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Abstract: Cultural practices and development level can influence a population’s household struc-
tures and mixing patterns. Within some populations, households can be organized across multiple
dwellings. This likely affects the spread of infectious disease through these communities; however,
current demographic data collection tools do not record these data. Methods: Between June and
October 2018, the Contact And Mobility Patterns in remote Aboriginal Australian communities
(CAMP-remote) pilot study recruited Aboriginal mothers with infants in a remote northern Aus-
tralian community to complete a monthly iPad-based contact survey. Results: Thirteen mother—infant
pairs (participants) completed 69 study visits between recruitment and the end of May 2019. Par-
ticipants reported they and their other children slept in 28 dwellings during the study. The median
dwelling occupancy, defined as people sleeping in the same dwelling on the previous night, was ten
(range: 3.5-25). Participants who completed at least three responses (n = 8) slept in a median of three
dwellings (range: 2-9). Each month, a median of 28% (range: 0-63%) of the participants travelled
out of the community. Including these data in disease transmission models amplified estimates
of infectious disease spread in the study community, compared to models parameterized using
census data. Conclusions: The lack of data on mixing patterns in populations where households
can be organized across dwellings may impact the accuracy of infectious disease models for these
communities and the efficacy of public health actions they inform.

Keywords: aboriginal; indigenous; contact patterns; household structure; disease transmission;
household model; human mobility

1. Introduction

The pattern of mixing between people in a population is a crucial determinant of
how infectious diseases spread within it [1]. As mathematical models exploring infection
dynamics gain traction as tools to guide infectious disease prevention and control activities
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in different populations, the adequate quantification of mixing patterns has become critical.
Across the globe, the social and cultural practices of different populations result in different
mixing patterns [2-8]. In Australia, the social and cultural practices of remote-living
Aboriginal and Torres Strait Islander people (hereafter Aboriginal Australians) result in
unique mixing patterns [2—4,8]. These mixing patterns may influence how infectious
diseases spread through remote Aboriginal communities [9].

Community mixing patterns can be conceptualized in three parts: household mix-
ing, intra-community mixing between people from different households, and temporary
mobility into and out of the community.

First, households can be pivotal in the spread of infectious disease [10]. For example,
the attack rate for SARS-CoV-2 is more than five times higher among household contacts
than non-household contacts [11]. Australian demographic surveys show that, on average,
dwellings in remote Aboriginal communities have more occupants than dwellings in either
urban Aboriginal communities or non-Aboriginal communities [12,13]. These surveys
typically assume that a household consists of a single dwelling. However, in remote
Aboriginal communities, households may be organized across multiple dwellings [8,9]. To
understand true household mixing relevant to transmission of pathogens, we may need
to consider connections between dwellings. To date, only one study has quantified these
linkages [2]. It is based on the frequency that individuals stayed in a single dwelling
in a remote Aboriginal Australian community over the course of a year [2]. Using data
from this study, Chisholm et al. developed an infectious diseases model that compared
outbreak dynamics for populations with multi-dwelling households versus single dwelling
households; the modelled outbreak scenarios with multi-dwelling households had larger
and faster outbreaks [9]. Clearly, more data are needed to support this type of analysis.

Second, intra-community mixing patterns can also contribute to the spread of in-
fectious disease [14]. Remote-living Aboriginal Australian adults are more frequently
involved in cultural events, ceremonies and other community events, have more frequent
face to face contact with people outside of the home and are more likely to provide sup-
port to relatives outside the household than non-remote-living Aboriginal Australians [3].
While surveys to collect intra-community mixing patterns are increasingly being used
in other settings [15-18], there are no comparable studies for remote-living Aboriginal
Australians [9].

Finally, temporary mobility into and out of a community provides opportunities for
the introduction or exportation of pathogens. Temporary mobility can be defined as a
person being absent from their usual place of residence for up to six months [19]. This is con-
sistent with the definition of ‘usual residence’ used by the Australian census [20]. Disease
transmission models that include temporary mobility typically rely on Australian Census
data for parameterization [21]. Census data indicate Aboriginal Australians have higher
rates of temporary mobility than Australians living in urban areas and non-Aboriginal
Australians living in rural and remote areas [4]. These census data, however, do not collect
information on dynamic patterns of temporary mobility or linkages between communities.

