoring Stations

There are a total of 2591 hydrological monitoring stations and 3785 national surface-
water quality stations obtained in the crawler. The distribution of the data sites crawled is
shown in Figure 6.
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As can be seen in Figure 6, hydrological stations are mainly distributed in the eastern
basin, and hydrological stations in the Yangtze River basin and the Yellow River basin are
densely distributed. Hydrological stations are less distributed in the west than the east.
Similar to hydrology stations, water quality stations are mainly distributed in the east of
China, especially in the Yangtze River basin. On the whole, compared to most research,
the location density of sites used for water quality prediction is better [12,27]. This means
that the hydrological stations and water quality stations cover most of the water systems in
China, and this reflects the characteristics of hydrology and water quality in China well.

Obviously, this dataset contains most of China’s central, southern and eastern regions,
and basically covers the main river basins in China. Features of hydrology data indicators
and water quality data indicators obtained in the system are shown in Table 2.

Table 2. Features of the obtained data in the system.

Category Variable Indexes Name Time Range Units

Hydrological monitoring data

WL Water level

Since 2005

m

WWL Warning water level m

Q Flow m3/s

Water-quality-monitoring data

Tub Turbidity of water

Since 2000

NTU

CODMN Permanganate index mg/L

NH+
4 Ammonia nitrogen index mg/L

TP Total phosphorus index mg/L

TN Total nitrogen index mg/L

PH Pondus Hydrogenii -

CHL Chlorophyll α content mg/L

CA Algal density of water cells/L

BOD5 Biochemical oxygen demand mg/L

DO Dissolved oxygen mg/L

WT Water temperature ◦C

WQC Water quality classification -

3.1.2. The Temporal Distribution of Monitoring Stations

Hydrological monitoring data from 2005 to today were obtained. These data were
published at 8:00 and 14:00. Additionally, water quality created every four hours since 2000
was gained. Monitoring data from two stations was displayed as an example. A part of
the hydrological monitoring data from the Taihu station and the water quality of Beijing’s
North Moat station are shown in Figure 7.

As shown in Figure 7a, the water stage, warning water state and quantification of flow
will be released. It is shown that the water stage in the Taihu station was stable at around
3 to 4 m. For water quality, as is shown in Figure 7b, the concentration of PH, CODMn
and dissolved oxygen in the North Moat station was stable. Meanwhile, the turbidity
had relatively large fluctuations from 17 September 2021 to 21 September 2021. These
characteristics are similar to other published research [28,29]. Overall, the quality of these
datasets is good enough to support water quality prediction.
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Figure 7. Part of the hydrological monitoring data at Taihu station (a) and water quality of North
Moat station (b).

3.2. LSTM Model Training and Validation

LSTM models were trained and validated based on the water-quality-monitoring
dataset of every sub-watershed. The Nash efficiency coefficient (NSE) of LSTM models
used in this system for water quality prediction in the Haihe River basin can be seen in
our published paper [26]. It verified that the LSTMs present are better predictors of BOD,
CODMn, CODCr and TP (median Nash–Sutcliffe efficiency reaching 0.766, 0.835, 0.837, and
0.711, respectively) than of NH+

4 , DO, and pH (median Nash–Sutcliffe efficiency of 0.638,
0.625, and 0.229. As an expert for PH (for the cause of large missing PH monitoring data),
these models perform very well. Additionally, the LSTM model in the Yangtze River basin
can be used as an example. In this dataset, we collected the water-quality-monitoring data
of seven indicators in 22 sites from January 2003 to December 2018. The dataset was divided
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into the training set, test set and validation set. Part of the results of LSTM developed for
the Yangtze River basin are shown in Figure 8. CC stands for cross-correlation that indicates
the effect of simulation, which can be calculated as follows:

CC(x, y, k) = CCF(xt, yt−k) (1)

r(x, y) =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(2)

CS(x, y) =
xTy
‖x‖‖y‖ (3)

dCor(x, y) =


√

dCov(x, y)2
√

dCov(x)2dCov(y)2
dCov(x)2dCov(y)2 > 0

0 dCov(x)2dCov(y)2 = 0
(4)

MIC = max

{
I(x, y)

log2 min
(
nx, ny

)} (5)

I(x, y) = H(x) + H(y)− H(x, y) (6)

where CCF denotes the correlation metric formula (Equations (1)–(5)); k is the lag time rang-
ing from 1 to 12; n is the number of variables for the simulation or measured data; x, y are
two different water quality variables; xt = {xk, xk+1, xk+2, . . . , xt}, xt−k = {x0, x1, x2, . . . , xt−k}
and yt−k = {y0, y1, y2, . . . , yt−k}; x = {x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}; dCov(x) rep-
resents the Distance variance of x; dCov(x, y) denotes the Distance covariance between
x and y; H(x) and H(y) are the entropy of x and y, respectively, and H(x, y) is their joint
entropy; B(n) is a coefficient of n; nxny < B(n) and B(n) = n0.6.

