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Abstract: Pedometers and accelerometers have become commonplace for the assessment of physical
behaviors (e.g., physical activity and sedentary behavior) in multiple sclerosis (MS) research. Current
common applications include the measurement of steps taken and the classification of physical
activity intensity, as well as sedentary behavior, using cut-points methods. The existing knowledge
and applications, coupled with technological advances, have spawned new opportunities for using
those motion sensors in persons with MS, and these include the utilization of the data as biomarkers
of disease severity and progression, perhaps in clinical practice. Herein, we discuss the current state
of knowledge on the validity and applications of pedometers and accelerometers in MS, as well as
new opportunities and strategies for the improved assessment of physical behaviors and disease
progression, and consequently, personalized care.
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1. Introduction

Wearable motion sensors, namely pedometers and accelerometers, have been instru-
mental in improving the assessment of physical behaviors in research studies, especially
physical activity, sedentary behavior, and sleep. Of note, data collected with these devices
have allowed for a better understanding of the associations between physical activity and
health outcomes in different populations [1]. Within the field of multiple sclerosis (MS),
the use of wearable motion sensors for measuring physical activity behavior has advanced
significantly over the last two decades [2].

The growing use of wearable motion sensors in MS is a result of physical activity
being currently recognized as an essential therapeutic component [3], as it has been con-
sistently associated with beneficial effects for MS symptoms and function [4,5]. Physical
activity is traditionally defined as any bodily movement produced by the contraction of
the skeletal muscles that results in increased energy expenditure [6], whereas sedentary
behavior is defined as any waking activity performed in a seated, reclined, or lying position
with an energy expenditure ≤1.5 MET [7]. To date, the majority of studies on motion
sensors in MS have focused on examining the validity and/or reliability of pedometers
and/or accelerometers in assessing steps taken and physical activity-related metrics, such
as energy expenditure or time spent in sedentary behavior and different physical activity
intensities [8]. These applications have allowed for significant progress in understanding
how device-measured physical activities and sedentary behaviors are related with health in
persons with MS. However, there are major opportunities and possibilities for further ap-
plying wearable motion sensors and exploring the resulting data for identifying signatures
representing free-living physical function and mobility status in MS.

To date, some research groups have examined wearable motion sensors data in MS as
digital biomarkers for detecting and monitoring disease progression and severity, especially
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mobility impairments [9]. The use of digital biomarkers in general is relatively incipient,
and further research can contribute toward identifying common ground for their best use in
MS. This application may help researchers and clinicians in identifying mobility and physi-
cal function deterioration in persons with MS, based on ecologically-valid data [8], thereby
allowing for timely physical behavior interventions for attenuating disease progression
and slowing the physical disability process.

Based on such a perspective, we believe that it is timely and imperative to under-
stand the current applications of wearable motion sensors, particularly pedometers and
accelerometers in MS, and the next steps for advancing the field. We adopted a narrative
review, defined as a type of review to discuss specific topics/themes from a theoretical and
contextual point of view [10], in order to (a) provide a brief overview on the current use
of wearable motion sensors for assessing physical activity and sedentary behavior in MS,
and to (b) discuss new opportunities for using motion sensor data as digital biomarkers for
disease severity and progression in MS based on physical function outcomes. To accomplish
these objectives, we structured this manuscript according to the sections and subsections
depicted in Figure 1.
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2. Methods

We conducted a structured, non-exhaustive search of the literature. The literature
search was conducted in PubMed using the following search strategy: ((((((((((((((accelerom-
eter) OR (accelerometry)) OR (pedometer)) OR (pedometry)) OR (“motion sensor”)) OR
(“activity monitor”)) OR (wearable)) AND (“physical activity”)) OR (“motor activity”))
OR (“sedentary behavior”)) OR (“Walking”)) OR (“physical function”)) OR (“physical
disability”)) OR (“mobility disability”)) AND (“multiple sclerosis”). The search returned
2925 articles. We then applied the following criteria for narrowing the number of arti-
cles: (1) original or review studies; (2) the population of interest was MS; (3) the research
examined the validity and/or reliability of motion sensors, or proposed new methods
and/or techniques for analyzing data from motion sensors, or even verified patterns of ac-
celerometry data based on the degree of physical disability; and (4) the outcome of interest
was physical activity, sedentary behavior, gait, physical function, or physical/functional
disability. Two of the authors (JES and GFAB) evaluated the titles and abstracts of the
articles, and identified 71 of them that met the above criteria. Of this total, we selected 23
articles [2,5,8,9,11–29] that were deemed the most relevant for constructing the arguments
and discussions within the focus of this narrative review. The other 35 studies cited in
this review were selected as being supportive of our arguments and points of view. These
additional studies did not necessarily include MS as a population of interest. The strategy
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adopted to write the review was a narrative format, as it provided us with more flexibility
to present our ideas and points of view on the topic.

3. Current Applications of Motion Sensors in MS
3.1. Physical Activity Assessment

The majority of the current wearable motion sensors are of small size, can be placed
on different body parts, and use piezoelectric, piezoresistive, or capacitive sensing mecha-
nisms [1]. The most commonly used wearable motion sensors in MS have been pedometers
and accelerometer-based activity monitors [8]. These devices allow for the collection of
different measures related to physical activity, such as number of steps, step-rate, kcals/min,
raw acceleration (g-force), and activity counts. Studies have tested the validity and reli-
ability of these devices in MS and have developed physical activity prediction methods
specifically for this group of people.