Current demographic data collection tools do not reflect the cultural and societal
norms of remote-living Aboriginal Australians [22,23]. Additional data are required to
characterize mixing patterns in these communities. The Contact And Mobility Patterns in
remote Aboriginal Australian communities (CAMP-remote) pilot study was developed to
begin addressing this knowledge gap by quantifying household mixing (including multi-
dwelling households), intra-community social contact patterns and temporary mobility
patterns for a remote Aboriginal Australian community. In this paper, we describe the
CAMP-remote pilot study, analyse the data collected, and demonstrate its application in
a mathematical model that simulates the transmission of an infectious disease within the
study community. We discuss the impact of using these data to enhance our understanding
of mixing patterns in remote Aboriginal Australian communities.
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2. Materials and Methods

The project protocol and data collection tools were developed and refined during
consultation with community members and stakeholders from June 2017 to April 2018.
These consultations included researchers, healthcare workers and board members from
the study community, as well as staff from the University of Melbourne, Curtin University,
Menzies School of Health Research, One Disease, and Miwatj Health Aboriginal Corpo-
ration. This study was approved by the Human Research Ethics Committee of Northern
Territory Department of Health and Menzies School of Health Research (HREC 2017-2917),
the Community Board, and the Miwatj Health Aboriginal Corporation.

2.1. Study Area and Study Design

The study was conducted between June 2018 and May 2019 in a remote Aboriginal
community in the Northern Territory, Australia. The community population is between
2000 and 2500 and it is approximately 1.5 h flying time from Darwin, the capital of the
Northern Territory. The largest employers within the community are supermarkets.

2.1.1. Study Participants

Study participants had to live in the study community and identify as female, Aborigi-
nal and the primary carer of an infant no more than one year old. Potential participants
were excluded if they were unable to give informed consent or if they usually shared a
dwelling with another mother—infant pair who was already enrolled in the study.

The decision to enrol mother—infant pairs in this pilot study was made during the
consultation process. This cohort was assumed to be less likely to be lost to follow-up and
provided an opportunity to capture social interactions across a spectrum of ages within
the community.

2.1.2. Study Procedures

Two survey instruments were used. Both were conducted in person by study staff. The
baseline survey was undertaken at enrolment and gathered basic demographic information
about the participant and any children for whom they were the primary caregiver. The
second was the dwelling, contact and travel survey which was repeated monthly from
enrolment until May 2019.

Survey questionnaires were based on previously validated surveys (Appendix A) [15,24].
The contact questions were based on the questionnaire used in the European POLYMOD
study [15], previously adapted for use in urban Australian populations [25], while the
temporary mobility questions were based on the Mobility Survey conducted in Central
Australia by the Co-operative Research Centre for Remote Economic Participation [24].
Participants were asked how many people they had contact with in the 24 h prior to the
survey. Compared to previous surveys, questions on contacts were simplified to reduce the
reporting burden on participants. Contacts were categorized by age-group (preschool [less
than 5 years], school [5-14 years] and adult [15+ years]) and participants only reported
contacts that met the following criteria:

e  Dwelling contact—anyone who slept in the same dwelling as the participant the
previous night.

e  Social contact—anyone with whom the participant spent an hour or more during the
previous 24 h, excluding dwelling contacts.

Survey responses were collected using a custom-built iPad application. The questions
were written in English, but Aboriginal community researchers were able to conduct the
survey in the local language, if required. The iPad application made use of visual repre-
sentation rather than text wherever possible, following feedback during the consultation
process. For example, a map of the community was used to collect information about
dwelling location.
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2.2. Data Analysis

All analyses were undertaken using the statistical software R [26]. Graphs were
produced using ggplot2 and nptest was used to generate non-parametric bootstrapped
confidence intervals [27,28].

2.2.1. Clustering Responses by Dwelling Location

The dwellings in which participants indicated they and/or their children slept over the
week prior to each survey were recorded as spatial co-ordinates. A hierarchical clustering
approach was used to group the spatial coordinates and identify distinct dwellings [26].
Dwellings were defined as the centroid of 50 m radius buffers to account for variation in
the coordinates resulting from a touch screen application. Spatial data were mapped using
the Australian Albers project (epsg projection 3577—gda99).

The median number of dwellings slept at by participants and their children and the
proportion of surveyed nights spent at each dwelling were calculated using data from
participants who responded to the monthly survey at least three times. Dwellings were
classed as ‘core’, ‘frequent’ and ‘infrequent” according to the amount of time participants
spent there, where core dwellings were the dwellings that participants reported staying at
most regularly. The proportion of time spent at each class of dwelling was reported with
95% confidence intervals.

2.2.2. Dwelling Contact Matrices

The repeated surveys collected dwelling occupancy for the night prior to each survey.
The median and range of the mean occupancy was calculated per available room in each
dwelling and within the room where the participant slept. In addition, the median and
range of the mean occupancy per dwelling was calculated by age group. These data were
presented as age-stratified matrices with 95% confidence intervals (Appendix B).

2.2.3. Intra-Community Mixing

The number of social contacts who spent an hour or more with the participant in the
24 h period leading up to each study visit was captured in the repeated surveys, excluding
dwelling contacts. The mean number of daily social contacts per participant was reported.

