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Abstract: Diabetes is one of the most rapidly spreading diseases in the world, resulting in an array of
significant complications, including cardiovascular disease, kidney failure, diabetic retinopathy, and
neuropathy, among others, which contribute to an increase in morbidity and mortality rate. If diabetes
is diagnosed at an early stage, its severity and underlying risk factors can be significantly reduced.
However, there is a shortage of labeled data and the occurrence of outliers or data missingness
in clinical datasets that are reliable and effective for diabetes prediction, making it a challenging
endeavor. Therefore, we introduce a newly labeled diabetes dataset from a South Asian nation
(Bangladesh). In addition, we suggest an automated classification pipeline that includes a weighted
ensemble of machine learning (ML) classifiers: Naive Bayes (NB), Random Forest (RF), Decision Tree
(DT), XGBoost (XGB), and LightGBM (LGB). Grid search hyperparameter optimization is employed
to tune the critical hyperparameters of these ML models. Furthermore, missing value imputation,
feature selection, and K-fold cross-validation are included in the framework design. A statistical
analysis of variance (ANOVA) test reveals that the performance of diabetes prediction significantly
improves when the proposed weighted ensemble (DT + RF + XGB + LGB) is executed with the
introduced preprocessing, with the highest accuracy of 0.735 and an area under the ROC curve (AUC)
of 0.832. In conjunction with the suggested ensemble model, our statistical imputation and RF-based
feature selection techniques produced the best results for early diabetes prediction. Moreover, the
presented new dataset will contribute to developing and implementing robust ML models for diabetes
prediction utilizing population-level data.

Keywords: artificial intelligence; diabetes prediction; ensemble ML classifier; filling missing value;
outlier rejection; South Asian diabetes dataset

1. Introduction

Diabetes is an illness that is becoming increasingly severe and morbid in both industri-
alized and developing countries [1]. When pancreas cells cannot produce enough insulin,
blood sugar levels rise, which can negatively impact a number of organs, most notably the
eyes, kidneys, heart, and nerves [2]. According to Fitzmaurice et al. [3], the percentage of
adults around the world who had diabetes in 2017 was roughly 8.8%, and it is projected
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that by 2045, this percentage will rise to 9.9%. A recent study sheds light on the seriousness
of diabetes by revealing that the condition affects half a billion individuals worldwide
and that this figure is expected to increase by 25.0% and 51.0% by the years 2030 and
2045, respectively [4]. It is estimated that around 1.5 million individuals died directly from
diabetes in the year 2012, while 2.2 million perished from cardiovascular diseases, chronic
kidney disease, and tuberculosis [5]. The percentage of diabetes patients in the intended
geographic region, which is Bangladesh, skyrocketed to 10.0% in 2011, up from 4.0% in
1995–2000, 5.0% in 2001–2005, and 6.0% in 2006–2010, in consonance with Akter et al. [6].
According to Danaei et al. [7], diabetes may be broken down into three primary subtypes,
namely type I diabetes (also known as juvenile diabetes), type II diabetes, and type III dia-
betes (also referred to as gestational diabetes). An idiopathic issue causes type I diabetes [8].
It accounts for around 5.0% to 10.0% of all cases of diabetes [9,10] and is generally diag-
nosed in children and young adults [11]. Type II diabetes is characterized by inadequate
production of insulin by the pancreas. It accounts for more than 90.0% of all instances
of diabetes according to Shi and Hu [12], and is not only prevalent in those older than
45 years old but also in younger age groups such as children, adolescents, and young adults.
Gestational diabetes is diagnosed in expectant mothers who have never been diagnosed
with diabetes but who develop hyperglycemia during pregnancy. Approximately 2.0% to
10.0% of all pregnant women are affected by gestational diabetes, which can become worse
or go away after birth [13]. It is possible to manage diabetes and keep it under control if an
accurate early diagnosis is made; however, there is no cure for diabetes in the long run. Due
to non-linearity, non-normality, and the complicated and linked structure in the majority
of medical data, diabetes data categorization is a challenging endeavor [14]. Additionally,
the presence of a large number of outliers in the dataset, in addition to missing or null
values, affects the outputs of the diabetes classification [15].

Different machine learning (ML) algorithms, for instance, Linear Discriminant Anal-
ysis (LDA) [16], Quadratic Discriminant Analysis (QDA) [17], Naive Bayes (NB) [18],
Support Vector Machine (SVM) [19], Artificial Neural Network (ANN) [20], Decision
Tree (DT) [21], J48 [22], Random Forest (RF) [23], Logistic Regression (LR) [24], AdaBoost
(AB) [25], and K-nearest Neighborhood (KNN) [26] have been employed in the prediction
of diabetes diseases [14,27,28]. Researchers in [29] worked on different crucial features and
the RF algorithm to forecast diabetes. The authors in [30] used three distinct ML classifiers:
NB, DT, and SVM, in order to predict diabetes and found that NB provided the highest
AUC value. A group of researchers in [31] applied various ML classifiers, such as KNN,
DT, RF, AB, NB, and XGBoost (XGB). They have proposed a weighted ensemble ML model
with the highest possible AUC value in recent studies. The authors in [32] recommended
an ML-based diabetes prognosis system by applying the DT algorithm. Their primary
concern was to identify diabetes at the candidates’ specific age. Moreover, in [33], the
authors have suggested a predictive model for classifying diabetes based on several criteria
employing the CART and Scalable RF. They reached the conclusion that the scalable RF
model was more accurate than the standard RF model used in this predictive model. In [34],
the ensemble AB model performed better than the Bagging ensemble model when it came
to classifying diabetes mellitus (DM). This was determined by analyzing and applying
the AB and Bagging ensemble methods and employing J48 (c4.5)-DT. The authors of [35]
built a prediction model with two sub-modules: ANN and Fasting Blood Sugar (FBS).
Following that, the DT algorithm was applied in order to identify the symptoms of diabetic
patients correctly. In a similar vein, researchers working on [36] have utilized a variety of
ML techniques, including SVM, AB, Bagging, KNN, and RF algorithms. Table 1 delineates
several ML-based pipelines for diabetes classification employed in the previous literature
with their respective datasets, missing data imputation techniques, feature selection meth-
ods, the number of features selected in that study, classifier, and their results in various
evaluation metrics.
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Table 1. Overview of different ML-based methods utilized in the previous literature for diabetes
prediction, including the year of publication, used dataset, missing value imputation techniques, fea-
ture selection strategies, number of selected features, classifier used, and corresponding performance
evaluation metrics.