Overall, most pedometers have been demonstrated to be accurate in recording steps
during regular and fast walking speeds in MS [11,12]. Regarding slow walking speeds
(e.g., ≤54 m/min), piezoelectric- or accelerometer-based pedometers are more accurate
than spring-levered pedometers [13,30]. Of note, accuracy of pedometers in persons
with MS depends on the disability level, with a higher measurement error occurring
for those with severe MS disability, as demonstrated by Sandroff et al. [14], where the
accuracy of the ActiGraph GT3X activity monitor decreased from 95.5% to 87.3% relative
to manually counted steps. Conversely, the StepWatch, which is a gold-standard device
for capturing steps in clinical populations, only demonstrated a very small decrement in
accuracy during slow walking speeds in persons with severe MS disability (99% to 95.7%,
relative to manually counted steps) [14]. Such results denote that the StepWatch may better
differentiate the mobility status in free-living situations than the ActiGraph GT3X if step
is the metric of interest. The high accuracy of the StepWatch establishes it as a reference
method that can be used to validate other pedometers under free-living conditions [8],
since there is a lack of such devices that have truly undergone ecological validity testing.

In the last few years, there has been a “boom” of fitness/activity trackers in the market.
These devices have further been applied to assess steps taken in MS [31], and have presented
moderate to high accuracies in recording steps when compared to manually counted steps
(manually counted vs. Fitbit—ICC = 0.69; manually counted vs. Fitbit One—relative accu-
racy = 98.1%) [15,16]. One major problem of using these devices in research concerns the
lack of transparency by the manufacturers on how the outputs are derived/calculated [8,32].
This turns the metrics from Fitness/Activity Trackers into a blackbox [8,32]. In order for
these devices to have better acceptance among researchers, manufacturers would need to
consider disclosing the proprietary predictive equations/algorithms in the devices. This
seems very unlikely, as the proprietary predictive equations/algorithms along with soft-
ware and device features are major differentiators among brands. Thus, many commercial
interests are involved in this context and the companies are more likely to pursue the
general consumer as opposed to the researcher costumer, considering the market size.

Regarding accelerometry, researchers have traditionally applied cut-points to classify
physical activity intensity in MS [8]. This method involves the translation of accelerometer
output into meaningful metrics of physical activity, a process termed calibration, wherein
researchers establish the relationship between accelerometer output (i.e., counts/minute)
and energy expenditure (i.e., metabolic equivalents (METs)) [1,33]. Within the field of
MS, several disturbances in physical function, including altered gait parameters (e.g.,
walking velocity, cadence, step length, and stride length), result in a higher oxygen cost
(O2 cost) during ambulation, compared with the general population [17,34], and this
manifests as higher MET values per a given number of activity counts per minute. To
address this issue, two studies [18,19] have established accelerometer cut-points for fully
ambulatory persons with MS, and another study [17] has derived cut-points for persons
with MS according to disability status. Accounting for the disability status is important
because it identifies differences in the relationship of accelerometer output with oxygen
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cost for the activities, and further because as disability increases, locomotion speed tends to
decrease. As demonstrated by Sandroff et al. [17], for individuals with mild disability, slow,
comfortable, and fast walking speeds were 2.22, 2.84, and 3.21 mph, whereas for individuals
with severe disability, the speeds for the same categories were 0.97, 1.40, and 1.74 mph,
respectively. Thus, it becomes clear that one should not apply the same cut-points for
individuals with different disability statuses, as the functional capacity is highly different,
meaning that the cut-points for individuals with mild MS disability will be too high for
individuals with severe MS disability. This indicates that researchers should not apply
cut-points developed for the general population among individuals with MS. The MS-
specific cut-points have been important for improving the understanding of associations
between physical activity and different health outcomes in MS [35], both in observational
and experimental studies [36–39].

Recently, the cut-points approach has been applied to pedometer output, wherein
step-rate thresholds are established for physical activity intensity classification [8]. The
advantage of using step-rate for predicting physical activity intensity relies on the fact that:
firstly, step is an easy-to-understand metric; secondly, measures of steps from different
pedometers are relatively comparable; and thirdly, most accelerometers currently provide
the number of steps beyond activity counts as an output. This suggests that the same
step-rate cut-points approach may be applied across brands and models of pedometers
and accelerometers, thereby allowing for greater comparability across studies. Two studies
have proposed step-rate cut-points for classifying moderate and vigorous physical activity
in MS [20,21]. Agiovlasitis [20] has reported that the step-rate cut-points for moderate and
vigorous physical activity were 99 and 144 steps/min, respectively, for persons with MS
who had minimal walking impairment, and 96 and 136 steps/min for those with mild–
moderate MS walking impairment. The other study [21] generated step-rate cut-points
accounting for a broader range of MS-related ambulatory disability. The cut-points for
moderate- and vigorous-intensity physical activity based on disability status were: (a)
mild disability: 99 and 170 steps/min; (b) moderate disability: 89 and 160 steps/min; and
(c) severe disability: 79 and 150 steps/min.

These step-rate cut-points provide researchers with a simple off-the-shelf method for
assessing the time spent in moderate-to-vigorous physical activity in MS. As an analogous
output across different pedometers and accelerometers, step-rate is a promising metric
for a further examination of the associations of physical activity with health, function,
and disability in research studies in MS. The step-rate cut-points further facilitate exercise
prescriptions for lay individuals, as steps/min consists of an easy-to-understand metric of
exercise intensity.