2.2.4. Temporary Mobility

The repeated surveys collected data on travel by participants out of the community in
the preceding month, including the primary reason for and duration of travel, and whether
their baby travelled with the participant. In addition, researchers noted if a participant was
out of the community during one of the monthly study visits. If a participant was absent
on two successive survey visits, it was assumed they had not returned to the community in
the intervening period.

2.2.5. Individual Based Model Simulation

We compared the results of simulations for an influenza-like illness and an endemic
infection using an individual-based transmission model which was informed by different
assumptions and data sources for community mixing. The purpose was to quantify the
impact of different assumptions of household structure and community mixing on model
outputs and estimate the importance of collecting multi-dwelling household structure and
temporary mobility data for model accuracy in remote Aboriginal communities [9]. For
each disease type, we simulated the model using three scenarios for a community with the
demographic characteristics of our study community. First, we assumed that each person is
equally likely to contact each other person in the community (homogenous mixing). Second,
we used contact matrices developed using Census data from the Australian Bureau of
Statistics on household size and age distribution, under the assumption that each household
is associated with a unique dwelling [29]. Third, we used the dwelling contact matrices,
multi-dwelling household structure and temporary mobility rates developed using the
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CAMP-remote data. Social contact data for the second and third scenarios were sourced
from Kiti et al.’s study based in Kenya [16]. For the influenza-like illness, we compared
the timing and magnitude of the infection peak for the three scenarios. For the endemic
disease, we compared the disease prevalence between the three scenarios.

Further detail on the model structure and parameters is in Appendix C.

3. Results
3.1. Summary Statistics

Thirteen mother—infant pairs were recruited: ten in June 2018, two in August 2018 and
one in October 2018. Three participants withdrew over the course of the study, resulting
in a 23% loss to follow-up. Sixty-nine survey responses were collected, a median of four
responses per participant (IQR: 2-9). Further detail on recruitment and participation is
provided in Appendix D.

At recruitment, the median age of participants was 23 years (range: 17-37 years) and
infants was eight months (range: 0-22 months). Participants reported caring for a median
of two children (range: 1-3).

3.2. Household Structures and Size

We identified 28 distinct dwellings where a participant and her infant or another of the
children she cared for had slept during the week prior to a completed survey. Participants
who responded to the survey at least three times (n = 8) identified a median of three
separate dwellings (range: 2-9, Figure 1).

& ® @ SR
@ @

®

Figure 1. Clustering of spatial coordinates to identify distinct dwellings (n = 28). Each symbol
represents a survey response. Participants with one or two responses are depicted as grey circles, all
other participants (n = 8) are depicted using a unique symbol.

Northing

Easting

Of the 28 dwellings identified, the composition on the night prior to the survey was
collected on at least one occasion for 25 dwellings and collected five or more times for
four of the dwellings. The mean occupancy by dwelling ranged from 3.5 to 25 people,
with the median of the mean of ten people (IQR: 8-12, Figure 2). Most of these occupants
were adults.



Int. |. Environ. Res. Public Health 2022, 19, 12002 6 of 20

251 o
20
o
o
o
g
o
w 154 © 9 9
@
g | o "
g 101 0 o o g O
= o o® PN -
[<H) (o] ] O O
b o o 9o ) ] I TP
54 0g-00,
] (e]
2 o0 2 oo 2
o] o Q
8)0 a3 %
0- 8 -a® oo 8
AdiJIts Schooll-age Yodng All occlupants
children children
Age group

Figure 2. Distribution of the mean number of people per dwelling by age group. Each dot represents
the mean number of individuals of a specific age across all survey responses for a given dwelling.
The median of the means is represented using the thick grey line and the interquartile range of the
means with the thinner grey lines.

A comparison of the dwellings where five or more nights of occupancy data were
available (Figure 3) demonstrates significant variation in the number of occupants for some
dwellings (e.g., Dwelling D) but not others (e.g., Dwelling A).
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Figure 3. Distribution of the number of people per dwelling for dwellings with five or more nights
of data. Each dot represents the total number of individuals in each dwelling for a specific survey
response. The median is represented using the thick grey line and the interquartile range with the
thinner grey lines.
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The median of the mean occupancy per room by dwelling was 2.7 individuals (range:
1.6-4.2), with a higher median of the mean occupancy in the participant’s room of 3.3 indi-
viduals (range 2.0-5.0). Participants reported always sleeping in the same room as their
baby and almost always (97% of occasions surveyed) in the same bed.

3.3. Dwelling Contacts

We estimate this population had 15 adult-to-adult (95% CI: 10-28) and 12 adult-to-
young (95% CI: 6-16) dwelling contacts each day (Figure 4).

young school adult

5
adult (2-14)
1 0
hool
schoo (1-3) (0-1)
oun :
young (0-1)

Median of mean number

of dwelling contacts
0 5 10 15

Figure 4. Median number of mean dwelling contacts between each age category per dwelling using
the CAMP-remote data. Confidence intervals of 95%, estimated with a nonparametric bootstrap
method, are indicated in brackets. Age ranges were young (less than 5 years), school-aged (5-14 years)
and adult (15+ years).