It is shown in Figure 8 that the CC value of the models of the validation set (part
a)and test set (part b) is used for predicting ammonia nitrogen (NH+

4 ), biochemical oxygen
demand (BOD), permanganate index (CODMn), dissolved oxygen (DO), hydrogen ion
concentration (PH), total phosphorus (TP) and water temperature (WT). In the test set,
models used to predict PH, WT and TP are acceptable since most of their CC values are
bigger than 0.65, and some models performed well (CC > 0.75). Additionally, the CCs for
NH+

4 and CODMn are close to 0.65. In the validation set, the CC of six indexes, CODMn,
TP, NH+

4 , WT, PH and DO, reach 0.65. Only the CCs for BOD are less than 0.65, which is
around 0.4. The BOD is measured by the microbial electrode method and is only suitable for
low concentrations of water. Meanwhile, the BOD in most of the test sections is relatively
large, which makes the measured data fluctuate greatly and without obvious regularity. As
a result, it is difficult to predict accurately.

Overall, these results are similar to or even better than the results of published research
for monthly water quality predictions [30,31]. According to the previous research, the model
is acceptable when the CC ≥ 0.65 [32] and very good when the CC ≥ 0.75 [26]. Accordingly,
the model has a good performance in predicting water quality.

3.3. System Developments and Implementation
3.3.1. System Development Environment

Based on the B/S architecture and the model-template-view (MTV) framework for
Django 1.8 and Pycharm 2021.3 professional software, the integrated development envi-
ronment was built. MongoBD was set as the primary database to provide a data storage
service. The TensorFlow framework was used to train, build and package the LSTM neural
network model to be a TensorFlow Server.
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lower boundary of the box represents the minimum value. The upper boundary of the box represents
the maximum value. The red dotted lines represent the threshold of acceptable model performance
(CC = 0.65).

3.3.2. Functions of the System

These functions, such as water-environment-monitoring data visualization, water
quality evaluation, water quality prediction and water-pollution-risk early warning were
developed in the system (as shown in Figure 9a,b).
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Figure 9. Functions of the water environment data sharing and analysis system ((a): overview of
water-environment-monitoring data, (b): water quality analysis). Level VI of water quality means
the water quality is worse than level V.

(1) Overview of water environment monitoring data

Figure 9a shows the visualization function of water-quality-monitoring data. The
upper part of the interface integrates the system function area. In the GIS map, we chose the
image map of the Tiandi map service to implement the function of basic map display (https:
//www.tianditu.gov.cn/ accessed on 16 September 2020). In addition, the translucent
and suspended window was used to display the hydrology water-quality-section alarm
information. The water quality statistics were set to enhance interactivity with a GIS map.

(2) Water analysis with with water quality evaluation and prediction

Figure 9b shows the general situation of all water quality sections in the Haihe River
basin and the chart of trends in water quality indicators of specific sections that are predicted

https://www.tianditu.gov.cn/
https://www.tianditu.gov.cn/
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the next day. The suspension toolbar integrates all options for the prediction of water quality
of the watershed. It describes the summary of each cross-section and water quality trend,
specifying the cross-section in the form of a table, chart, etc., which better reflects the
hierarchical relationship between the watershed and section data.

3.4. Effect of a Case of Pollution Warning

The system automatically evaluates the water quality of all sites after prediction by the
LSTM neural network model and renders a red point on the GIS map if the water quality is
over the standard. As shown in Figure 10, the water quality (WQ) level of the Guojiatun
station reached level IV on 26 March 2021 at 4:00, and then reached an inferior level V at
20:00. This means that there may be sudden pollution spills around this station. After the
system detected the pollution, the alarm information of the WQ was displayed in the right
column of the system. Meanwhile, a warning report of water pollution was generated and
sent to the administrator’s mailbox.
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In the early 1990s, the concept of an integrated energy and water quality management
system (EWQMS) was developed to solve water quality, water supply and energy manage-
ment problems, simultaneously. Since then, a lot of water quality management systems
have been developed to display, monitor and assess water quality. From early displays of
water-quality-monitoring data to water quality simulation and prediction with numerical
models, water quality management systems have become more and more powerful [33,34].
Previously, we designed a water environment management system with flexible and exten-
sible service-oriented architecture with the data center, system control center, model center
and client center based on numerical models. This makes it possible for water quality
forecasting in an automatic mode and a user-defined mode [35]. Meanwhile, as well as
other water management systems, the previous systems make water quality simulations
based on mechanism models. It needs preconcert development and a lot of basic condition
data, such as topography data, geomorphology data, hydrology and water pollution source
data. The system built in this paper can make water quality predictions rapidly, based on a
small number of water-quality-concentration data.

4. Conclusions

This paper designed and developed a kind of water-quality-forecasting and warning
system. The system can provide functions for data querying, presenting and analyzing,
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as well as the retrieval and data sharing of historical data. The system can especially
be used for water quality assessment and prediction based on LSTM models. It shows
great significance for the water and environmental management department in obtaining
water quality data and guarding water pollution. The water-quality-prediction and early-
warning system constructed in this paper plays an important role in the promotion of
environmental monitoring and monitoring work, the building of environmental-monitoring
big data systems, and the promotion of ecological civilization construction and ecological
environment-monitoring reform.

However, there are still some weaknesses in this system, such as imperfect data
sharing, and a lack of verification of the accurate prediction and evaluation results. With
the increase in monitoring data and the development of artificial neural networks, this
system develops towards a faster, more professional, more reliable and lower-cost direction
in the field of water quality monitoring and predicting.
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