The abovementioned methods have been decisive for progress in the field; however,
these methods have not caught up with the overwhelming advances in motion sensor hard-
ware technology. For example, many of the current motion sensors collect high-resolution
data, but limited attempts have been made to develop, validate, and operationalize machine-
learning algorithms for activity classification in MS. Among the general population, such
algorithms have mostly been developed and tested in the laboratory, demonstrating promis-
ing results for classifying a variety of activities, including the activities of daily living [40,41].
Within MS, the identification of activity type could be of major importance for monitoring
locomotion and daily function, and thereby for providing an indication of disease severity
and progression. Researchers in our field should further explore this application. In a later
section of this paper, we highlight why monitoring certain features of free-living physical
activity consists of a major opportunity for applying motion sensors in MS.

3.2. Sedentary Behavior Assessment and Interruption

Sedentary behavior assessment in MS has gained attention because of its negative
associations with health outcomes [42]. Accelerometers allow for capturing the total time
spent on sedentary behavior, and further, the number of breaks in such behavior, as well
as the durations of these breaks. Some current motion sensors and prediction algorithms
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allow for the detection of postural transitions (e.g., sit-to-stand or vice versa), and this may
provide an indication of lower body function under free-living conditions [22].

Studies using accelerometers suggest that persons with MS with mobility disability
spend 65% (8.9 h/day) of their daily time in sedentary behavior, compared with 60%
(8.4 h/day) for those without mobility disability [23]. The number of bouts in sedentary
behavior lasting more than 30 min was slightly higher in persons with MS with mobility
disability compared with those without mobility disability (5.1 vs. 4.3 bouts, p = 0.02) [23].
Accelerometer data further indicate that sedentary behavior is higher in older adults with
MS compared with middle-aged and young adults with MS [43], and that longer durations
of sedentary bouts partially correlate with lower physical and cognitive functions in older
adults with MS [44]. These studies have been instrumental for establishing the deleterious
associations of sedentary behavior with mobility disability and health outcomes in MS.
However, the studies lack the power for inferring causal relationships. One next step
in studies using accelerometers to examine sedentary behavior in MS is to apply such
devices longitudinally for long periods of time, comprehending periods of relapses and/or
disease worsening, allowing for a better understanding of how mobility disability, as well
as physical and cognitive functions, relate to changes in sedentary behavior over time.

Some challenges for utilizing accelerometers for periods longer than 20 days are
battery life, memory, the continuous upload of data to a cloud system, and especially
participant burden. If these problems were overcome, then researchers would be able to
hand the motion sensors to participants and keep contact remotely to check on the correct
use and possible issues with the device. Currently, a protocol of continuous monitoring
of individuals with MS for extended periods (20+ days) would involve periodic visits to
the laboratory for data downloading and the delivery of a new, fully charged device to the
participant. Participant burden also relates to the device placement, with most researchers
still adopting the hip as the placement of choice. Nevertheless, there is a tendency for a
growing number of researchers to adopt wrist-worn accelerometry protocols, reducing
participant burden and allowing for data collection over the 24 h cycle [32]. In addition
to changing the accelerometer placement, the improvement of device size and design
by manufacturers are a major aspect for reducing participant burden. Research-grade
accelerometers are not as comfortable to use as consumer-grade accelerometers.

Besides only monitoring sedentary behavior, wearable motion sensors may be applied
for promoting interruptions of prolonged sitting in MS. Some devices, such as the activPAL,
already present buzzing features for alerting individuals about interrupting sitting at
given intervals (e.g., hourly or every two hours). These prompting signals may help with
examining the potential health benefits of interrupting sedentary time and replacing it
with light or moderate physical activity [45,46]. Therefore, in addition to only monitoring
physical behaviors, motion sensors may be used to reduce sedentary behavior and increase
physical activity in MS.

A summary of the evidence described in Sections 3.1 and 3.2 is provided in Figure 2.
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4. Opportunities for Using Motion Sensors in MS
4.1. Biomarkers of Disease Severity and Progression

Overall, the field has witnessed substantial progress in using wearable motion sensors
for assessing physical activity and sedentary behavior in MS. As the technology for the
devices and data processing methods are evolving, new opportunities for assessing physical
behaviors and clinical outcomes have emerged. Motion sensor data have the potential for
tracking disease progression and severity based on the ecologically valid assessment of
physical function and mobility [5]. Such an approach would bring additional information
to existing laboratory-based tests.

For example, researchers and clinicians have typically adopted performance tests
to assess physical function and mobility in MS [24]. However, there is evidence that
performance-based tests may not present ecological validity [47]—these tests and outcomes
may not totally reflect free-living performance, which entails unsupervised monitoring
in the wild [48]. Conversely, wearable sensor technology in MS allows for the collection
of free-living data that may serve as biomarkers of disease severity and progression. The
continuous monitoring of physical activity with motion sensors allows for real-world data
on mobility variables, such as walking speed, distance, and patterns, as well as postural
transitions (e.g., sit-to-stand and stand-to-sit), to be obtained [24,49,50].

There is evidence that free-living accelerometer data may be related to performances
on different mobility tests. Studies have indicated that ActiGraph 7164 activity counts
were strongly correlated with walking speed (r = 0.82) [25] and mobility measures, such
as the 6 min walk test (ρ = 0.78), and the Timed Up and Go test (ρ = −0.68) [26]. Similarly,
pedometer output (step counts) has been correlated with measures of walking performance,
mobility, and disability over a 7-day period (EDSS (ρ = −0.90), Multiple Sclerosis Walking
Scale-12 (MSWS-12; ρ = −0.83), Timed 25-Foot Walk (ρ = −0.64), Timed Up and Go test
(ρ = −0.51), and 6 min walk test (ρ = 0.67)) [27].

