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Abstract: In order that fully self-driving vehicles can be realized, it is believed that systems where the
driver shares control and authority with the intelligent vehicle offer the most effective solution. An
understanding of driving intention is the key to building a collaborative autonomous driving system.
In this study, the proposed method incorporates the spatiotemporal features of driver behavior
and forward-facing traffic scenes through a feature extraction module; the joint representation was
input into an inference module for obtaining driver intentions. The feature extraction module was
a two-stream structure that was designed based on a deep three-dimensional convolutional neural
network. To accommodate the differences in video data inside and outside the cab, the two-stream
network consists of a slow pathway that processes the driver behavior data with low frame rates,
along with a fast pathway that processes traffic scene data with high frame rates. Then, a gated
recurrent unit, based on a recurrent neural network, and a fully connected layer constitute an intent
inference module to estimate the driver’s lane-change and turning intentions. A public dataset,
Brain4Cars, was used to validate the proposed method. The results showed that compared with
modeling using the data related to driver behaviors, the ability of intention inference is significantly
improved after integrating traffic scene information. The overall accuracy of the intention inference
of five intents was 84.92% at a time of 1 s prior to the maneuver, indicating that making full use of
traffic scene information was an effective way to improve inference performance.

Keywords: driving intention inference; two-stream networks; spatiotemporal features; intelligent
vehicle

1. Introduction

Studies published in the field of road safety have shown that most traffic accidents
are caused by inappropriate behavior, such as driver operation errors [1]. Correctly un-
derstanding the driver’s intention is considered to be an effective way to reduce traffic
injuries and improve traffic safety [2]. With improvements in intelligent driving technology,
it has become a consensus that the richness of experience of human drivers in complex
driving tasks can be used as a guide for automated vehicles [3-5]. Compared with a sin-
gle driving mode, human—machine collaborative driving has higher safety and efficiency
and has become a potential solution for improving driving safety. However, the mutual
understanding between the driver and the automated system is a prerequisite for human-—
machine interaction, which helps the automated vehicle to make decisions in uncertain
environments that are more acceptable to the driver [6,7]. Driving intention is a driver’s
response to dynamic changes in nearby traffic situations, and the intention inference is that
the driving system predicts the driver’s purpose according to the sequence of time. From a
cognitive psychology perspective, intentions are difficult to predict, as invisible thoughts
that precede actual actions [8]. The continuous enhancement of the comprehensive per-
ception of intelligent vehicles can make the inference of driving intention traceable. For
example, information such as the driver’s physical behavior and the traffic environment
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can be implemented for short-term driving intention inference. If the agent of an intelligent
vehicle can learn internal correlations by observing a series of historical data, the accuracy
of intention inference can be further improved, thus providing more reliable support for
the development of human-machine co-driving technology.

As explored in earlier research, machine learning techniques have been widely used
in the field of intention recognition and prediction [9-11]. Jang et al. [9] proposed a
driving intent classification method based on eye-movement analysis using a support
vector machine (SVM). Amsalu et al. [10] proposed a driving intention classification model
for intersection scenes, based on the hidden Markov model (HMM). Artificial neural
networks (ANNSs) can deal with the complex and implicit nonlinear relationships between
variables [12], and they can also be a powerful tool for driving intention prediction when
the datasets are large enough [13,14]. Kim et al. [13] used the artificial neural network model
as the driver’s lane change intention preprocessing algorithm to enhance the information
processing ability of the vehicle state and road conditions, thereby improving the driving
intention prediction performance. However, ANNs usually focus on the independence of
input data and do not apply to observation sequences, while time series are very important
for driving intention references.

In recent years, the development of deep learning has provided new technical means
for solving this problem. Long short-term memory (LSTM) has a strong context-modeling
ability and is widely used to map sensor observation sequences to predict driving intention
categories. Girma et al. [15] modeled vehicle speed and yaw rate information based
on a deep bidirectional LSTM and predicted in advance whether the driver would go
straight ahead, stop, turn right, or turn left. Tang et al. [16] proposed a multi-LSTM
method that took the historical trajectory and speed of the vehicle as input and realized
the classification of the vehicle’s lane-changing intention. Convolutional neural networks
(CNNSs) work similarly to the human visual system and can be used to extract and learn
high-level representations of drivers’ physical behavior-related features; they are often
used to identify drivers” drowsiness [17] and distraction [18]. It has also been used to infer
driving intention in some recent studies. Specifically, the CNN-RNN network is considered
to be a powerful model for sequential image data processing [19]. In [20], a CNN was
used as an encoder to extract the spatial features of driver behavior sequences, after which
LSTM was used as a decoder for temporal modeling to infer driver intention. A three-
dimensional convolutional neural network (3DCNN) is an extension of a two-dimensional
convolutional neural network (2DCNN) to the temporal dimension, which can be used to
directly extract the spatiotemporal features of image sequences [21], at which point driving
intent prediction based on 3D convolutional networks has been applied. This kind of
method can usually achieve end-to-end training without the need for handcrafted feature
selection and extraction based on expert knowledge, which is beneficial for reducing the
workload and time costs during the experiment. In a previous study [22], a vision-based
3D convolutional residual learning method was proposed that utilized optical-flow images
in the cab to achieve driving intent prediction, but the calculation of optical flow often
complicated the data processing. In addition, the modeling of the influence of surrounding
vehicles is also worth considering. For example, Huang et al. [23] proposed a ConvLSTM-
based vehicle intent prediction method for urban road scenarios. The method captured and
modeled the interactions of surrounding vehicles from a bird’s-eye viewpoint, achieving
approximately 60% accuracy. Taking the driver factor into consideration may further
improve the model’s ability to discriminate intent.