3.4. Intra-Community Mixing

The median of the mean number of social contacts (that were not dwelling contacts)
reported per participant for a day was two (range: 0-11), Figure 5.
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Mean number of social contacts

Figure 5. Cumulative distribution of the mean number of social contacts per CAMP-remote partici-
pant (n = 13) per day. Shaded area represents 95% confidence interval.

3.5. Temporary Mobility

A median of 28% (range: 0-63%) of participants travelled out of the community each
month. No visual evidence of seasonality was apparent between the wet (November to
April) and dry (May to October) seasons (Appendix E).

From the subset of surveys in which participants reported travel (n = 22), it was usually
within the region where the study community was located (n = 13, 59%) and lasted for a
median of seven days (IQR: 5-18 days). The primary reason for travel was most frequently
to attend a funeral (n =9, 41%) or visit family (n = 7, 32%).

3.6. Individual Based Model Simulation

The household structured model parameterized with the CAMP-remote data had
the highest and earliest peak of infectious individuals in the simulations of an outbreak
(Figure 6a) and the highest on-going prevalence in the simulations of an endemic infec-
tion (Figure 6b). Applying the ABS data resulted in simulated outbreaks and endemic
transmission that were overall similar to those for the models parameterized with the
CAMP-remote data, but with a slightly lower and later peak and a slightly longer duration
for the outbreak model, and slightly lower on-going prevalence for the endemic disease
model. Uniform mixing assumptions resulted in simulated outbreaks with a substantially
lower and later peak and the simulated endemic transmission with substantially lower
on-going prevalence (Appendix F).
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Figure 6. (a) The prevalence of infection arising from simulations of an influenza-like SEIR model

under different mixing assumptions. (b) The prevalence of infection arising from simulations of an en-

demic disease in an SEIS model under different mixing assumptions. Both models are parameterized

to reflect the study

4. Discussion

community.

We documented that participants and their children slept in a median of three dwellings
over the 12-month study period and more than a quarter of participants travelled out of
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the community each month. As we only have data on where a participant and her children
slept for a small fraction of the year, and it was assumed that participants did not return to
the community between surveys if they were absent for successive surveys, these estimates
likely underestimate the extent of multi-dwelling households and temporary mobility in
this remote Aboriginal community. Even using these lower-bound estimates, modelling
has demonstrated the importance of characterizing these data for model accuracy and to
subsequently inform infectious disease prevention and intervention strategies.

These socio-cultural patterns influence how infectious diseases are transmitted in a
community and are an important consideration when planning and implementing a public
health response. A recent systematic review found that most prior social contact surveys
have been conducted in high-income countries [30]. Within Oceania, the review found that
Australia was the only country that has collected data on mixing patterns [30]. Cultural
norms, development level and geography influence social mixing, household size and
structure [30]. For example, Vino et al. demonstrated that household contact patterns in
remote-living Australian Aboriginal communities were substantially higher than those for
residents of Melbourne, Australia [12].

Fluid households and substantial rates of temporary mobility are not unique to remote-
living Aboriginal Australians. Similar patterns have been observed in South Africa, Tanza-
nia, Burkina Faso and in remote Canadian Inuit communities [5-7]. In recognition of the
fluidity of household membership within South Africa, the Population Intervention Plat-
form (PIP) cohort, which was established in 2000 (African Centre Demographic Information
System cohort) in rural KwaZulu Natal, uses a definition of household membership that
includes resident and non-resident members and allows for individuals to belong to more
than one household [31,32]. Further studies are required that collect information on contact
patterns within communities exhibiting these patterns. The CAMP-remote pilot study
provides a demonstration of both a method for and the impact of collecting these data.

Our findings are consistent with those previously reported by Musharbash [2]. Mushar-
bash’s study collected data on the number of people that stayed at a single dwelling in a
remote community in Central Australia over 221 nights and, based on these data, proposed
four categories of occupant: core residents (those present between 60-100% of the time);
regular residents (those present between 20-34% of the time); other residents (present
4-16% of the time); and sporadic short-term visitors [2]. While the consistency between
these two studies is encouraging, further data are required to confirm the findings. The
repeated survey approach of the CAMP-remote study yielded valuable data on connections
between dwellings and variation in dwelling occupancy that otherwise would not have
been available.

The dwelling contact matrix developed in the CAMP-remote study estimated a median
of 12 adult-to-young child contacts each day per dwelling, compared with the mean of
4.14 per household for remote Australian Aboriginal communities reported in Vino et al.,
based on data from the Aboriginal Birth Cohort study [12]. While dwellings in the
CAMP-remote study all included at least one mother and one infant (due to the recruitment
strategy), dwellings in the Aboriginal Birth Cohort study all included at least one individual
aged between 22 and 27 years [12]. Differences in the contact matrix calculated using the
CAMP-remote data and the contact matrix in Vino et al. may be a function of the different
study cohorts or differences in the age group categories, communities, study sample sizes,
or study designs.