Years Dataset MVI 1 FS NSF BPC Performance

2016 [32] ENRC None None 9 DT Acc: 0.840

2018 [37] LMHC None None All RF Acc: 0.808 Sn: 0.849 Sp: 0.767

2018 [37] PIDD None mRMR 7 RF Acc: 0.772 Sn: 0.746 Sp: 0.799

2018 [30] PIDD None None 8 NB AUC: 0.819 Acc: 0.763 Sn: 0.763

2018 [38] PIDD KNN impute BWA 4 Linear Kernel SVM AUC: 0.920

2019 [39] PIDD NB None 8 RF AUC: 0.928 Acc: 0.871 Sn: 0.857

2019 [40] PIDD None CRB 11 NB Acc: 0.823

2019 [41] PIDD None None 8 MLP Acc: 0.775 Sn: 0.85 Sp: 0.68

2020 [31] PIDD Mean CRB 6 Ensemble of AB, XGB AUC: 0.950 Sn: 0.789 Sp: 0.789

2020 [42] NHANES None LR 7 RF AUC: 0.95 Acc: 0.943

2020 [43] PIDD Case deletion None 2 SVM AUC: 0.700 Acc: 0.750

2021 [44] PIDD None None 8 Ensemble of J48, NBT, RF,
Simple CART, RT AUC: 0.832 Acc: 0.792 Sn: 0.786

2021 [45] LMHC Case deletion ANOVA, GI 16 XGB AUC: 0.876 Acc: 0.727 Sn: 0.738
1 Note: MVI: Missing Value Imputation, FS: Feature Selection, NSF: Number of Selected Feature, BPC: Best
Performing Classifier, ENRC: Egyptian National Research Center, LMHC: Luzhou Municipal Health Commission,
PIDD: PIMA Indian Dataset, mRMR: Minimum Redundancy Maximum Relevance, BWA: Boruta Wrapper
Algorithm, CRB: Correlation-Based, NHANES: National Health and Nutrition Examination Survey, ANOVA:
Analysis of Variance, GI: Gini Impurity, NBT: Naive Bayes Tree, RT: Random Tree.

Even though numerous ML-based strategies have already been published in many
research articles, the advancement in diabetes prognosis in recent years is still in the
impoverished phase because of the paucity of efficacious and robust models. Determining
a patient’s risk and susceptibility to a persistent condition such as diabetes is challenging.
Early detection of diabetes lowers medical expenses and the possibility of developing
more severe health issues. It is crucial that inferences may be drawn with accuracy from
instantly observable medical signs, even in crises where a patient may be unconscious
or unable to communicate, to assist doctors in making more effective choices for patient
treatment in high-risk circumstances. Typically, the early signs of diabetes are very subtle.
Therefore, ML-based advancements make early diabetes identification and diagnosis by
automated procedure more likely and effective than the traditional approach of manually
identifying diabetes, such as measuring blood glucose directly. The advantages include
reduced burden for medical professionals and a lower likelihood of human error. We are
attempting to apply a method that does not involve invasive procedures and uses ML
approaches to forecast the early phases of a diabetic patient. This will allow the patient to
be more cautious about their lifestyle to avoid potential complications. In the case of an
intrusive procedure in which a blood glucose test is required, we would be able to make
an early forecast in advance of the event taking place. Besides this, it reduces the hassle of
going to the pharmacy to buy glucose strips and check the glucose level on time, which
intensively reduces medical expenses as well as time.

The current research paper covers the following essential contributions:

• Introducing a new Diabetes Diseases Classification (DDC) dataset from the northeast-
ern part of South Asia (Bangladesh).

• Recommending a DDC pipeline by proposing a weighted ensemble classifier using
various ML frameworks for classifying this DDC dataset.
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• Fine-tuning the hyperparameters of various ML-based models using the grid search
optimization approach.

• Incorporating extensive preprocessing in the DDC pipeline, which comprises outlier
rejection, missing value imputation, and feature selection techniques.

• Conducting extensive research for comprehensive ablation studies using various com-
binations of ML models to achieve the best ensemble classifier model, incorporating
the best preprocessing from previous experiments.

The remainder of the article is structured as follows: Section 2 represents the proposed
DDC dataset and ensemble ML models with different preprocessing in the introduced DDC
pipeline. In Section 3, various extensive experimental results are presented with proper
explanations and ablation studies. Finally, Section 4 concludes the article by abstracting
future work directions with prospective applications.

2. Materials and Methods

This section describes the materials and methods employed in this experiment.
Sections 2.1–2.3 describe our proposed datasets, framework, and evaluation
criteria, respectively.

2.1. Proposed Datasets

When the proportion of one class is higher than the other, there is an imbalanced
distribution of classes in the datasets. Classes with a substantial number of instances are
referred to as majority classes, whereas classes with fewer instances are known as minority
classes [46]. Our newly introduced DDC-2011 dataset has 4751 diabetes cases and 2814 non-
diabetic cases. Similarly, the DDC-2017 dataset has a total of 3492 and 4073 diabetes and
non-diabetic classes, respectively. Moreover, there are no prediabetes cases in the datasets
(see details in Table 2). Therefore, this is a binary classification problem. A class imbalance
problem emerges when the frequency of one class (for example, cancer) can be 1000 times
lower than that of another class (for example, healthy patient) [47]. The majority class
samples outnumber the minority class samples according to the class ratios, which can be
100 to 1 or 1000 to 1 or so on [48]. However, in our proposed datasets, the imbalance between
majority and minority classes is significantly low (see details in Table 2), considering this
a class imbalance problem. Therefore, DDC datasets are standard datasets [49], with an
approximately equal number of samples in each class. Consequently, this article does not
have to deal with the data imbalance problem.

Table 2. Class label description and class-wise sample distributions of the proposed DDC-2011 and
DDC-2017 datasets.