Those results provided a proof-of-concept that free-living accelerometer data may
be related to physical function, and recent evidence suggests that unsupervised assess-
ments are necessary for acquiring real-world mobility data [48,51]. This is especially true,
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because gait characteristics from shorter walking bouts during daily living appear to be
more informative about the disability level than longer bouts that are typically applied in
laboratory-based tests [28]. This reinforces the need to further collect motion sensor data in
the free-living setting. With evolving technology, it may be possible in the future to collect
data continuously without the need for researchers to only collect data at selected periods.

Despite the limited number of studies in this emerging area, some promising results
have indicated that steps/day, accelerometer counts, and/or minutes/day in moderate-to-
vigorous physical activity, decline with the progression of the disease in MS [23]. The effects
of, and recovery from a relapse, in MS have been detected based on steps/day data assessed
with motion sensors [29,52]. One recent study has demonstrated that data from triaxial
accelerometers placed on the thigh and chest were correlated with clinically relevant
measures, and differentiated non-fallers from fallers (accuracy rate: 74%) [53]. These
results suggest that motion sensors and the range of output appear clinically relevant for
monitoring disease progression and activity in MS, potentially representing the signature
measures of walking, mobility, and disability.

Technological advances have resulted in the development of sophisticated Inertial
Measurement Units (IMUs); these devices combine accelerometers, gyroscopes, and mag-
netometers. The use of IMUs in MS is timely because it may allow for the early detection
of gait impairment, a hallmark of MS, based on an assessment of gait parameters (e.g.,
speed, step length, stride length, step time, swing time, and stance time) [24]. There is
robust evidence that some gait parameters assessed with IMUs are significantly correlated
with EDSS and MSWS-12 scores in MS (EDSS × Speed, r = 0.60; EDSS × Step Length,
r = 0.46; EDSS × Step Time, r = 0.32; MSWS-12 × Speed, r = 0.64; MSWS-12 × Step Length
= 0.37) [24], denoting the potential of these devices in providing important information on
disease severity and progression, perhaps in daily life. An aspect of major potential is the
assessment of gait smoothness, which has been examined in previous studies [54], and has
detected early alterations in walking, in people with MS without disability. Pau et al. [54]
studied the trunk accelerations of 50 people with MS without disability (EDSS = 1), and
50 age-matched healthy controls. Gait smoothness was assessed using the Harmonic Ratio
(HR), and the results have indicated that people with MS presented lower gait smoothness
than healthy controls (2.92 vs. 3.67, p < 0.001). Therefore, motion sensors data may be used
for the early detection of decrements in the quality of walking.

Activity recognition and gait parameters assessments based on accelerometer and
IMUs data could enable the consolidation of real-world mobility and physical function
metrics as biomarkers of disease severity and progression in MS [24,50]. Over the past
decade, important progress in activity recognition using accelerometer data has been made
in general, especially with the high-sampling capabilities of currently available accelerom-
eters (e.g., a sampling rate of 100 Hz) [1]. Laboratory studies have developed activity
recognition algorithms that accurately classify several types of activities using data from
waist- and wrist-worn accelerometers [40,41,55,56]. Activities successfully recognized using
these algorithms include locomotion, activities of daily living, sport activities, postures,
and transitions.

These algorithms could have important applications in MS, especially by providing
information on specific activities (e.g., walking and sit-to-stand transitions) performed
by persons with MS in real-world settings. Some incipient algorithms using wavelet
transformation have already been applied to assess gait characteristics and parameters in
MS [28]. The results clearly indicated that wearable motion sensors data are promising
biomarkers of disease progression and severity [28]. Thus, the appropriate use of such data
could allow for better self-management in MS, as well as effective and timely interventions
by researchers and clinicians via integrated smart systems.

4.2. Smart Systems for the Integration of Researchers, Clinicians, and Persons with MS

Smart systems for the ongoing monitoring of physical behavior among those with
MS are essential for establishing and using biomarkers for the early detection of disease



Int. J. Environ. Res. Public Health 2022, 19, 11839 8 of 11

progression, and consequently, for effective and timely interventions for disease manage-
ment [57]. These smart systems could record real-world accelerometer and IMUs data
continuously, with minimal burden for the end-users [8]. Additionally, smart systems
should meet the demands of researchers, clinicians, and end-users (persons with MS), and
allow for a more integrated and inclusive disease management approach.

In a clinical perspective, the continuous monitoring of free-living walking and physical
functions may provide clinicians with important ecological information on individuals
who need immediate attention to prevent the worsening of their mobility status, as well as
their disease progression. Conversely, researchers need data on the continuous monitoring
of free-living physical behavior in order to develop more accurate methods/algorithms
for predicting mobility and physical function outcomes, as well as disease progression.
This can in turn be used by health professionals to improve clinical practice and disease
management in MS by improving decision making, time of decisions, and strategies for
mitigating or reversing deterioration in mobility, physical function, and disease course.

The integration of researchers, clinicians, and MS may be accomplished with digital
cloud storage and computing technology, whereby motion sensor data for persons with
MS are constantly collected, uploaded to the cloud, and processed remotely via algorithms
implemented in servers, with outcomes and alerts being automatically sent to researchers
and clinicians. Researchers may use the data to continuously improve the algorithms,
whereas clinicians may use the data to improve clinical practice, providing personalized
medicine to patients. Ultimately, this circle of constant feedback leads to better care for
those with MS. Figure 3 illustrates the structure of such a system.
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tus, as well as their disease progression. Conversely, researchers need data on the con-
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The integration of researchers, clinicians, and MS may be accomplished with digital 
cloud storage and computing technology, whereby motion sensor data for persons with 
MS are constantly collected, uploaded to the cloud, and processed remotely via algo-
rithms implemented in servers, with outcomes and alerts being automatically sent to re-
searchers and clinicians. Researchers may use the data to continuously improve the al-
gorithms, whereas clinicians may use the data to improve clinical practice, providing 
personalized medicine to patients. Ultimately, this circle of constant feedback leads to 
better care for those with MS. Figure 3 illustrates the structure of such a system. 