The CAMP-remote survey is the first study to collect quantitative data on intra-
community mixing within a remote Aboriginal community. Direct comparisons between
data collected during this study and prior studies are challenging due to differences in
definitions for social contact. Kiti et al.’s study, based in Kenya, defines a social contact
as anyone with whom the participant had physical contact [16]. The POLYMOD study
from Europe similarly defines a social contact as anyone with whom the participant had
skin-to-skin contact or an in-person two-way conversation with three or more words
without skin-to-skin contact [15]. By comparison, the definition used in the CAMP-remote
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study was anyone with whom the participant spent an hour or more. However, when
mean contacts observed in the CAMP-remote pilot study are contrasted to that of similarly
aged women (2049 years) in Kiti et al.’s study, we observe that while the scales differ, the
distributions of the number of social contacts per day are similar (Appendix G). As Kiti et al.
collected social contact information from all aged groups and both sexes, using Kiti et al.’s
data for our simulations remains a reasonable substitute for data on intra-community
mixing patterns within remote-living Aboriginal communities until more comprehensive
social contact data become available for remote Aboriginal Australian communities.

The definition of social contact adopted during the CAMP-remote study was devel-
oped in consultation with the community and designed to both limit reporting burden
for participants and maximize the chances of on-going participation in the study. While
this approach was appropriate given the longitudinal nature of the CAMP-remote study,
it limited direct comparison of social contact data with previously published studies. An
alternative approach would be to collect social contact data from a remote Aboriginal com-
munity using a previously validated definition (e.g., from the POLYMOD survey or study
by Kiti et al.) on a single occasion to allow comparison with other, disparate, populations.

The modelling results demonstrate that including information on household charac-
teristics and temporary mobility amplifies estimates of the spread of an infectious disease
in remote Aboriginal communities. Differences were observed in the intensity of transmis-
sion between the three scenarios, with the modelling results from the simulation using
CAMP-remote data having the most intense outbreaks and highest rates of endemic trans-
mission. Both models that applied a household structure showed substantially greater
intensity of transmission than the model that assumed uniform mixing, suggesting that
uniform mixing assumptions are not appropriate to parametrize infection dynamics within
these communities. Prior work by Chisholm et al. suggests that we would expect to observe
an even greater difference in transmission intensity between the two household-structured
models (parameterized by ABS versus CAMP remote data) if we were to consider a
less-transmissible pathogen [9], indicating the increased importance of collecting relevant
mobility, social contact, and household data for such pathogens.

We note that Frances Morphy has argued that a nodal network better captures the
structure of remote Aboriginal communities than the conceptualization of households [22].
However, the quality and quantity of contact between individuals that share living spaces
differs from those who do not, which is important when modelling transmission of infec-
tious disease, and we have taken care to differentiate individual dwellings from households.

Our study has several limitations. First, the small sample size means we are unable to
determine the statistical significance of our results. Second, as the CAMP-remote study only
recruited mother—infant pairs, data are limited to this cohort and may not be generalizable
to all members of remote Aboriginal communities. To represent the household structure,
intra-community mixing patterns and temporary mobility of remote-living Aboriginal
Australians more accurately further, more inclusive data collection is required. Third,
the extent of loss to follow-up and missing survey responses may have introduced bias
if the participants who dropped out or did not respond were different from those who
did respond. Finally, to identify individual dwellings it was necessary to make assump-
tions about the distance between dwellings which may have resulted in dwellings being
misclassified (i.e., adjacent dwelling to be classified as a single dwelling).

5. Conclusions

Our study demonstrates the gap in the current knowledge of mixing patterns within
the remote Aboriginal Australian communities and the importance of collecting data
that reflect the organization of households across dwellings to inform infectious disease
modelling and public health interventions for these communities and others with similar
patterns. Given the limited proximate health infrastructure in these settings it is vital
that we develop models that are as accurate as possible to allow appropriate planning
for, prevention of, and responses to an outbreak. Similarly, public health responses to
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endemic disease need to be based on a realistic understanding of the extent of transmission
and the level of community participation required to make a meaningful difference in
the health outcomes of individuals. The types of data that the CAMP-remote pilot study
demonstrated could be collected contributes to this goal.
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Appendix A

All references to the study community’s name have been replaced by the phrase “the
study community”.