Gebert [22], Xing [24], and others conducted a statistical analysis on the differences in
behavior exhibited by different driving intentions and found that driving intentions had a
high correlation with driver behavior. In addition, driver head posture and specific behavior,
such as checking rear-view mirrors, can provide important evidence for intention inference.
Although the driving intention inference method for the driver’s temporal behavioral
dynamics model has achieved impressive results, there are different driving styles among
various individuals; using driver behavior as the sole basis for intention inference tends
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to cause many uncertainties in the results. In addition, the driver may carry out a series
of checking actions in the real world and then terminate the maneuver because of the
currently risky environment. However, maneuvers may also occur without environmental
checks, due to the driver’s high confidence. In these cases, the vehicle heading angle and
steering wheel angle can provide complementary clues for intent inferences [25]. With
the development of perception technology, it has become possible to obtain these clues
through visual sensors. For example, Chen and Fernandez [26,27] used the front camera’s
data stream to predict the steering angle.

In this study, driver behavior data comprise the main input of the proposed method,
and the forward-facing traffic scene data stream is processed as an enhancement to the
in-cab driver behavior data. The joint representation of these two data sources is the final
basis for potential intention inferences. The contributions of this study can be summarized
as follows: (1) based on the proposed method, it can be observed that using a low frame-rate
slow pathway and a high frame-rate fast pathway to separately process the video streams
inside and outside the cab would obtain stronger joint representation, thereby improving
the driving intent inference ability; (2) the developed parallel two-stream structure can
make full use of traffic scene information and facilitate feature fusion, supporting end-
to-end learning using raw data; (3) the model has better adaptability. In addition, five
intentions can be inferred with relative accuracy when either driver behavior data or traffic
scene data are unavailable.

2. Methods

The spatiotemporal enhancement driving intention inference (STEDII) process can
be viewed as a solution to the classification problem of sequence images. In general, for
two-stream network-based action classification methods, one branch learns the spatial
semantic information in the video, while the other branch extracts the temporal features
from the video [28]. In our work, a novel driving intention inference framework, STEDII,
was proposed that simultaneously processes the video data inside and outside the cab. As
shown in Figure 1, the data layer is used to synchronize the two segments of video data
and distribute them to the backbone, which is a parallel two-stream network. The basic
structure of the backbone network is the SlowFast network [29]. In this module, the low
frame rate channel, slow pathway (SP), is used to extract driver behavior features, and
another similar high frame-rate channel fast pathway (FP) is used to process forward-facing
traffic scene information. At each stage, the features extracted by the FP are incorporated
into the SP for the purpose of enhancement. Finally, the joint representation is input to the
inference module and the most likely intent is identified through the inference module.
Each module is described in detail as follows.

Fast pathway
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Backbone: The module with the ability of spatio-temporal features extraction

Figure 1. The framework of the STEDII model for driver intention inference.
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2.1. Data Layer

In this section, to simplify the data preprocessing procedure and synchronize the
internal and external video streams, the original video frames were rearranged to obtain
mixed frames before entering the two-stream networks. The arrangement of the mixed
frame sequence was determined by the ratio of the FP and SP frame rates, that is, the
ratio of the number of images processed at the same time, which is denoted as «. For the
convenience of designing the network structure, the values of o were taken as 1, 3, and 7 in
the study. Figure 2 shows the case studies when o was taken as 1 and 3.

Figure 2. Recombined frame sequences. The upper and bottom graphs show the frame sequences of
o« =1and « = 3, respectively. The f represents the time axis.

2.2. Spatiotemporal Feature Extraction, Based on Two-Stream Networks

As mentioned earlier, both branches of the feature extraction module have the ability
to capture spatiotemporal features. To meet the needs of updating fast external video
streams, FP has a higher temporal resolution. Therefore, there are dimensional differences
in the features extracted by the two paths. Before incorporating the features extracted by
FP into SP, the dimension-matching process needs to be carried out through the interactive
connection, which will be introduced in detail in Section 2.2.3. The structures of SP and FP
are introduced below.