Dataset Diabetes Patient Non-Diabetes Patient

DDC-2011 4751 2814

DDC-2017 3492 4073

2.1.1. Data Source

This study was conducted utilizing Bangladesh Demographic and Health Survey
(BDHS (https://dhsprogram.com/, accessed on 20 September 2022)) datasets in 2011
and 2017–2018 (see details in Table 3). The BDHS records data nationally on people’s
socioeconomic characteristics, demographics, and numerous health factors. Two-stage
stratified cluster sampling has been employed to accumulate data from selected households
and surveyed through face-to-face interviews by the trained staff(s). We utilized totals
of 5223 respondent information aged 35 years and above who tested blood pressure and
glucose level in BDHS-2011. Furthermore, 12,119 respondents aged 18 years and above
were used in the 2017–2018 BDHS survey. We consolidated the two BDHS datasets to create
a substantially large sample to specify the risk factors for DM accurately.

https://dhsprogram.com/
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Table 3. The features (categorical/continuous) employed in this research are described in detail.
For categorical variables we used an χ2-test, whereas for continuous variables a mean ± std is
engaged to represent the substantial relationship with diabetes disease prediction.

χ2-Test or Mean ± Std
Features Different Features with Short Descriptions Categorical? Continuous?

DDC-2011 DDC-2017

F1 Division (the respondents’ residence place) Yes No 144.689 (0.000) 383.774 (0.000)

F2 Location of respondents’ residence area (ur-
ban/rural) Yes No 463.00 (0.496) 93.958 (0.000)

F3 Wealth index (respondent’s financial situation) Yes No 16.104 (0.003) 482.139 (0.000)

F4 Household’s head sexuality (gender of the
household head) Yes No 5.858 (0.016) 4.298 (0.117)

F5 Age of household members No Yes 54.87 ± 12.94 39.53 ± 16.21

F6 Respondent’s current educational status Yes No 6.041 (0.110) 6.960 (0.541)

F7 Occupation type of the respondent Yes No 30.430 (0.063) 185.659 (0.000)

F8 Eaten anything Yes No 0.663 (0.416) 3.065 (0.216)

F9 Had caffeinated drink Yes No 1.590 (0.207) 20.738 (0.000)

F10 Smoked Yes No 0.001 (0.985) 7.781 (0.020)

F11 Average of systolic No Yes 77.59 ± 12.05 122.63 ± 21.95

F12 Average of diastolic No Yes 119.93 ± 21.93 80.52 ± 13.67

F13 Body mass index (BMI) for respondent No Yes 2065.63 ± 369.25 2239.43 ± 416.47

2.1.2. Study Variables

A biomarker questionnaire was provided by the BDHS program to collect information
regarding HTN and DM diagnosis and treatments. Following the World Health Organi-
zation (WHO) recommended measurement, these surveys generally gathered records of
plasma glucose levels. Trained health technicians recorded DM data through HemoCue
Glucose 201 Analyzer. To quantify blood glucose levels, BDHS applied WHO cut-off levels.
The fasting blood glucose level was ≥7.0 mmol/L, indicating the existence of DM and
categorized as “Yes”. Here, prediabetes (PBG: 6.0–6.9 mmol/L with no medical care) and
diabetes-free (PBG: <6.0 mmol/L) varieties were incorporated according to the BDHS
classification procedure and categorized as “No”. However, the different categorical and
continuous independent variables are represented in Table 3. The covariates used in the
study are the age of the respondent (continuous), sex (male or female), educational level
(no formal education, up to the primary, up to secondary, up to higher secondary), eco-
nomic status (poorer, poor, middle, rich, richer), body mass index (continuous), occupation
type (factory workers, beggars, boatmen, domestic servants, construction workers, brick
breakers, road builders, rickshaw drivers, poultry raisers, cattle raisers, fishers, farmers,
and agricultural workers, retired person, religious leader, housewife, businessman, family
welfare visitor, teacher, accountant, lawyer, dentist, nurse, doctor, tailor, carpenter, unem-
ployed/student, and landowner), eating habit (specified, anything), drinking coffee (no
or yes), place of residence (urban or rural), division (Barisal, Chittagong, Dhaka, Khulna,
Rajshahi, Rangpur, Sylhet, Mymensingh), average of diastolic (continuous), and the average
of systolic (continuous).

2.2. Proposed Methodologies

The overall workflow of this article has been illustrated in Figure 1 and essentially
incorporates and investigates a preprocessing method and an ensemble ML classifier
with hyperparameter optimization [50], Missing Value Imputation (MVI), and Feature
Selection (FS) schemes are included in the suggested preprocessing. Additionally, K-fold
cross-validation is applied to validate the proposed system’s robustness by analyzing the
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inter-fold variations. However, the different integral parts of our recommended DDC
system are briefly explained in the following subsections.

Case Deletion

MEDimpute

KNNimpute

MVI Method FS Method

IG-based FS

RF-based FS

XGB-based FS

LGB-based FS

Preprocessing 

Training Data K-fold Cross Validation Testing Data

ML Classifiers

GNB BNB RF DT XGB LGBGNB BNB RF DT XGB LGB

E E E E E E

Ensemble Classifier

Hyperparameter Optimization Grid Search Method

E

E

Evaluate

Pij×WiPij

Wi :Model’s weight

:Model’s outputPij

Wi :Model’s weight

:Model’s output

Figure 1. Block diagram of the proposed workflow incorporating various ML-based classifiers,
a pre-processing step, and hyperparameter tuning through grid search optimization.

2.2.1. Missing Value Imputation (MVI)

A trainable automated classification decision-making framework entirely relies on
a dataset. However, the practical dataset commonly includes an abnormal proportion of
missing values, typically represented as NaNs, null, blanks, undefined, or similar place-
holders [15]. Therefore, missing values in a dataset must be eliminated or imputed to
develop a generic, robust, and effective classification model. Unlike the case deletion
strategy, numerous statistical and ML approaches are employed extensively to handle
data missingness in an incomplete dataset. For MVI purposes, median and KNN-based
imputation techniques have been applied most frequently for several decades [15,51]. Thus,
this article integrates median-based statistical and KNN-based ML imputation approaches
and a case deletion strategy, which is portrayed in Figure 1. Moreover, Algorithm 1
illustrates the procedures used in the latter two MVIs.
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Algorithm 1: The procedure for applying the MVI method

Input: An uncurated column vector with n-samples (Xin = [x1, _, x3, . . ., xn]T),
where xi ∈ R

Result: A curated column vector with n-samples (Xout = [x1, x2, x3, . . ., xn]T),
where xi ∈ R

1 Impute the missing values using the following equation

Xout(si) =

{
Ej, for ith missing sample in Xin

xi, for other cases

where si is the ith sample of Xout and Ej is the estimated or predicted value in ith
position for jth attribute

2.2.2. Feature Selection (FS)

FS is a fundamental strategy for determining which features are most likely acceptable
for a specific ML model. FS approaches are commonly implemented in model simplifi-
cation for more straightforward interpretation, reduced training times, reduced dimen-
sionality, enhanced predictive accuracy by choosing the relevant features, and avoiding
over-fitting [52,53]. Among the supervised, semi-supervised, and unsupervised FS pro-
cedures, the supervised FS method typically outperforms the others [31,54]. Therefore,
for executing the ablation analyses for our suggested DDC datasets, this paper employs
the four most typically exploited supervised FS techniques: RF, Information Gain (IG) [55],
XGB [56], and LightGBM (LGB) [57], to minimize attribute redundancy. These four FS
approaches are discussed shortly in the subsequent paragraphs.