Appendix A.1. Background Survey (First Interview)

1.  Whatis your name?

a. Balanda name [text]
b. Yolngu first name [text]
C. Yolngu last name [text]
2. Whatis your date of birth? [text] (enter age if DOB unknown)
3. How many days each week do you work in a paid job (on average)?
0 1 2 3 4 5 6 7

4.  How many children do you care for most of the time? {we will refer to these as your
children and the youngest as your baby}
1 2 3 4 5 6 more than 6 [text]
5. Please tell us about each of your children [start with baby and repeat for each child]

Balanda name [text]

Yolngu first name [text]

Yolngu last name [text]

Date of birth [text] (enter age if unknown DOB)
are you {child’s name} mother?

o No

o oan T
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° Yes

f. How many days each week does {child’s name} attend (on average):
School:

0 1 2 3 4 5 6 7
Child care:

0 1 2 3 4 5 6 7
Baby-hub:

0 1 2 3 4 5 6 7

Appendix A.2. Household, Contact and Travel Survey (Repeated Monthly)
Section A: Where did you and your children sleep last night and in the last week

1.

2.

10.

In the house you slept in last night, how many rooms do people sleep in (including
the verandah)?

How many people slept in each room of this house last night, including you and your
children? [icons on house graphic]

- young child, school aged, adult [usual residents of this house]
- young child, school aged, adult [visitors to this house]

How many of the ‘X’ visitors who slept in your house last night usually live outside
the study community? 0,1,2 ... ... ... X
Last night, did you sleep on the same mattress or used the same bedding as:
a. {baby}? Yes/No

b. {child 2}? Yes/No

c. {child 3}? Yes/No

[more if needed]

Is this the house that you live in most of the time? (i.e., the house you spend most
nights in)

° No

o Yes

How many nights in the last week did you sleep in this house?

1 2 3 4 5 6 7
How many nights in the last week did you sleep in the same house as:
a. {baby}?:
0 1 2 3 4 5 6 7
b. {child 2}?
0 1 2 3 4 5 6 7
C. {child 3}?
0 1 2 3 4 5 6 7

[more if required]

On the map, please mark the house you slept in last night

On the map, please mark any other houses you slept in during the last week [skip if
Q6="71

On the map, please mark any other houses your children slept in, when they were not
with you [skip if Q7 all = “7’]

a. {baby} [click on houses on the map] [skip if Qa = 7’]
b. {baby} [click on houses on the map] [skip if Qb = 7’]
C. {baby} [click on houses on the map] [skip if Qc = ‘7]

[more if required]

Section B: The people you and your baby saw yesterday

11.

Was {baby} with you all day yesterday? Yes/No [if yes, skip to Q13]
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12.

13.

14.

Who was {baby} with during the day yesterday: [check all that apply, must check at
least one for each part of the day]

Morning;: with me with friends/relatives at childcare other [text]
Afternoon: with me with friends/relatives at childcare other [text]
Evening: with me with friends/relatives at childcare other [text]

During the day yesterday, did you spend at least one hour with anyone who was not
in the same house as you last night? Yes/No [if no, skip Q15]

Please tell us about each person that you spent at least one hour with yesterday, who
was not in the same house as you last night

Record each contact person only once, even if you saw them more than once
Don’t include people who were in your household last night

Table Al. A short example of the data collected on social contacts.

Age group Did They Touch You? Did They Touch {Baby}?
Contact No. Young Child School Aged
Adult Y N Y N
1 Young child [3] 0O O
2 School g [x [x] 0
3 Adult d [x] [x] O
4 Adult d [x] O [x]

Section C: Your travel in the last month

15.

16.

17.

18.

19.

20.

Did you travel outside the study community in the last month?

o No [skip to Q20]
o Yes

Where did you spend at least one night? [check all that apply]

g East Arnhem (outside the study community)
0 Darwin

O Elsewhere in the NT

O Outside the NT

How many nights did you spend away from the study community?
1 2 3 4 5 6 7 8 9 10 more [text]
Was {baby} with you on the nights you travelled out of the study community?

o Yes, all nights I was away
o Some nights I was away
o No {baby} did not travel with me

What was the main reason for this travel?

Access services (e.g., shopping, health services)
Work

Visit family

Attend a funeral

Other cultural business

Holiday

O O O O O O

Section D: Recent illness and antibiotic use

Have you had to go to clinic or hospital because you were unwell in the last month?
o No [skip to Q21]
o Yes

a. What type of illness did you have?

O Skin infection or scabies
O Cold or “flu-like illness
O Chest infection
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O Diarrhoea
O Otherillness
21. Have you taken antibiotics in the last month?
o No
g Antibiotic injection
g Antibiotic syrup
22. Has your baby had to go to the clinic because they were unwell in the last month?
o No [skip to Q24]
o Yes
23.  What type of illness did your baby have? [check all that apply]

O Skin infection or scabies
O Cold or ‘“flu-like illness
O Chest infection
O Diarrhoea
O Other illness
24. Has your baby taken antibiotics in the last month? [check all that apply]
o No
g Antibiotic injection

g Antibiotic syrup

Appendix B

Age-specific contact rates were calculated using the following approach.