2.2.1. Slow Pathway

The structure of SP is an extension of ResNet [30] in the time dimension. An important
feature of ResNet is the innovative residual units in the structure. This skip connection
structure allows the signal to propagate directly from the last layer to any previous layer.
The main advantage of gradient backward propagation is that intermediate weight layers
that may cause gradient deterioration can be skipped, allowing the network to be built
deeper. Through residual learning, the weights of multiple nonlinear layers can tend to
move to zero when necessary, that is, to achieve identity mapping: y = x. Therefore, the
learning objective of the stacked nonlinear layers becomes a new mapping of f(x): y — x = 0.
To adapt to the feature extraction process, the residual blocks are designed in two forms:
convolution blocks, with different output and input dimensions, and identity blocks with
the same output and input dimensions, as shown in Figure 3a,b.

X X1

CONV3D CONV3D
BN3D BN3D

RelU Shortcut RelU Shortcut
) )
CONV3D CONV3D CONV3D
BN3D BN3D BN3D
RelU RelU
i 3
CONV3D CONV3D
BN3D BN3D

|

RelU RelU
+ Xpert

(a) (b)

Figure 3. The residual blocks in the slow pathway in the forms of a convolution block and an identity
block. (a) Convolution block. (b) Identity block.
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The internal driver behavior feature, x, is first input into stage 1, defined as Equation (1),
which consists of a three-dimensional convolution layer (CONV3D), a BatchNorm3d layer
(BN3D) [31], a ReLU [32] activation function, and a Maxpool3d layer. Here, c is the number
of output channels of the convolution operation, k is the spatiotemporal kernel size with a
temporal step set to 1 in SP, and s is the stride of the convolution operation.

Stagel = Maxpool3d(ReLU(BN3D(CONV3D(x, c, k, s)))) 1)

Figure 3a is the convolution block (Conv_block), which is defined as Equation (2) [30],
where x; and x;,1 are the input and the output of the /th layer in the Conv_block. f
is represented by ReLU, and F is a nonlinear residual mapping model represented by
convolutional kernel weights, w). For stage 2 and stage 3, the spatiotemporal kernel sizes
were [(1 x 1 x 1), (1 x 3 x 3), (1 x 1 x 1)], respectively, of the three CONV3Ds in SP, but at
stage 4 and stage 5, they were designed tobe [(3 x 1 x 1), (1 x3 x 3),(1 x 1 x 1)]. InFP,
the kernel sizes of stage 2-stage 5 were [(3 x 1 x 1), (1 x 3 x 3), (1 x 1 x 1)].

xi41 = f(x + F(xg, wy)) 2)

Figure 3b is the identity block described in Equation (3) [30]. A square matrix, ws,
is only used to match the dimensions. The input and output of the shortcut branch are
equal, and the spatiotemporal kernel sizes of stage 2—-stage 5are [(3 x 1 x 1), (1 x 3 x 3),
1x1x1)]

X141 = f(wsx; + F(x;, wy)) ®)

The SP in Figure 1 was designed based on the convolution block and the identity
block, the details of which are shown in Table 1. The output shape represents the height

and width of the output feature of each layer, and the time dimension is the number of
internal video frames, N.

Table 1. The various layers of SP.

Stage Layer Kernel Stride Number of Channels Output Shape
data layer - - 3 224 x 224
Conv3d (1,7,7) 1,2,2) 64 112 x 112
Stage 1 BN3d - - 64 112 x 112
Maxpool3d (1,3,3) (1,2,2) 64 56 x 56
Stage 2 conv3d_block1 1,3,3) (1,11 [64, 64, 256] 56 x 56
Identity_block x 2 (1,3,3) - [64, 64, 256] 56 x 56
Stage 3 conv3d_blockl (1,3,3) (1,2,2) [128,128, 512] 28 x 28
Identity_block x 3 1,3,3) - [128, 128, 512] 28 x 28
Stage 4 conv3d_block2 3,3,3) (1,2,2) [256, 256, 1024] 14 x 14
Identity_block x 5 3,3,3) - [256, 256, 1024] 14 x 14
Stage 5 conv3d_block2 (3,3,3) (1,2,2) [512, 512, 2048] 7x7
Identity_block x 2 3,3,3) - [512, 512, 2048] 7x7

2.2.2. Fast Pathway

Parallel to SP, FP has a similar structure, and the details are shown in Table 2. However,
unlike SP, there are some properties, elaborated on as follows [29]:

e High frame rate. According to the data layer, the number of images allocated to FP
is « times that of SP, which also means that FP processes traffic scene video data at a
higher speed;

e  High temporal resolution. To ensure a high processing speed, the temporal dimension
of the convolution kernel is greater than 1 throughout all stages. Therefore, the FP has
the ability of detailed motion feature extraction while maintaining temporal fidelity;

e  Few-channel capacity. In the study, the number of input channels of FP is 1/8 of
SP, denoted as 3 = 1/8. Therefore, compared with SP, FP focuses more on temporal
modeling and weakens the extraction ability of spatial semantic information.
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Table 2. The various layers of FP.