RF-Based FS

RF is a tree-based method and is applied as an FS technique. It simply ranks the
features based on how successfully it enhances the purity of the node, minimizing all trees’
impurities. The nodes consisting of the most significant impurity reduction appear at the
onset of the trees, whereas a slight reduction in nodes’ impurity appears especially towards
the tree’s end. As a result, a subset of the relevant features can be obtained by trimming the
trees below a particular node. In Algorithm 2, the stages for the RF-based FS are described.

Algorithm 2: The procedure for applying RF-based FS method

Input: The d-dimensional data, Xin ∈ Rn×d and result, Y ∈ [0, 1]
Result: The reduced m-dimensional data, Xout ∈ Rn×m, where m < d

1 Calculate a tree’s Out of Bag (OOB) error.
2 When primary node i is separated in Xin, allocate per adherence with P̃i to minor

nodes at random, where the comparative frequency of occurrences is P̃i, that
previously followed the tree in the same direction.

3 Recalculate tree’s OOB error (follow step 2).
4 Determine the contrast in OOB errors between the initial and recalculated errors.
5 Reapply previous steps (1 to 4) for each tree, the total importance score (F) is then

calculated employing the average deviation across all trees.
6 Choose the high scores (F) of top-m features as well as preserve them in Xout.

IG-Based FS

In ML, IG is an entropy-based feature selection strategy described as the vast informa-
tion provided by the text category’s feature elements. In order to examine the significance
of lexical items for classification, IG is calculated by determining how much of a term can
be used for the information classification. The mathematical expression of IG is exhibited
in Equation (1).
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G(D, t) = −
m

∑
n=1

P(Ci)logP(Ci) + P(t)P(Ci|t)logP(Ci|t) + P(t)P(Ci|t̄)logP(Ci|t̄) (1)

where C is a set of collections of documents in which feature t does not exist. The value of
G(D, t) is greater if feature t is selected. If a maximum value of G(D, t) is desired, the values of
P(t) and P(t̄) should be lower. Algorithm 3 depicts the procedures used for the IG-based FS.

Algorithm 3: The procedure for applying the IG-based FS method
Input: The n-dimensional dataset such as, D = { f1, f2, f3, . . ., fn}
Result: Selected feature set S

1 Discretize fi ∈ D.
2 for each fi ∈ D do
3 Compute the mutual information I( fi, f j) of the features and mutual

information matrix I;
4 Calculate the feature relevance Rel( fi) of all features then candidate feature

subset is D = D− S;
5 end
6 for 1 < i ≤ n do
7 for each fi ∈ D do
8 Calculate Red( fi) of the candidate features;
9 Compute G(i) of the candidate feature;

10 S(i) = max(G(i)) and D = D− S;
11 Calculate C(i) of the candidate feature;
12 end
13 If C < 1
14 Break;
15 end
16 Output feature subset S

XGB- and LGB-Based FS

XGB and LGB are the executions of gradient boosting-based feature selection meth-
ods, ensemble strategies that use regularized learning, and the block structure of cache-
aware tree-based learning. The gain score per tree partition results from these models,
and the average growth is utilized to calculate the conclusive feature’s stature value. Even-
tually, the top-m indexed features are selected depending on the gain, as explained in
Algorithms 4 and 5.

Algorithm 4: The procedure for applying the XGB diabetes detection model

Input: Input feature vector with n-samples and d-dimension X ∈ Rn×d and true
label Y ∈ Rn×1

Result: The posterior P ∈ [0, 1]
1 Firstly, the model is commenced with the constant value:

F0(x) = argminγ ∑N
i=1 L(Y, γ), where the differentiable loss function is L(Y, F(x))

and the sample number is N
2 for m=1 to M (n_Iterations) do
3 Calculate pseudo-residuals, rim = −[ δL(Y,F(Xi))

δF(Xi)
], where i = 1, 2, . . ., N

4 Adjust a tree’s base, hm employing training set (Xi, rim) for i = 1, 2, . . ., N
5 end
6 Calculate multiplier γm by γm = argminγ ∑n

i=1 L(Yi, Fm−1(Xi) + γhm(Xi))
7 Update the parameters of the model by Fm(x) = Fm−1(x) + γmhm(x)
8 Therefore, the expected posterior probability is Fm(x), where P ∈ [0, 1]
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Algorithm 5: The procedure for applying the LGB diabetes detection model

Input: Input feature vector with n-samples and d-dimension X ∈ Rn×d and true
label Y ∈ Rn×1

Result: The posterior P ∈ [0, 1]
1 Merge mutually undivided attributes of X ∈ Rn×d using the entire attribute

bundling strategy, allocating θ0(x) = argminC ∑n
i L(Yi, C)

2 for m=1 to M (iteration numbers) do
3 Compute absolute gradient values as follows:

ri = −|
∂L(yi ,θ(xi))

∂θ(xi)
|θ(x)=θm−1(x),∀∈n

4 Employing GOSS technique to resample data set as follows:
top_n = a× len(X), rand_n = b× len(X), sorted = GetSortedIndices(abs(ri)),
A = sorted[1 : top_n], B = RandomPick(sorted[top_n : len(X)]; rand_n), and
X̄ = A + B, where a is the significant slope data selection ratio, and b is the
tiny slope data selection proportion.