We have assumed each person in a dwelling, encounters each other member of the
dwelling in any given day. The daily number of dwelling contacts between individuals
within the same age category is therefore given by x(x — 1)/2, where x is the number of
individuals in that age category. The daily number of contacts between individuals in
different age categories is given by xy where x and y are the respective number of people in
the two age categories. The contact matrix for an individual dwelling, which is symmetric,
is therefore given by Table A2.

Table A2. Dwelling Contact Matrix: Number of pre-school aged children (b), school-aged children (c)

and adults (a).
Pre-School Aged School Aged Adult
Adult ab ac a(@a—1)/2
School aged cb c(c—1)/2
Pre-school aged bb-1)/2
Appendix C

We used a modified version of the stochastic individual based model described fully
in Chisholm et al. [9]. The model explicitly represents each individual (agent) and each
dwelling in a community. Agents are assigned a set of dynamic characteristics which
includes their age, disease status (which is either susceptible, exposed, infectious, recovered)
and current home location, which are updated daily according to a set of rules. They are
also assigned a set of stable characteristics that do not change during simulations which
includes their residency status (whether they are a permanent or temporary resident of
the community), and the set of dwellings they regularly inhabit—their core, frequent
(referred to as ‘regular’ in Chisholm et al. [9]), and infrequent (referred to as ‘on-off” in
Chisholm et al. [9]) residences.

The model simulates the introduction and spread of an infection in the community by
simulating contacts between pairs of agents (according to the mixing models described be-
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low). Contacts between an infectious and susceptible agent result in transmission according
to a given probability, which we refer to as the probability of transmission.

The model also simulates the movement of agents between dwellings in their dwelling
set (which updates an agent’s current residence), and into and out of the community.
Migration into and out of the community is modelled using two mechanisms: constant flow
migration (described below), and event-based migration whereby new agents temporarily
visit the community due to events (e.g., funerals, sporting events) and leave after different
mean durations of time. In the outbreak (SEIR) model we assume that all incoming
temporary agents are susceptible, while in the endemic (SEIS) transmission model we
assume that the prevalence of infection in incoming temporary agents is 10%.

We modified the constant flow migration mechanism (compared to the model in
Chisholm et al. [9]) to reflect observations of mobility in the CAMP remote study. Each
day, agents are selected at random to leave the community (at a rate such that 18-36%
of the population move per month). Agents stay away for a median duration of seven
days. While away, these agents are replaced by temporary agents (who stay in a randomly
selected dwelling for the duration of their stay) who can become infected and contribute to
transmission. These agents leave once the resident they replaced returns.

From simulations of the model, we report the prevalence of infection over time (the
percentage of all agents present in the community who are infectious), and/or the final
outbreak size (the total number of all permanent residents who were infected during an
outbreak, which is related to the attack rate = (final size/number of permanent residents) x 100%).

Appendix C.1. Transmission Scenarios (Defined by Mixing Model and Disease Model)

To account for uncertainty in the model parameters, for each transmission scenario
considered, we generated 1000 samples from the model parameter space using Latin
Hypercube Sampling (LHS) [33]. Sampled parameters and their distributions match those
used in Chisholm et al. with the exception of the infection parameters which are described
in Table A3 [9]. All other parameters were held constant.

Table A3. Infection parameters for the outbreak and endemic disease models.

Model Infection Parameters Model Inputs *
Duration of latency U (1, 3) days

SEIR (outbreak) Duratl(')r'l of 1nfect10u.snfzss ' 4 . U (1, 3) days
Probability of transmission in the household /community mixing models (chosen so that U (0.01,0.015)
the median attack rate in uniform model is ~66%) T
Duration of latency U (1, 3) days

SEIS (endemic): Duration of infectiousness U (7, 21) days

Probability of transmission in the household /community mixing models (chosen so that
the median population prevalence at endemic equilibrium in uniform model is ~20%)

U (0.0014, 0.0021)

* Where U(a, b) is a uniform distribution with minimum value a and maximum value b.

Appendix C.1.1. Household /Community Mixing
We consider two household /community mixing models:

e  The ABS model: which is parameterized by ABS (census) data only,
e  The CAMP remote model: which is supplemented by CAMP remote data.

In both models, agents contact all other agents that are sharing their current dwelling
once per day and contact all other members of the community at an age-dependent rate.
Dwelling contacts have an increased probability of transmission per contact compared to
contacts between non dwelling contacts(which is the same for both household /community
mixing models).

The rate of household contacts varies between the two models due to differences
in the mean core household size (which is 6.7 in the ABS model, and ten in the CAMP
remote model), and the rates of between-dwelling mobility (which is switched off in the
ABS model).
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The rate of non-household contacts is the same in both household /community mixing
models, and is calculated using the rate of non-household contacts reported in a Kenyan
contact study [16] and the community’s age distribution, which is parameterized according
to ABS data [29].