Stage Layer Kernel Stride Number of Channels Output Shape
data layer - - 3 224 x 224
Conv3d 5,7,7) 1,2,2) 8 112 x 112
Stage 1 BN3d - - 8 112 x 112
Maxpool3d 1,3,3) 1,2,2) 8 56 x 56
Stage 2 Conv3d_block2 (3,3,3) (1,1,1) [8,8,32] 56 x 56
Identity_block x 2 (3,3,3) - [8,8,32] 56 x 56
Stage 3 Conv3d_block2 (3,3,3) 1,2,2) [16, 16, 64] 28 x 28
Identity_block x 3 3,3,3) - [16, 16, 64] 28 x 28
Stage 4 Conv3d_block2 (3,3,3) (1,2,2) [32,32,128] 14 x 14
Identity_block x 5 (3,3,3) - [32,32,128] 14 x 14
Stage 5 Conv3d_block2 (3,3,3) (1,2,2) [64, 64, 256] 7x7
Identity_block x 2 (3,3,3) - [64, 64, 256] 7x7

2.2.3. Spatiotemporal Feature Enhancement

As mentioned above, the motion features extracted from the forward-facing traffic
scene video are used to enhance the driver behavior features, to improve the driving
intention inference ability of the model. This idea is realized by the operation of fusing the
features of the FP into the SP. Because the temporal dimensions of the two pathways are
inconsistent, the interactive connection (shown in Figure 1) was implemented to match
them. A sketch map is provided in Figure 4, which shows the feature match and the fusion
process between the two streams.

Bt & Slow pathway
W,
fusion

{N,5%,C} {N,52,2BC + C}

1

conv-kernel

(N, 5%,28¢}

Match dimensions

I
I
I
:
: 15
I
I
I

Figure 4. The feature match and fusion process of interactive connection.

As shown in Figure 4, the feature shape of the SP is denoted as {N, S2, C}, the feature
shape of the FP is {aN, s?, BC}, where s? represents the width x height, and C is the
number of the channels. First, the feature shape of the FP is reshaped to {N, S?, 2BC} using
a 3D convolution operation with 28C output channels, and the stride is set to . Second,
the output feature of the interactive connection was fused into the SP by a concatenation
operator in the channel direction, then the feature shape is adjusted to {N, S?, 23C + C}.

In the last stage, the outputs of the two pathways are input into a global average
pooling layer; that is, an average value is calculated for the features of each channel. At
this time, the time dimension and height and width are set to [xN, 1, 1]. Therefore, the
shapes of the output features of SP and FP are {«xN, 12,2048} and {«N, 12, 256}, respectively.
After these two features are concatenated in the channel direction, the new feature shape is
{«N, 12,2304}. Finally, a dropout layer is added to suppress overfitting and drop neuron
connections with a probability of 0.5 during training.
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2.3. Driver Intention Inference Module

The features extracted by the backbone network are fed into the recognition module
(see Figure 5) for driving intent classification. The recognition module consists of GRU [33],
a full-connection (FC) layer, and the softmax function. After the raw video frames are
passed through the backbone network, an input sequence, X containing «N dimensions
of 2304 can be obtained, where X: {aN, 2304}, X = (X1, X5, ..., X}, ... , X«N). First, X is
input into a GRU network with one layer and 24 units. The structure of a gated cell unit
is displayed in Figure 6. For a given input X; at time t, the hidden state H;_; is at the
previous time step. Then, the reset gate R;, the update gate Z;, and the hidden state H; are
calculated using Equations (4), (5), and (7). The candidate hidden state, Hy, is calculated
using Equation (6), as follows:

Ry = 0(XiWyr + Hy_1 Wy, + br) 4)

Zt = U'(Xthz + Ht,1WhZ + bz) (5)

H; = tanh(X; Wy, + (Ri © Hy_1) Wy, + by,) (6)
H=Z0H 1+ (1—-2)® H ()

where Wy, Wy;, Wy, and Wy, Wy, Wy, are weight parameters. by, b, and by, are bias
parameters. ¢ and tanh represent the sigmoid function and the hyperbolic tangent function,
respectively. © denotes an element-wise dot product.

Raw frames

: — |
: Constantconnection :
________________ i Without GRUs SR !
: :i_ '''''''' Fatten ..-.-----o-ioimemem ] Optionalconnection !
Slow Pathway |! |: !
T |
| _ N N N G G .
nteractive | 1
connection L B R R — R Softmax i
! U U U U !

1
S S M ;
Fast Pathway : : Left Lane RightLane Left Turn Right Turn Go Ahead :

v

""""""""" b 010  0.02 080 005 003 !
Backbone b 2 28 it S 8 B e SIS S S RS S S S = o S e

Inference module

Figure 5. Driver intention inference module. The constant connection is the default. The optional
connection represents a scenario where the fused features are flattened and sent directly to the fully
connected layer without going through GRUs.