 
Figure 3. Illustration of the structure of a smart system for integration of researchers, clinicians, and 
people with multiple sclerosis. End-user motion sensor data are continuously uploaded to the 
cloud and processed via algorithms embedded in the cloud. Researchers use the data for algorithm 
improvement. Clinicians monitor patients remotely and deliver interventions as needed. 

Figure 3. Illustration of the structure of a smart system for integration of researchers, clinicians,
and people with multiple sclerosis. End-user motion sensor data are continuously uploaded to the
cloud and processed via algorithms embedded in the cloud. Researchers use the data for algorithm
improvement. Clinicians monitor patients remotely and deliver interventions as needed.

Beyond assessing real-world walking, physical function, and disease progression,
smart systems may be valuable in the delivery and monitoring of behavioral interventions
in MS. One review study highlighted the potential of using mobile platforms/systems for
exercise interventions in persons with mobility disability [58]. In this regard, motion sensor
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data may be utilized in these mobile platforms/systems for mobile detection, biofeedback,
and data processing and analysis, and therefore improve rehabilitation for persons with
MS who have mobility restrictions. Such platforms/systems will permit superior reach
and continuous physical behavior change interventions, which can ultimately lead to
meaningful benefits for mobility, physical function, and disease progression in MS.

5. Conclusions

This manuscript summarized the current applications of wearable motion sensors,
namely pedometers and accelerometers, in assessing physical activity and sedentary be-
haviors in MS, and presented evidence for the validity of commonly used devices, as
well as available methods for processing data. Some drawbacks were identified for these
existing methods, and we introduced ideas to aid such deficiencies. We further presented
opportunities for advancing the field forward by using wearable motion sensors, including
activity recognition algorithms, and the utilization of IMUs for assessing gait parameters.
We lastly highlighted opportunities pertaining to the development of smart systems for the
continuous monitoring of physical behaviors in MS, and thereby obtaining real-world data
that may serve as biomarkers of disease progression. These smart systems can promote
the integration of researchers, professionals, and persons living with MS, and allow for the
timely and ongoing detection of disease progression, and timely interventions.

Researchers should consider the evidence presented herein when conducting future
investigations. There are many aspects of pedometry and accelerometry that may be
improved for obtaining more accurate physical activity estimates, or even for obtaining
different physical activity variables, as discussed in the different sections of this manuscript.
We hope that the evidence and ideas postulated here may help with advancing the field for-
ward.

Author Contributions: Conceptualization, J.E.S., R.W.M., G.F.A.B., J.M.; literature search and review,
J.E.S., G.F.A.B.; writing—original draft preparation: J.E.S., G.F.A.B., J.M.; writing—review and editing,
J.E.S., R.W.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: G.F.A.B. was supported by a scholarship from Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior (CAPES).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sasaki, J.E.; Da Silva, K.S.; Da Costa, B.G.G.; John, D. Measurement of Physical Activity Using Accelerometers. In Computer-

Assisted and Web-Based Innovations in Psychology, Special Education, and Health; Academic Press: Cambrige, MA, USA, 2016;
pp. 33–60.

2. Block, V.A.J.; Pitsch, E.; Tahir, P.; Cree, B.A.C.; Allen, D.D.; Gelfand, J.M. Remote Physical Activity Monitoring in Neurological
Disease: A Systematic Review. PLoS ONE 2016, 11, e0154335. [CrossRef] [PubMed]

3. Kalb, R.; Brown, T.R.; Coote, S.; Costello, K.; Dalgas, U.; Garmon, E.; Giesser, B.; Halper, J.; Karpatkin, H.; Keller, J.; et al. Exercise
and Lifestyle Physical Activity Recommendations for People with Multiple Sclerosis throughout the Disease Course. Mult. Scler.
Houndmills Basingstoke Engl. 2020, 26, 1459–1469. [CrossRef] [PubMed]

4. Murray, T.J. Multiple Sclerosis: The History of a Disease; Demos Medical Publishing: New York, NY, USA, 2005.
5. Bradshaw, M.J.; Farrow, S.; Motl, R.W.; Chitnis, T. Wearable Biosensors to Monitor Disability in Multiple Sclerosis. Neurol. Clin.

Pract. 2017, 7, 354–362. [CrossRef] [PubMed]
6. Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical Activity, Exercise, and Physical Fitness: Definitions and Distinctions for

Health-Related Research. Public Health Rep. 1985, 100, 126–131.
7. Owen, N.; Healy, G.N.; Matthews, C.E.; Dunstan, D.W. Too Much Sitting: The Population Health Science of Sedentary Behavior.