Appendix C.1.2. Uniform Mixing between All Agents in the Population

We also consider one uniform mixing model. In this model, contacts occur at an age-
and household-independent rate per day for all agents and are chosen uniformly at random.
The mean contact rate, M, is calculated as follows. At the end of each LHS simulation from
the CAMP-remote model:

store the distribution of the current occupancy of houses, O.

store the distribution of the number of current residents (temporary and present,

permanent) in each age group i, A;.

e  For each age group i, calculate the mean number of contacts per day per individual in

age group i, C;.

e  Calculate C, the mean number of community contacts per individual for this popula-
tion, C = sum;(C;-A;)/sum;(A;).

Then, after all LHS simulations, calculate M, the mean contact rate, M = mean (O —
1) + mean (C) (where the mean is taken across all LHS simulations). This works out to be
22.71 contact per day.

We also multiply the probability of transmission per contact by a factor, F, to account
for some contacts occurring in households (which in both household /community mixing
models have an increased probability of resulting in transmission, where the increase in
risk is uniformly distributed between 3 and 5). F is calculated as:

F =[1/(mean(O — 1) + mean (C))] x [4 x mean(O — 1) + mean(C)] (A1)

This works out to be F = 2.19.
Infection parameters used in the models are summarized in Table A3.

Appendix D
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Figure A1l. Summary of recruitment and response rates by participant and by month.



Int. |. Environ. Res. Public Health 2022, 19, 12002 18 of 20

Appendix E

Table A4. Travel out of the community by month.

Total who Travelled out

Responded Did Not Respond No. of Enrolled .
- of the Communit
Season Month Participants Y
Travelled Did Not Travel % Travelling Not Travelling No %
June 2 8 20% - - 10 2 20%
July 1 4 20% 1 2 8 2 25%
Dry August 1 6 14% 2 0 10 3 30%
September 0 5 0% 0 3 10 0 0%
October 3 2 60% 1 1 8 4 50%
November 3 1 75% 2 1 8 5 63%
December 3 2 60% 1 0 8 4 50%
Wet January 2 4 33% 0 0 8 2 25%
€ February 0 6 0% 0 0 8 0 0%
March 3 4 43% 0 0 8 3 38%
April 1 2 33% 0 5 8 1 13%
Dry May 3 3 50% 1 0 8 4 50%
Appendix F

Table A5. Statistics from model scenarios of outbreaks and endemic disease for a community like the
study community including total outbreak duration, attack rate and endemic prevalence.

. Outbreak Duration (Days) Final Size (Number Infected)
Disease Model =~ Mixing Model
2.5p 25p 50p 75p 97.5p 2.5p 25p 50p 75p 97.5p *
SEIR HH 30 36 41 45.5 56 2421 2472 2483 2487 2492
SEIR HH (ABS) 36 43.5 49 55 69 2246 2386 2432 2457 2478
SEIR U 345 89 107 134 220.5 45 1151 1638 1938 2211

Endemic Prevalence

2.5p 25p 50p 75p 97.5p

SEIS HH 52.0% 63.3% 70.3% 75.3% 80.7%
SEIS HH (ABS) 43.3% 571% 655% 709%  76.6%
SEIS U 0.2% 28%  19.0% 31.7% 44.9%

* The probability of transmission under each of the three scenarios was assumed to be consistent. SEIR: (Susceptible-
Exposed-Infectious-Recovered) transmission model. SEIS: (Susceptible-Exposed-Infectious-Susceptible) transmis-
sion model. HH: Household /community mixing model. U: Uniform mixing model. ABS: Australian Bureau of
Statistics. p: percentile.

Appendix G

To validate the data collected during the CAMP-remote study the distribution of social
contacts for adult females aged 2049 years using the de-identified individual data provided
in the supplementary material for Kiti et al., was calculated for rural dwellings [16]. The
median number of social contacts for each distribution is at approximately 19% of the
maximum number of social contacts recorded for any individual, Figure A2.
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Cumulative probability

1.00 1.001
0.75 0.75
0.50 0.50 1
0.25 0.25
0.00 0.00 1

o 1 2 3 4 &5 6 7 8 9 10 0 10 20 30 40 50 60

Mean number of social contacts Number of social contacts
(a) (b)

Figure A2. (a) Mean number of social contacts per CAMP-remote participant per day (n = 13).
(b) Number of social contacts per adult, female participants (2049 years) per day in a community in
rural coastal Kenya collected by Kiti et al. (n = 74) [16]. The definition of contact for Kiti et al.’s study
was anyone with whom they had physical contact [16], while the definition for the CAMP-remote
study was anyone with whom they had spent an hour or more.
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