© EE
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Figure 6. Structural diagram of GRU [34].
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Then, the features that are output by GRUs are mapped into 5 label spaces of video
data by an FC layer, and the number of neurons in the output layer is set to 5. Finally,
the class probability distribution is normalized using the softmax function, as shown in
Equation (8). Additionally, since the backbone has completed spatiotemporal modeling, the
fused features can be directly classified by FC after flattening, so as to simplify the model.

®)

%

softmax(z;) = —=——
frmax(z) = =
where softmax(z;) represents the value of jth after the C-dimension vector z is mapped by
the softmax functions. C represents the number of classes.

2.4. Implementation Details and Evaluation Metrics
2.4.1. Implementation Details

The training process of STEDII adopted the strategy of transfer-learning. The backbone
feature extraction network used Knetics-400 [35] (a human behavior dataset) to initialize the
backbone weights. Then, the whole framework, including GRU networks (STEDII-GRU),
was trained. An SGD optimizer with a momentum of 0.9 and a weight decay of 0.001 was
used to train the model. The initial learning rate was set to 0.01, and CosineAnnealing
was applied for the learning-rate policy. The model was trained on a GPU Nvidia RTX
3090 for a total of 60 epochs. The Brain4cars dataset [36] recorded a video sequence
before maneuvering. A total of 625 samples were collected, including 234 straight-ahead
samples, 140 left-lane change samples, 58 left-turn samples, 142 right-lane change samples,
and 51 right-turn samples. After the few samples that were out of synchronization were
discarded, 80% of the remaining video sequences were used for training and 20% for testing.

2.4.2. Evaluation Metrics

In this study, accuracy, F1 score, the confusion matrix, parameter quantity, and predic-
tion time were used to measure the driver intention inference performance of the proposed
model and other models. The accuracy rate (Acc) and F1 score were calculated using
Equations (9) and (12) [37,38], as follows:

Ace = TP+Z£11T£+FN ©)
Pr= %EPP (10)

Re = TPZ—PFN an

F1 score = ;f:_l;;e (12)

In the equations, TP indicates that both the true label and the predicted label are posi-
tive; TN indicates that the true label and the predicted label are both negative; FP indicates
that the true label is a negative class, and the predicted label is a positive class; FN indicates
that the true label is a positive class, and the predicted label is a negative class. Pr and Re
refer to the precision and recall rate, which are calculated using Equations (10) and (11),
respectively, and the F1 score is the harmonic mean.

3. Results

In this section, the appropriate frame rate ratio was determined, initially based on
driving intention inference accuracy and F1 score. Second, the proposed model was
compared with four action recognition algorithms with different data input sources. Finally,
the proposed model was compared with several classical models, and the inference results
of five driving intentions: lane-keeping, left-lane change, left turn, right-lane change, and
right turn were obtained.
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3.1. Comparison of the Performance on Different Frame Rate Ratio

As mentioned earlier, the fast and slow pathways had different frame rates. It was
important to select a reasonable frame ratio of slow and fast pathways in the STEDII-GRU
model. In the pre-experiment, the frame rate ratios of the slow pathway and the fast
pathway were set as 1:7, 1:3, 1:1, and 3:1 for convenience, and the corresponding « values
were 7,3,1,and 1/3. A total of five sets of comparative experiments were carried out, and
each set of experiments used the video dataof 15,25s,3s,4 s, and 5 s prior to the maneuver
as the input of the model. The accuracy rate (Acc) and the average F1 score were applied to
present the trend of model performance with different frame rate ratios, and the frame rate
ratio that made the Acc and F1 score the highest was selected. The results are shown in
Figure 7.

94 94

92 92 9165 —c

9121 35
90 89.13 S

8894 ~ 008
88.53

88

87.37 \ —1s
86

84.16 8507 ==

84 84 83.89 83.5 2

Accuracy (%)
F1 score (%)

82 82 82.65

80 80 80.02

78 78
1:7 1:3 1:1 3:1 17 13 11 31

Frame rate ratio Frame rate ratio

(a) (b)

Figure 7. The trend of model performance with different frame-rate ratios. (a) Accuracy comparison
results. (b) F1 score comparison results.

Figure 7 shows that with the same input, different frame rate ratios had various effects
on the accuracy and F1 score of the model. When the frame rate ratio was 1:3, the model
performed best. Compared with 1:1, on average, the accuracy and F1 score increase by
2.62% and 4.16%, respectively. The processing of driver behavior data and forward-facing
traffic scene data at a frame ratio of 1:3 was better than at other ratios. Therefore, the frame
rate ratio of 1:3 was maintained in the formal experiment.

3.2. Driver Intention Inference

Many researchers applied action recognition approaches to driving intention predic-
tion, such as 3DResNet and ConvLSTM+3DResNet, in Gebert and Rong’s studies [22,39].
Additionally, TimeSformer [40] and TANet [41] were popular methods for video action
recognition algorithms. A comparison of STEDII-GRU with these methods was carried out,
and the results are shown in Table 3. All models were pre-trained using the Kinetics-400
dataset [35], and all video data with a capacity of 5 s were used as input. Table 3 shows
the results with three different inputs, which included only the inside driver behavior
video (I-only), only the outside traffic scene video (O-only), and both inside and outside
videos (in and out). The average accuracy and F1 score, based on fivefold cross-validation,
were used to illuminate the performance of different methods, where “SD” represented the
standard deviation and “Param” represented the parameter amount of the whole model,
reflecting the complexity of the model.
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Table 3. The comparison of different algorithms with different data inputs.