Exerc. Sport Sci. Rev. 2010, 38, 105–113. [CrossRef]

http://doi.org/10.1371/journal.pone.0154335
http://www.ncbi.nlm.nih.gov/pubmed/27124611
http://doi.org/10.1177/1352458520915629
http://www.ncbi.nlm.nih.gov/pubmed/32323606
http://doi.org/10.1212/CPJ.0000000000000382
http://www.ncbi.nlm.nih.gov/pubmed/29185551
http://doi.org/10.1097/JES.0b013e3181e373a2


Int. J. Environ. Res. Public Health 2022, 19, 11839 10 of 11

8. Sasaki, J.E.; Sandroff, B.; Bamman, M.; Motl, R.W. Motion Sensors in Multiple Sclerosis: Narrative Review and Update of
Applications. Expert Rev. Med. Devices 2017, 14, 891–900. [CrossRef]

9. Frechette, M.L.; Meyer, B.M.; Tulipani, L.J.; Gurchiek, R.D.; McGinnis, R.S.; Sosnoff, J.J. Next Steps in Wearable Technology and
Community Ambulation in Multiple Sclerosis. Curr. Neurol. Neurosci. Rep. 2019, 19, 80. [CrossRef]

10. Rother, E.T. Systematic Literature Review X Narrative Review. Acta Paul. Enferm. 2007, 20, 5–6. [CrossRef]
11. Motl, R.W.; McAuley, E.; Snook, E.M.; Scott, J.A. Accuracy of Two Electronic Pedometers for Measuring Steps Taken under

Controlled Conditions among Ambulatory Individuals with Multiple Sclerosis. Mult. Scler. J. 2005, 11, 343–345. [CrossRef]
12. Elsworth, C.; Dawes, H.; Winward, C.; Howells, K.; Collett, J.; Dennis, A.; Sackley, C.; Wade, D. Pedometer Step Counts in

Individuals with Neurological Conditions. Clin. Rehabil. 2009, 23, 171–175. [CrossRef]
13. Motl, R.W.; Snook, E.M.; Agiovlasitis, S. Does an Accelerometer Accurately Measure Steps Taken under Controlled Conditions in

Adults with Mild Multiple Sclerosis? Disabil. Health J. 2011, 4, 52–57. [CrossRef] [PubMed]
14. Sandroff, B.M.; Motl, R.W.; Pilutti, L.A.; Learmonth, Y.C.; Ensari, I.; Dlugonski, D.; Klaren, R.E.; Balantrapu, S.; Riskin, B.J.

Accuracy of StepWatchTM and ActiGraph Accelerometers for Measuring Steps Taken among Persons with Multiple Sclerosis.
PLoS ONE 2014, 9, e93511. [CrossRef] [PubMed]

15. Block, V.J.; Lizée, A.; Crabtree-Hartman, E.; Bevan, C.J.; Graves, J.S.; Bove, R.; Green, A.J.; Nourbakhsh, B.; Tremblay, M.;
Gourraud, P.-A.; et al. Continuous Daily Assessment of Multiple Sclerosis Disability Using Remote Step Count Monitoring. J.
Neurol. 2017, 264, 316–326. [CrossRef] [PubMed]

16. Balto, J.M.; Kinnett-Hopkins, D.L.; Motl, R.W. Accuracy and Precision of Smartphone Applications and Commercially Available
Motion Sensors in Multiple Sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2016, 2, 2055217316634754. [CrossRef] [PubMed]

17. Sandroff, B.M.; Riskin, B.J.; Agiovlasitis, S.; Motl, R.W. Accelerometer Cut-Points Derived during over-Ground Walking in Persons
with Mild, Moderate, and Severe Multiple Sclerosis. J. Neurol. Sci. 2014, 340, 50–57. [CrossRef] [PubMed]

18. Motl, R.W.; Snook, E.M.; Agiovlasitis, S.; Suh, Y. Calibration of Accelerometer Output for Ambulatory Adults with Multiple
Sclerosis. Arch. Phys. Med. Rehabil. 2009, 90, 1778–1784. [CrossRef] [PubMed]

19. Sandroff, B.M.; Motl, R.W.; Suh, Y. Accelerometer Output and Its Association with Energy Expenditure in Persons with Multiple
Sclerosis. J. Rehabil. Res. Dev. 2012, 49, 467–475. [CrossRef]

20. Agiovlasitis, S.; Motl, R.W. Step-Rate Thresholds for Physical Activity Intensity in Persons with Multiple Sclerosis. Adapt. Phys.
Act. Q. APAQ 2014, 31, 4–18. [CrossRef]

21. Agiovlasitis, S.; Sandroff, B.M.; Motl, R.W. Step-Rate Cut-Points for Physical Activity Intensity in Patients with Multiple Sclerosis:
The Effect of Disability Status. J. Neurol. Sci. 2016, 361, 95–100. [CrossRef]

22. Coulter, E.H.; Miller, L.; McCorkell, S.; McGuire, C.; Algie, K.; Freeman, J.; Weller, B.; Mattison, P.G.; McConnachie, A.; Wu, O.;
et al. Validity of the ActivPAL3 Activity Monitor in People Moderately Affected by Multiple Sclerosis. Med. Eng. Phys. 2017, 45,
78–82. [CrossRef]

23. Ezeugwu, V.; Klaren, R.E.; Hubbard, A.E.; Manns, P.T.; Motl, R.W. Mobility Disability and the Pattern of Accelerometer-Derived
Sedentary and Physical Activity Behaviors in People with Multiple Sclerosis. Prev. Med. Rep. 2015, 2, 241–246. [CrossRef]
[PubMed]

24. Vienne-Jumeau, A.; Quijoux, F.; Vidal, P.-P.; Ricard, D. Wearable Inertial Sensors Provide Reliable Biomarkers of Disease Severity
in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Ann. Phys. Rehabil. Med. 2020, 63, 138–147. [CrossRef]