5 Calculate gain of the information as follows:

Vj(d) = 1
n (

(∑xi∈Al
ri+

1−a
b ∑xi∈Bl

ri)
2

nj
l(d)

+
(∑xi∈Ar ri+

1−a
b ∑xi∈Br ri)

2

nj
r(d)

)

6 Develop a further determination tree as follows: θm(x̄) on set X̄
7 Update θm(χ) = θm−1(χ) + θm(χ)

8 end
9 Therefore, the expected posterior probability is θm(x), where P ∈ [0, 1]

2.2.3. K-Fold Cross-Validation

K-fold Cross-Validation (KCV) is one of the most extensively employed methods
for selecting classifiers and predicting error [58]. The DDC datasets were divided into K
numbers of the folds, training the models using the K-1 folds. Then we fine-tuned the
hyperparameters by applying the grid search algorithm [59]. The best hyperparameters
and unrevealed testing data were exploited to assess the models’ performance in the
outermost loop (K times). Additionally, the stratified KCV has been implemented to
restore each class’s constant percentage of samples because the DDC dataset includes both
positive and negative samples. The final evaluation metrics were computed by employing
Equation (2) [31].

M =
1
K
×

K

∑
n=1

Pn ±

√
∑K

n=1(Pn − P̄)2

K− 1
(2)

where M is the final performance metric for the classifiers, K represents fold numbers,
and Pn ∈ R.

2.2.4. Hyperparameter Optimization

Since ML algorithms are sensitive to multiple hyperparameters, they need the best
batch of hyperparameters [31,60,61]. However, grid search is one of the most funda-
mental approaches, defining a set of finite numbers per hyperparameter and analyz-
ing the Cartesian product of these sets [61]. Let Ω to be the problem parameters space
P = (p1, p2, . . ., pm) across which the p-value should be maximized. A grid search strat-
egy can be easily set up for each element of P by constructing a lower and upper vector
limits such as L = (l1, l2, . . ., lm) and U = (u1, u2, . . ., um), where n numbers of uniformly
spaced points. Eventually, the highest of these values is elected once each pair of points
has been computed. Six different kinds of ML optimized algorithms’ hyperparameters are
summarized in Section 3.3.
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2.2.5. ML Classifiers

In this article, various ML classification algorithms such as GNB, BNB, DT, RF, XGB,
and LGB are trained and evaluated for diabetes detection. The algorithmic processes of
these ML models are explained in the following paragraphs.

GNB and BNB Classifier

The Bayesian approaches such as GNB and BNB are supervised learning-based al-
gorithms. These algorithms are established on the principle of the Bayesian theorem and
the presumption of conditional freedom between all the features, which provide the class
variable’s value (see Algorithm 6). GNB employs a Gaussian operation as a likelihood of
the features, whereas BNB utilizes multivariate Bernoulli distributions.

Algorithm 6: The procedure for applying the GNB and BNB diabetes detec-
tion model

Input: Input feature vector with n-samples and d-dimension X ∈ Rn×d and true
label Y ∈ Rn×1

Result: The posterior P ∈ [0, 1]
1 Calculate the prior as P(Y = Cj) =

nj
n , ∀j ∈ C, and nj is the sample in jth class.

2 Determine the posterior probability of the output as follows:

P(Cj|X) =
P(X|Cj)×P(Y=Cj)

P(X)
, which P(X|Ci) is the predictor’s likelihood for a given

class (∀j ∈ C).

RF Classifier

The RF classifier applies the bagging strategy to the individual trees present in the
ensemble, as described in Algorithm 7. The training sample is then substituted with a
random sample, and trees are fitted to these samples. The number of trees in the ensemble
is a variable that can be learned spontaneously utilizing out-of-bag errors.

Algorithm 7: The procedure for applying the RF diabetes detection model

Input: Input feature vector with n-samples and d-dimension X ∈ Rn×d and true
label Y ∈ Rn×1

Result: The posterior P ∈ [0, 1]
1 for b = 1 to N (bagging numbers) do
2 Take a bootstrap representative, (Xb, Yb) from provided (X ∈ Rn×d, Y ∈ Rn×1);
3 Using Xb and Yb, develop a random-forest tree Tb by iteratively executing the

steps below until the node size is minimum, nmin.

1. Choose m variables at random from the given n variables.

2. Choose the most satisfactory variable or split-point from among the given m
variables.

3. Break the primary node into two minor nodes

The output of the ensemble of trees will be {Tb}N
1

4 end
5 The posterior is P (x) = Voting{P̃k(x)}N

1 , where P̃k(x) is the class prediction of the
kth RF.

DT Classifier

DT adopts a tree structure to develop classification models (see Algorithm 8), splitting
a dataset into progressively smaller subgroups. Decision nodes with at least two branches
and leaf nodes indicating a classification or decision are the outcomes in a tree. Furthermore,
the root node is the highest decision node in a tree that approximates the best prediction.
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Algorithm 8: The procedure for applying the DT diabetes detection model

Input: Input feature vector with n-samples and d-dimension X ∈ Rn×d and true
label Y ∈ Rn×1

Result: The posterior P ∈ [0, 1]
1 Divide θ = (j, tm) into Qle f t(θ) and Qright(θ) subsets, where θ consisting of a

feature, j and threshold, tm.
2 Use an impurity function (H), which are given below, to calculate the impurity at

the kth node, G(Q, θ) =
nle f t
Nm

H(Qle f t(θ)) +
nright
Nm

H(Qright(θ)), where
H = ∑c PmC × (1− PmC) or H = −∑c PmC × log(PmC) and
PmC = 1

Nm
∑xi∈Rm I(yi = C)

3 Reduce the impurity by selecting the parameters, θ∗ = argminθG(Q, θ).
4 Reapply the preceding steps for subsets Qle f t(θ

∗) and Qright(θ
∗) until depth reach

to Nm < samples (minimum) or Nm = 1.

XGB Classifier

XGB classifier is a boosting strategy in an ensemble model that consists of various
models to increase prediction accuracy. Subsequent models correct the errors generated by
prior models by applying weights to the models in this boosting method (see Algorithm 4).

LGB Classifier

LGB is based on DT techniques, employing a technique known as Gradient-based
One-side Sampling (GOSS) and Exclusive Feature Bundling (EFB), which takes advantage
of leaf-and level-wises tactics to speed up the training process [62,63] (see Algorithm 5).

Proposed Ensemble Classifier

The ensemble of the ML model is a prevalent technique for increasing performance by
combining a group of classifiers [31,64,65]. Integrating the outputs from different classifier
models in ensemble procedures can boost diabetes prediction accuracy. The six different
ML models, as previously explained (GNB, BNB, RF, DT, XGB, LGB), are utilized for the
ensemble frameworks as they can enhance the effectiveness of ML-based classifiers [31,66]
and outperform in numerous medical fields, for instance, pneumonia, diabetic retinopathy,
and measles vaccination uptake classifications [64,67,68]. We caluculate each models’
output, Yj, (j = 1, 2, 3, . . ., m = 6) ∈ RC considering C = 2 (whether diabetes patient, C1 or
not C2) and confidence values Pi ∈ R (i = 1, 2) on the unrevealed test data where Pi ∈ [0, 1]
and ∑C

i=1 Pi = 1. In this paper, Equation in (3) has been leveraged to achieve weighted
aggregation of multiple ML algorithms.