Algorithms Data Source Acc £ SD (%) F1 Score = SD (%) Param (M)
I-only 83.1+25 81.7 2.6 85.26
3DResNet O-only 532 £0.5 43.4+09 85.26
In and out 755+24 732+£22 170.52
I-only 77.40 £ 0.02 7549 £ 0.02 46.22
ConvLSTM+3DResNet O-only 60.87 £ 0.01 66.38 £ 0.03 5.41
In and out 83.98 £ 0.01 84.30 £ 0.01 57.92
I-only 81.82 +0.48 80.51 4 0.86 121.40
TimeSformer O-only 60.81 £ 0.51 50.79 £ 1.38 121.40
In and out 82.22 £ 0.66 78.24 £ 0.95 121.40
I-only 83.20 £ 1.91 82.84 £ 3.08 25.59
TANet O-only 64.14 £ 0.33 55.64 £+ 0.42 25.59
In and out 62.96 £ 0.52 55.10 £ 0.67 25.59
I-only 81.69 £ 0.58 80.31 +1.86 34.82
STEDII-GRU O-only 84.75 £+ 0.59 85.30 & 0.68 34.82
In and out 92.06 £+ 1.89 90.04 £2.22 34.82

“I-only” represents only the inside driver behavior videos were used. “O-only” represents only the outside traffic
scene videos were used. “In and out” represents both inside and outside videos were used.

According to Table 3, all algorithms achieved good results when using only inside
driver behavior data, but the accuracies were between 77% and 84%, which was difficult
to improve upon. The supplementary use of forward-facing traffic-scene data was a good
solution. The experiments showed that the accuracy of intent inference was improved by
approximately 6.6% and 7.3% when the ConvLSTM+3DResNet and STEDII-GRU models
used the in-and-out video as input. However, the credibility of the TANet method decreased
with the in-and-out input form, which may be due to the conflicting descriptions of the
inner and outer motions by its adaptive convolution kernel. Notably, with the input form
of outside-only (O-only), STEDII-GRU achieved an accuracy rate of 84.75% and an F1 score
of 85.30%, which illuminates the finding that the proposed method had a strong motion
capture ability and can meet the requirement of only traffic scene input. To better illustrate
the effect of spatiotemporal enhancement, the regions of interest of the STEDII-GRU model
under various input modalities were visualized. Figure 8 shows the visualization of the
sequence of images before the driver’s left-lane change.

As shown in Figure 8a, the driver’s head movement is an important inference basis
in the inside-only (I-only) input form. Specifically, the model focuses on areas such as the
lower jaw, where movement is more obvious. Under the O-only input form (in Figure 8b),
road conditions, such as lane lines, are the areas of concern for the model. In the input
form of in-and-out (in Figure 8c), head rotation is still an important feature of attention
and tracking. In the case of the outside video, the model mainly captures the lateral
movement of pixels. Due to the mirroring principle, the recorded direction of the driver’s
head movement is opposite to the actual turning movement. A possible explanation of
motion feature enhancement is that when the driver’s head moves in the same direction as
the forward-facing traffic scene, the relative motion between them is exacerbated.

In this study, a comparison with other existing machine learning models was also
carried out in terms of prediction accuracy. Several classical methods are described as
follows: (1) the support vector machine (SVM). The SVM is regarded as a classifier that
was used to classify the features extracted by pre-trained MobileNetv2 [42] in the study.
Since SVM cannot directly process sequence data, the input features were flattened. (2) The
hidden Markov model (HMM). HMM is a generative model that could distribute a proba-
bilistic graph for each class [36]. (3) A bi-directional long short-term memory (Bi-LSTM).
MobileNetv2 was also used to extract the features. To facilitate information transfer be-
tween adjacent video frames, a temporal shift module (TSM) [43] was introduced into
this model. Similar to CNN-RNN-M [25], the Bi-LSTM was used to model the temporal
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series. (4) STEDII, fully connected (FC). STEDII-FC used only the fully connected layers for
classification. (5) STEDII-flow (FL). The optical flow was extracted from the traffic scene
data using FlowNet [44]. The input mixed frame consisted of RGB images and optical-flow
images in this study. To evaluate the performance of all methods, the precision and recall
of each maneuver were calculated, including lane-keeping, a left-lane change, a left turn, a
right-lane change, and a right turn. The overall accuracy of each method was given. The
comparison results are shown in Table 4, and the models were evaluated based on the data
collected at 1 s before the maneuver.