25. Motl, R.W.; Sosnoff, J.J.; Dlugonski, D.; Suh, Y.; Goldman, M. Does a Waist-Worn Accelerometer Capture Intra- and Inter-Person
Variation in Walking Behavior among Persons with Multiple Sclerosis? Med. Eng. Phys. 2010, 32, 1224–1228. [CrossRef] [PubMed]

26. Weikert, M.; Suh, Y.; Lane, A.; Sandroff, B.; Dlugonski, D.; Fernhall, B.; Motl, R.W. Accelerometry Is Associated with Walking
Mobility, Not Physical Activity, in Persons with Multiple Sclerosis. Med. Eng. Phys. 2012, 34, 590–597. [CrossRef] [PubMed]

27. Cavanaugh, J.T.; Gappmaier, V.O.; Dibble, L.E.; Gappmaier, E. Ambulatory Activity in Individuals with Multiple Sclerosis. J.
Neurol. Phys. Ther. JNPT 2011, 35, 26–33. [CrossRef] [PubMed]

28. Storm, F.A.; Nair, K.P.S.; Clarke, A.J.; der Meulen, J.M.V.; Mazzà, C. Free-Living and Laboratory Gait Characteristics in Patients
with Multiple Sclerosis. PLoS ONE 2018, 13, e0196463. [CrossRef]

29. Motl, R.W.; Pilutti, L.A.; Learmonth, Y.C.; Goldman, M.D.; Brown, T. Clinical Importance of Steps Taken per Day among Persons
with Multiple Sclerosis. PLoS ONE 2013, 8, e73247. [CrossRef]

30. Crouter, S.E.; Schneider, P.L.; Bassett, D.R. Spring-Levered versus Piezo-Electric Pedometer Accuracy in Overweight and Obese
Adults. Med. Sci. Sports Exerc. 2005, 37, 1673–1679. [CrossRef]

31. Silveira, S.L.; Baird, J.F.; Motl, R.W. Rates, Patterns, and Correlates of Fitness Tracker Use among Older Adults with Multiple
Sclerosis. Disabil. Health J. 2021, 14, 100966. [CrossRef]

32. Sasaki, J.E.; Motl, R.W. Motion Sensors for Physical Activity Assessment: Review of Applications. In Reference Module in Biomedical
Sciences; Elsevier: Amsterdam, The Netherlands, 2021.

33. Sasaki, J.E.; John, D.; Freedson, P.S. Validation and Comparison of ActiGraph Activity Monitors. J. Sci. Med. Sport Sports Med.
Aust. 2011, 14, 411–416. [CrossRef]

34. Sandroff, B.M.; Klaren, R.E.; Pilutti, L.A.; Motl, R.W. Oxygen Cost of Walking in Persons with Multiple Sclerosis: Disability
Matters, but Why? Mult. Scler. Int. 2014, 2014, 162765. [CrossRef] [PubMed]

35. Motl, R.W.; Learmonth, Y.C.; Pilutti, L.A.; Gappmaier, E.; Coote, S. Top 10 Research Questions Related to Physical Activity and
Multiple Sclerosis. Res. Q. Exerc. Sport 2015, 86, 117–129. [CrossRef] [PubMed]

http://doi.org/10.1080/17434440.2017.1386550
http://doi.org/10.1007/s11910-019-0997-9
http://doi.org/10.1590/S0103-21002007000200001
http://doi.org/10.1191/1352458505ms1161oa
http://doi.org/10.1177/0269215508098895
http://doi.org/10.1016/j.dhjo.2010.02.003
http://www.ncbi.nlm.nih.gov/pubmed/21168808
http://doi.org/10.1371/journal.pone.0093511
http://www.ncbi.nlm.nih.gov/pubmed/24714028
http://doi.org/10.1007/s00415-016-8334-6
http://www.ncbi.nlm.nih.gov/pubmed/27896433
http://doi.org/10.1177/2055217316634754
http://www.ncbi.nlm.nih.gov/pubmed/28607720
http://doi.org/10.1016/j.jns.2014.02.024
http://www.ncbi.nlm.nih.gov/pubmed/24635890
http://doi.org/10.1016/j.apmr.2009.03.020
http://www.ncbi.nlm.nih.gov/pubmed/19801071
http://doi.org/10.1682/JRRD.2011.03.0063
http://doi.org/10.1123/apaq.2013-0008
http://doi.org/10.1016/j.jns.2015.12.027
http://doi.org/10.1016/j.medengphy.2017.03.008
http://doi.org/10.1016/j.pmedr.2015.03.007
http://www.ncbi.nlm.nih.gov/pubmed/26844077
http://doi.org/10.1016/j.rehab.2019.07.004
http://doi.org/10.1016/j.medengphy.2010.08.015
http://www.ncbi.nlm.nih.gov/pubmed/20875952
http://doi.org/10.1016/j.medengphy.2011.09.005
http://www.ncbi.nlm.nih.gov/pubmed/21968005
http://doi.org/10.1097/NPT.0b013e3182097190
http://www.ncbi.nlm.nih.gov/pubmed/21475081
http://doi.org/10.1371/journal.pone.0196463
http://doi.org/10.1371/journal.pone.0073247
http://doi.org/10.1249/01.mss.0000181677.36658.a8
http://doi.org/10.1016/j.dhjo.2020.100966
http://doi.org/10.1016/j.jsams.2011.04.003
http://doi.org/10.1155/2014/162765
http://www.ncbi.nlm.nih.gov/pubmed/24734181
http://doi.org/10.1080/02701367.2015.1023099
http://www.ncbi.nlm.nih.gov/pubmed/25874730