Pen
i =

∑m=6
j=1 (Wi × Pij)

∑C=2
i=1 ∑m=6

j=1 (Wi × Pij)
(3)

where Wj is the weight of corresponding jth classifiers’ AUC. The ensemble model’s
output, Y ∈ RC contains the confidence values Pen

i ∈ [0, 1]. The ultimate class label of our
proposed DDC datasets’ unseen test data, X ∈ R from the ensemble framework will be Ci if
Pen

i = max(Y(X)).

2.3. Evaluation Metrics

In this study, different types of performance metrics were utilized. This is related to
why an ML model may perform well with one measurement from one evaluation metric
while performing poorly with the other measurement from another. In order to ensure
that an ML model is operating appropriately and optimally, various evaluation metrics
must be employed. This article’s extensive experiments are evaluated by using a variety
of metrics, including sensitivity (Sn), specificity (Sp), accuracy (Acc), and the receiver
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operating characteristic (ROC) curve with AUC value [15,69,70], which are estimated in
this way:

Sn =
TP

TP + FN
(4)

Sp =
TN

TN + FP
(5)

Acc =
TP + TN

TP + FP + TN + FN
(6)

where TP, FN, TN, and FP indicate the numbers of true positives, false negatives, true
negatives, and false positives, respectively. The Sn and Sp are applied to estimate type II
errors (patient who has diabetes but incorrectly recognized as a non-diabetic patient) and
type I errors (patient who is non-diabetic but incorrectly recognized as a diabetic patient),
which are calculated by utilizing Equations (4) and (5), respectively. On the other hand, Acc
calculates the total accurately identified samples among all samples present in the datasets
using Equation (6). Additionally, the ROC curve demonstrates the classification model’s
performance and the AUC represents the degree of separability by the classifiers. Therefore,
we have distinct performance metrics to display the results from various perspectives.

3. Results and Discussion

This section is broken up into numerous subsections that detail the extensive ex-
periments that were carried out for this research and the results of those experiments.
The appropriate missing data imputation and feature selection algorithms are studied
using comprehensive ablation investigations in Sections 3.1 and 3.2. Section 3.3 focuses
on optimizing various hyperparameters of different ML algorithms. Finally, Section 3.4
concludes by explaining the outcomes obtained from individual ML classifiers as well
as our suggested weighted ensemble classifiers with comprehensive ablation analyses.
Furthermore, the effectiveness of the proposed classifier was examined by employing a
statistical test known as an analysis of variance (ANOVA).

3.1. Results for Missing Imputation

To handle the missing data challenge (see Section 2.2.1), we utilized the three most
familiar approaches, as stated in Table 4, namely Case Deletion (remove the missing
data sample), MEDimpute (using median value), and KNNimpute (utilizing K nearest
neighbor data sample). We employed two distinct DDC datasets (DDC-2011 and DDC-2017)
and six distinct ML classifiers, namely GNB, BNB, RF, DT, XGB, and LGB, for indirect
evaluation [15] in order to determine which MVI technique performs the best when it
comes to diabetes classification. Our goal was to determine which MVI technique is the
most effective at identifying diabetes cases.

Table 4 demonstrates that the MEDimpute exceeds the Case Deletion and KNNimpute
methods in most situations by a substantial margin. The Case Deletion or KNNimpute
approach outperforms MEDimpute by a small margin in the remaining circumstances.
Particularly for the DDC-2011 dataset, the AUC is significantly higher for RF, DT, XGB,
and LGB classifiers, while MEDimpute is employed. Again, the percentage of missing
values in the DDC datasets (as described in Section 2.1) is much lower than the total data
sample, which is 11.25%. Furthermore, only six features contain missing data out of the
thirteen features. However, the missing data numbers and the attributes, including missing
data, are relatively minor. Therefore, the resulting AUCs from all of the detection models
for all suggested datasets are nearly identical for all MVI approaches, with the MEDimpute
method performing significantly better in most cases (see Table 4). Such superior results
from the MEDimpute prove its superiority for the MVI in fewer missing values, which
is also reviewed in the article [15]. As the MEDimpute strategy beats the other two MVI
techniques (see Table 4), this strategy is implemented in the remaining investigation in
this research.
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Table 4. Comprehensive empirical findings for missing value imputation in terms of AUC, utilizing
three distinct imputation techniques, two distinct DDC datasets, and six separate ML classifiers.
The best imputation strategy has been seen in the blue underline for each dataset and classifier.

Different ML Classifiers
Dataset MVI Techniques

GNB BNB RF DT XGB LGB

Case Deletion 0.597± 0.042 0.525± 0.020 0.592± 0.047 0.518± 0.021 0.576± 0.063 0.588± 0.077

MEDimpute 0.612± 0.036 0.526± 0.019 0.595± 0.043 0.514± 0.022 0.580± 0.063 0.584± 0.080DDC-2017

KNNimpute 0.616± 0.039 0.525± 0.019 0.589± 0.048 0.522± 0.019 0.576± 0.063 0.584± 0.078

Case Deletion 0.577± 0.024 0.507± 0.017 0.493± 0.081 0.484± 0.031 0.476± 0.071 0.485± 0.073

MEDimpute 0.560± 0.047 0.521± 0.025 0.741± 0.036 0.636± 0.017 0.727± 0.050 0.733± 0.046DDC-2011

KNNimpute 0.561± 0.067 0.517± 0.021 0.485± 0.074 0.482± 0.038 0.476± 0.082 0.476± 0.082

3.2. FS Results

The proposed methodology now includes FS methods, which were applied to identify
the smallest subset of features; as a result, the performance of classifiers has been enhanced.
A low level of classification accuracy might be the outcome of using high-dimensional
qualities, which can lead to data redundancy or distortion. Therefore, to attain the high-
est performance, we need to determine the set with the fewest features. Predicting the
suitable FS strategy without ablation research is not a viable option due to the fact that
the performance of such approaches frequently fluctuates depending on the applications.
In order to execute a thorough ablation experiment, this article examines four different
FS techniques without feature modification (therefore preserving the interpretation) and
six distinct classifiers for the diabetes classification challenge (see results in Table 5 and
Figure 2).