(b)

()

Figure 8. The focus area of input image sequences by the proposed STEDII-GRU in the scenario of a
left-lane change. (a) I-only. (b) O-only. (c) In and out.

Table 4. Comparison of the performance on each intention for different models.

Lane-Keeping Left-Lane Left Turn Right-Lane Right Turn
Change Change Acc
Models o
Pr Re Pr Re Pr Re Pr Re Pr Re (%)
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
SVM 83.43 6693 6824 5037 5532  67.69 73.54 52.48 23.45 8731 65.85
HMM 6170 7435 80.00 66.67 5833  46.66  64.00 69.56 72.72 6734 67.74
Bi-LSTM 85.02  70.83 75.00 7894 4443 66.67 7894 75.00 66.67 75.00 74.03
STEDII-FC 90.69  88.63 7142 8823  90.00 75.00 @ 77.27 89.47 88.89 61.53  83.81
STEDII -FL 90.69  90.69 66.67 8750  90.00 90.00  81.81 78.26 77.78 5833  82.05
STEDII-GRU  93.02  88.89 7142 8823  90.00 75.00 77.27 94.45 88.89 61.53  84.92

According to Table 4, the STEDII-GRU achieved an accuracy of 84.92%, which showed
a great improvement over other classical models. Since the backbone network already
had temporal modeling capabilities, the STEDII-FC did not require a separate decoder,
such as Bi-LSTM. It showed that using only the fully connected layers for classification
could also yield good results. Furthermore, the results of the STEDII-FL test showed that
the performance of the model was not improved when optical-flow images were used as
input. Therefore, the proposed method did not rely on the motion features provided by
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True label

optical-flow images. The application of raw RGB images as input simplified the model’s
data processing.

The confusion matrices of the proposed three methods are displayed in Figure 9,
demonstrating the classification performance for the five intentions. The results showed
that monitoring lane-keeping intention achieved the most accurate results (reaching 93%
accuracy) with all methods. At the same time, the ability to recognize the intention of
changing lanes to the left was not high (approximately 70% accuracy), and was easily
confused with going straight ahead and turning left. The following three reasons are
suggested, through the analysis of the misclassified samples. First, for some lane-keeping
behaviors, the driver may perform some left or right checking behaviors to ensure that
they are driving safely, which makes it easy to infer this as a left-lane change or a right-lane
change. Second, some left-lane change intentions are very similar to the driver’s behavior
in left-turn intentions, which may confuse the model. Finally, in some complex traffic
scenarios, the driver may simultaneously check the traffic conditions on both sides and
adjust the driving direction repeatedly, which poses challenges for intent prediction.

0.8 Straight

Left lane 4

Left turn

True label

Right lane 4

Right turn

0.0

0.0

Predicted label Predicted label
(a) (b)
Straight 0.05 0.00 0.02 0.00
0.8
Leftlane{ 010 0.10 0.00 0.10
0.6
]
=
2 lefttum{ 000
]
& Lo.4
Right lane 0.05
0.2

Right turn 0.11

Predicted label

(c)

Figure 9. The confusion matrices for 5 driver intentions, based on the proposed models. The abscissa

and the ordinate represent the probability of predicted and true labels. (a) STEDII-FC. (b) STEDII-FL.
(c) STEDII-GRU.

To further illuminate the prediction performance of the STEDII-GRU, the prediction
times until maneuvering were set backward every 0.5 s. In addition, the performance of
different input data sources is displayed in Figure 10. The “only driver” and “only traffic”
variables represent the input forms of the “I-only” and “O-only” fields, respectively. This
reveals that the inference of using only the forward-facing traffic features was more accurate
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than using only the driver features in the right region of —1.0 s. As the prediction time node
moved left from —1.0 s, the “only traffic” line was rapidly driven down, while the “only
driver” line remained high. This indicates that traffic-related features play an important
role in the later driving intention inference process. Meanwhile, the accuracy of the model
is greatly improved by combining driver behavior and traffic features. With advances in
the prediction time to maneuvering, the useful information in the forward-facing traffic
scene is reduced and its enhancement effect on driver-related features is weakened. Driver
behavior data play a vital role throughout the prediction phase.

0
m -
—~ 70
]
=
8
5
o
2 50
50 4
—8— STEDII-GRU
—#— STEDII-Only Traffic Features
—&— STEDII-Only Driver Features
40 T T T

T T T
3.0 2.5 2.0 1.5 -1.0 0.5
time prior to maneuver (s)
Figure 10. Prediction performance on different time-to-maneuver values for five intentions with the
proposed models.

4. Discussion

In this study, an approach using spatiotemporal feature enhancement to aid driving
intention inference for intelligent vehicles is presented. The results showed that the over-
all accuracy of intention inference of five intents was 84.92% at the time of 1 s prior to
the maneuver.