Int. J. Environ. Res. Public Health 2022, 19, 11839 11 of 11

36. Suh, Y.; Weikert, M.; Dlugonski, D.; Sandroff, B.; Motl, R.W. Social Cognitive Correlates of Physical Activity: Findings from a
Cross-Sectional Study of Adults with Relapsing-Remitting Multiple Sclerosis. J. Phys. Act. Health 2011, 8, 626–635. [CrossRef]

37. Sandroff, B.M.; Dlugonski, D.; Weikert, M.; Suh, Y.; Balantrapu, S.; Motl, R.W. Physical Activity and Multiple Sclerosis: New
Insights Regarding Inactivity. Acta Neurol. Scand. 2012, 126, 256–262. [CrossRef] [PubMed]

38. Klaren, R.E.; Sasaki, J.E.; McAuley, E.; Motl, R.W. Patterns and Predictors of Change in Moderate-to-Vigorous Physical Activity
Over Time in Multiple Sclerosis. J. Phys. Act. Health 2017, 14, 183–188. [CrossRef] [PubMed]

39. Wójcicki, T.R.; Roberts, S.A.; Learmonth, Y.C.; Hubbard, E.A.; Kinnett-Hopkins, D.; Motl, R.W.; McAuley, E. Improving Physical
Functional and Quality of Life in Older Adults with Multiple Sclerosis via a DVD-Delivered Exercise Intervention: A Study
Protocol. BMJ Open 2014, 4, e006250. [CrossRef] [PubMed]

40. Zhang, S.; Murray, P.; Zillmer, R.; Eston, R.G.; Catt, M.; Rowlands, A.V. Activity Classification Using the GENEA: Optimum
Sampling Frequency and Number of Axes. Med. Sci. Sports Exerc. 2012, 44, 2228–2234. [CrossRef]

41. Zhang, S.; Rowlands, A.V.; Murray, P.; Hurst, T.L. Physical Activity Classification Using the GENEA Wrist-Worn Accelerometer.
Med. Sci. Sports Exerc. 2012, 44, 742–748. [CrossRef]

42. Healy, G.N.; Dunstan, D.W.; Salmon, J.; Cerin, E.; Shaw, J.E.; Zimmet, P.Z.; Owen, N. Breaks in Sedentary Time: Beneficial
Associations with Metabolic Risk. Diabetes Care 2008, 31, 661–666. [CrossRef]

43. Klaren, R.E.; Sebastiao, E.; Chiu, C.-Y.; Kinnett-Hopkins, D.; McAuley, E.; Motl, R.W. Levels and Rates of Physical Activity in
Older Adults with Multiple Sclerosis. Aging Dis. 2016, 7, 278–284. [CrossRef]

44. Bollaert, R.E.; Motl, R.W. Physical and Cognitive Functions, Physical Activity, and Sedentary Behavior in Older Adults With
Multiple Sclerosis. J. Geriatr. Phys. Ther. 2019, 42, 304–312. [CrossRef]

45. Brocklebank, L.A.; Falconer, C.L.; Page, A.S.; Perry, R.; Cooper, A.R. Accelerometer-Measured Sedentary Time and Car-
diometabolic Biomarkers: A Systematic Review. Prev. Med. 2015, 76, 92–102. [CrossRef]

46. Healy, G.N.; Matthews, C.E.; Dunstan, D.W.; Winkler, E.A.H.; Owen, N. Sedentary Time and Cardio-Metabolic Biomarkers in US
Adults: NHANES 2003–06. Eur. Heart J. 2011, 32, 590–597. [CrossRef]

47. Karle, V.; Hartung, V.; Ivanovska, K.; Mäurer, M.; Flachenecker, P.; Pfeifer, K.; Tallner, A. The Two-Minute Walk Test in Persons
with Multiple Sclerosis: Correlations of Cadence with Free-Living Walking Do Not Support Ecological Validity. Int. J. Environ.
Res. Public. Health 2020, 17, 9044. [CrossRef]

48. Warmerdam, E.; Hausdorff, J.M.; Atrsaei, A.; Zhou, Y.; Mirelman, A.; Aminian, K.; Espay, A.J.; Hansen, C.; Evers, L.J.W.; Keller,
A.; et al. Long-Term Unsupervised Mobility Assessment in Movement Disorders. Lancet Neurol. 2020, 19, 462–470. [CrossRef]

49. Polhemus, A.M.; Bergquist, R.; Bosch de Basea, M.; Brittain, G.; Buttery, S.C.; Chynkiamis, N.; Dalla Costa, G.; Delgado Ortiz, L.;
Demeyer, H.; Emmert, K.; et al. Walking-Related Digital Mobility Outcomes as Clinical Trial Endpoint Measures: Protocol for a
Scoping Review. BMJ Open 2020, 10, e038704. [CrossRef]

50. Porciuncula, F.; Roto, A.V.; Kumar, D.; Davis, I.; Roy, S.; Walsh, C.J.; Awad, L.N. Wearable Movement Sensors for Rehabilitation:
A Focused Review of Technological and Clinical Advances. PM R 2018, 10, S220–S232. [CrossRef]

51. Kluge, F.; Din, S.D.; Cereatti, A.; Gaßner, H.; Hansen, C.; Helbostad, J.L.; Klucken, J.; Küderle, A.; Müller, A.; Rochester, L.; et al.
Consensus Based Framework for Digital Mobility Monitoring. PLoS ONE 2021, 16, e0256541. [CrossRef]
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