The initial stage in FS is to rank features according to importance scores obtained
from various algorithms. Table 5 demonstrates the feature importance score according to
the four FS methods: RF, IG, XGB, and LGB, utilizing the same dataset and experimental
conditions. According to the RF-based FS, the top five features are F13, F5, F11, F12, and F7,
whereas the other three FS methods exhibit different features as the top five most significant
attributes. Interestingly, F13 (BMI of the respondent) is the supreme feature that is agreed
upon by all the FS techniques. In contrast, the other features selected by RF methods also
have been selected by other one or two FS strategies. However, further insight discussion
for determining the best FS methods has been visualized in Figure 2.

Table 5. Feature importance score in accordance with the four different FS strategies (RF, IG, XGB,
and LGB). The five most significant features of individual models are underlined in blue.

Feature Importance Score

FS Methods
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

RF 0.065 0.018 0.048 0.035 0.140 0.035 0.072 0.018 0.007 0.013 0.125 0.116 0.308

IG 0.006 0.00 0.003 0.005 0.00 0.00 0.00 0.00 0.005 0.007 0.002 0.006 0.192

XGB 0.073 0.034 0.054 0.148 0.036 0.029 0.035 0.034 0.017 0.039 0.049 0.042 0.410

LGB 0.074 0.024 0.045 0.019 0.143 0.03 0.049 0.016 0.007 0.010 0.185 0.159 0.240
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The FS outcomes from various experimental investigations employing four different FS
processes are delineated in Figure 2, demonstrating the FS results from different classifiers
and exhibiting their related most elevated AUC at the various feature numbers. The findings
from RF-based FS techniques corroborate that three classifiers, RF, XGB, and LGB, obtain a
loftiest likely AUC of around 0.77 using top 4–5 features (see Figure 2a). The IG-based FS
technique, with the highest AUC of 0.77 for the RF model (see Figure 2b), also has the best
performance when utilizing the top 11 features. Another XGB-based FS approach shows
its highest AUC of 0.78 using the top 8–9 features for the LGB classifier (see Figure 2c).
The remaining last one, known as the LGB-based FS method, provides the best AUC of
approximately 0.77 for the identical LGB model with the top 2–3 features (see Figure 2d).
Although each of the four FS methods determines the different features as their most
important attributes (see in Table 5), they do not perform similarly in producing the
diabetes classification outcomes, as reflected in Figure 2. As a result, we emphasize the
FS model, which can produce improved AUC values for the categorization of diabetes.
Again, despite the fact that both RF-based and LGB-based FS techniques obtain the same
AUC, the LGB-based FS technique is not employed in this research due to its non-linear
and gradually declining performance. As a consequence, the RF-based FS approaches have
been regarded as the most essential FS techniques in our pipeline based on the features
they have specified. As RF-based FS provides the best possible AUC with the minimum
subset of features such as F13, F5, F11, F12, and F7 (higher to lower feature ranking), it is
employed in the remaining experiments.
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Figure 2. AUC versus feature numbers (2–13) in the submitted DDC dataset, considering four distinct
feature-choosing approaches and six different ML-based models.



Int. J. Environ. Res. Public Health 2022, 19, 12378 15 of 25

3.3. Optimization Results

In order to generate the maximum feasible AUCs using six different ML models,
the MVI and FS techniques that yielded the best results during the two earlier investigations
are utilized for tweaking hyperparameters. Table 6 elucidates the hyperparameter list for
ML prototypes, together with the optimal weights, using the grid search approach that the
proposed framework provides. Grid Search Optimization (GSO) is used to determine the
optimum hyperparameter values in order to improve the AUC values for the suggested
DDC datasets. This experiment was successful in determining the best parameters of
those ML models that will be utilized in the upcoming experiments, particularly for the
individual ML model and proposed weighted ensemble model evaluation for the same
task diabetes classification on the same experimental condition and suggested dataset.

Table 6. The highest achievable AUC for the DDC dataset with hyperparameters tuning of the six
ML models.

Classifiers Tuned Hyperparameters AUC (W/ GSO) AUC (W/O GSO)

GNB The classes’ prior probabilities (=None) and features’ largest variance portion
for stability guesstimate (=0.01). 0.637± 0.008 0.628± 0.009

BNB Additive Laplace smoothing parameter (=1.0), classes’ prior probabilities
(=None), and to learn or not class priors (=True). 0.637± 0.009 0.632± 0.003

RF

Bootstrap samples or not (=True), split quality function (=gini), the best
split feature numbers (=auto), leaf node number for grow trees (=3), leaf
node’s samples (=0.4), the samples required to split an internal node (=
2), tree numbers in the forest (=100), out-of-bag samples to calculate the
generalization score (=False), and the bootstrapping samples’ randomness
control with feature sampling for node’ split (=100).

0.628± 0.000 0.628± 0.000

DT

Split quality function (=entropy), the best split feature numbers (=auto), leaf
node’s samples required (=0.5), samples required to split an internal node
(=0.1), the bootstrapping samples’ randomness control with feature sampling
for node’ split (=100), and node’s partition strategy (=best).

0.792± 0.025 0.675± 0.009

XGB

Initial prediction score (= 0.5), used booster (gbtree), each levels’ subsample
ratio (=1), each nodes’ subsample ratio (=1), evaluation metrics for validation
data (=error), minimum loss reduction for a further partition on a leaf node
(=1.5), weights’ L2 regularization (=1.5), tree depth (=5), child’s hessian sum
(=5), trees in the forest (=100), parallel trees built during each iteration (=1),
the bootstrapping samples’ randomness control with feature sampling for
node’ split (=100), control the unbalance classes (=1), and training subsample
ratio (=1.0).

0.830± 0.007 0.811± 0.008

LGB

Boosting method (=gbdt), class weight (=True), tree construction’s columns
subsample ratio (=1.0), base learner tree depth (=−1), trees in the forest
(=50), the bootstrapping samples’ randomness control with feature sampling
for node’ split (=100), base learner tree leaves (=25), and training instance
subsample ratio (=0.25).