The proposed method, STEDII-GRU, could make full use of the traffic scene infor-
mation and enhance the driver behavior features. Driving intentions could largely be
expressed by driving behaviors [45]. However, when only relying on the driver’s physical
behaviors as the basis for the inference of intention, the accuracy rate was at a relatively
low level. Traffic scenarios as supplementary inputs were considered an effective way
to improve the performance of the driving intention inference model. For example, the
research published by Rong [39] et al. showed that the internal and external features were
complementary, but the method did not fully consider their differences, and there was still
room for improvement in terms of accuracy. In some cases, incorporating traffic scene data
even reduced the accuracy [22]. Aiming at addressing the difference between the video
data from inside and outside the cab, the frame rate ratio was applied for the first time.
Specifically, a low frame-rate network was used to extract the spatiotemporal features of
driver behavior, while another branch network with a high frame rate was used to extract
the features of forward-facing traffic scenes. In the experiments, the best results were
achieved when the frame rate ratio of the two pathways was 1:3, and the improvement in
accuracy near the start of the maneuver was more obvious.

A parallel two-stream structure was developed for extracting the inside and outside
video motion features, respectively. The proposed method did not need to introduce an
additional lane detection algorithm to extract the contextual traffic information [46] and
avoided collecting driver’s head—eye behavior features [47]. Optical flow is a common
way to assist in extracting motion features, as in the study published by Lv et al. [48].
However, raw RGB video frames could meet the input requirements of the proposed model
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and the data processing could be simplified. In addition, a reduction in the number of
channels compressed the spatial capacity. The fast pathway could offer the light and flexible
processing of forward-facing video frames with less of a computational cost while achieving
higher inference accuracy with a lower number of parameters. Moreover, the interactive
connection enabled the features of the two branch pathways to be deeply fused at an early
stage. The visualization of the feature maps shows that the driver’s head rotation was an
important inference basis; the spatiotemporal features extracted from the forward-facing
traffic scene can be used for further enhancement. Furthermore, the proposed method was
easy to extend due to its two-stage structure. When more features are available, they can be
regarded as input into GRUs in the inference module. When integrating different features,
only the inference module needs to be updated, thereby avoiding the impact of sensor
changes on the entire system [49].

The model had a strong robustness. Unlike the method employed by Xing et al. [25],
which cleaned the samples of unexpected driver behavior, occlusion, and exposure in the
original dataset, all the available samples were retained to improve the model’s environ-
mental adaptability. In daily driving, the intention inference system will inevitably be
affected by the above factors. In addition, instead of predicting lane-change intentions,
the turning intention, which was easily confused with the left/right lane-change intention
was also included in this study. It showed that inference for all five intents achieved high
accuracy and also performed well on each intent. In some studies, digital maps have been
used as input to predict driving intentions [36], but this approach may not be suitable for
unmapped roads [24]. The input of the STEDII-GRU model was collected from the cameras
that are commonly found in smart vehicles, and the intention inference task was accom-
plished in a fully visual way. Another problem that may be encountered during actual
driving is that users’ driving behavior data cannot be obtained due to the requirements of
privacy protection. In this case, only the forward-facing traffic scene can also be used as
an input in the STEDII-GRU model. According to the experimental results, an accuracy of
79.28% can be achieved by the proposed method for short-term intention prediction, which
predicted behavior 1 s before the maneuver.

There are some limitations to this study that should be investigated in its eventual
application. For example, the intention inference with a longer advance time mainly relied
on driver-related features. The driving behavior would change substantially if the driver
did not focus on the driving task due to fatigue or distraction [49]. Therefore, the intention
inference system, combined with an estimation of the driver’s state, is expected to be
more robust. Furthermore, in addition to complex road conditions that may terminate the
intended maneuver [50], the driving states of other road users may also have a large impact
on driving intentions. Future work is necessary to improve our overall understanding of
the environment by promoting interaction with surrounding traffic conditions, with the
goal of increasing confidence in driver intention inferences. In addition, the dataset used in
this study contains general driving scenarios and does not involve some specific scenarios.
If there are more datasets available in the future, more driving intention inferences can
be conducted.

5. Conclusions

In this study, an end-to-end driving intention inference framework, based on spa-
tiotemporal enhancement, named STEDII-GRU, has been proposed. First, a pre-trained
two-stream network, the SlowFast network, was used as the backbone for feature extrac-
tion, and the high and low frame rate pathways of the two-stream network were used to
process the outside forward-facing traffic scenes and inside driver behavior video data,
respectively. Then, the joint spatiotemporal features were fed into a GRU to obtain the
most likely intent. The model was validated on Brain4Cars, which is a naturalistic dataset
containing highway and urban road driving information. The results showed that the
model maximized the use of traffic information when the frame ratio rate of slow and fast
pathways was 1:3. Compared to other action-recognition algorithms and classical methods,
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our model achieved the best performance. All five intents can be inferred at 1 s prior to
the maneuver, with an overall accuracy of 84.92%. For further study, more valid samples
from a large number of drivers need to be collected to improve the work. In addition, more
sensors would be accessed in the future to train the model with more features, to validate
its extending capability.
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