0.796± 0.010 0.793± 0.012

3.4. Classifiers’ Results

Table 7 presents the diabetes classification results of a variety of ML models, as well as
their ensemble models utilizing the best performing MVI and FS techniques and proposed
DDC-2011 and DDC-2017 datasets.
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Table 7. Diabetes classification results have been obtained by implementing six individual ML
and weighted ensemble models in the proposed DDC-2011 and DDC-2017 datasets, including the
imputation of missing value, feature picking, and hyperparameter tuning. The metrics of the best-
performing single model are highlighted in bold fonts, whereas the blue underlines are used to
indicate them in the proposed ensemble models.

Datasets Different Classifiers Sn ↑ Sp ↑ Acc ↑ AUC ↑
GNB 0.974± 0.005 0.037± 0.009 0.625± 0.003 0.637± 0.008

BNB 1.000± 0.000 0.000± 0.000 0.628± 0.000 0.637± 0.009

RF 1.000± 0.000 0.000± 0.000 0.628± 0.000 0.628± 0.000

DT 0.964± 0.048 0.275± 0.036 0.707± 0.021 0.792± 0.025

XGB 0.937± 0.007 0.398± 0.022 0.737± 0.006 0.830± 0.007

LGB 0.711± 0.011 0.662± 0.035 0.693± 0.013 0.796± 0.010

GNB + BNB 0.974± 0.005 0.037± 0.009 0.626± 0.003 0.637± 0.010

RF + DT 0.988± 0.023 0.247± 0.010 0.713± 0.016 0.791± 0.026

LGB + XGB 0.854± 0.009 0.510± 0.036 0.726± 0.008 0.826± 0.008

GNB + BNB + DT + RF 0.989± 0.010 0.234± 0.049 0.708± 0.024 0.749± 0.018

GNB + BNB + XGB + LGB 0.959± 0.005 0.358± 0.012 0.736± 0.006 0.829± 0.010

DT + RF + XGB + LGB 0.959± 0.008 0.357± 0.017 0.735± 0.008 0.832± 0.009

DDC-2011

GNB + BNB + DT + RF + XGB + LGB 0.984± 0.007 0.316± 0.012 0.735± 0.007 0.826± 0.011

GNB 0.296± 0.115 0.778± 0.095 0.556± 0.009 0.581± 0.019

BNB 0.264± 0.018 0.788± 0.012 0.546± 0.009 0.569± 0.016

RF 0.000± 0.000 1.000± 0.000 0.538± 0.000 0.538± 0.000

DT 0.358± 0.041 0.757± 0.058 0.573± 0.014 0.602± 0.020

XGB 0.440± 0.028 0.705± 0.006 0.582± 0.012 0.605± 0.017

LGB 0.571± 0.030 0.593± 0.014 0.583± 0.017 0.606± 0.022

GNB + BNB 0.250± 0.068 0.809± 0.051 0.551± 0.010 0.587± 0.020

RF + DT 0.311± 0.037 0.801± 0.030 0.575± 0.014 0.600± 0.018

LGB + XGB 0.490± 0.035 0.667± 0.016 0.585± 0.019 0.612± 0.020

GNB + BNB + DT + RF 0.287± 0.039 0.819± 0.016 0.573± 0.018 0.601± 0.021

GNB + BNB + XGB + LGB 0.432± 0.038 0.712± 0.023 0.582± 0.015 0.612± 0.022

DT + RF + XGB + LGB 0.418± 0.019 0.731± 0.016 0.586± 0.017 0.618± 0.021

DDC-2017

GNB + BNB + DT + RF + XGB + LGB 0.401± 0.026 0.749± 0.016 0.588± 0.018 0.615± 0.022

3.4.1. Single ML Model’s Results

Classification of diabetes using the proposed DDC dataset with Bayesian classifiers
such as GNB and BNB demonstrates that the BNB model outperforms the GNB model by
two cases out of four, with substantial margins for the DDC-2011 dataset. Again, with the
other dataset (DDC-2017), the GNB model outperforms the BNB model, which indicates
that both Bayesian models are unpredictable and display low accuracy values. For example,
the highest was 62.8% for DDC-2011 and 55.6% for DDC-2017 (see Table 7). The fact
that the Bayesian classifier assumes that all predictors (attributes) are independent, which
is a sporadic occurrence in the real world, causes the targeted study to produce subpar
DDC results.

Again, RF and DT tree-based classifiers exhibit that the DT model surpasses the RF
model with a significant margin for both the DDC datasets. A close inspection of the RF
classifier tells that for the DDC-2011 it is biased toward the positive class (as specificity is
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0.0% with 100.0% sensitivity) and for the DDC-2017 towards the negative class (as specificity
is 100.0% with 0.0% sensitivity). Again, RF demonstrates unreliable and ambiguous results
for two different DDC datasets, while the DT model provides balanced results for both
datasets (see Table 7). Although the BNB and RF models yield an Sn of 100.0%, both models
should not predict all samples as positive. This is because of a positive predictive value
(Pr) similar to the positive class prior probability (Ppos) (Pr = Ppos). These findings and
discussion reveal that using the Bayesian and RF models to classify the dataset with many
inter-class homogeneities is not satisfactory for this article’s experimental approval.

Likewise, when the results of the boosting-based classifiers such as XGB and LGB are
compared, the XGB has more significant Sn, Acc, and AUC for the DDC-2011 dataset, while
the LGB has a better value of Sp. On the other hand, those classifiers for the DDC-2017
dataset expose that LGB has a more satisfactory performance. However, their performances
for the DDC dataset and aimed tasks are more promising than the other four tree-based
and Bayesian classifiers. The boosting classifiers applied in this article are extreme gradient
boosting and one of the well-known gradient boosting procedures (ensemble), which
improved interpretation and swiftness in tree-based ML algorithms [31,64]. Additionally,
they minimize a regularized (L1 and L2) objective function that integrates a convex loss
function and a correction term for model complexity, producing a more generic classification
in any given assignment, including the aspired task in this article. In order to achieve
more generic results from a particular model for both the DDC datasets, we have designed
several variants of weighted ensemble models that are discussed in the following section in
an ablation study.

3.4.2. Proposed Ensemble Models’ Results

We have conducted ablation studies to build an appropriate ensemble classifier with
improved diabetes categorization results, as it has been revealed that such a classifier yields
more profitable results that are experimentally validated in [31,64]. Table 7 displays all the
proposed weighted ensemble models’ results, where those suggested ensemble models
utilized individual models’ AUC values as a weight.

Two different models of Bayesian, tree-based, and boosting algorithms are combined
pair-wise to build three ensemble models such as GNB + BNB, RF + DT, and LGB + XGB,
and tested on both the DDC datasets. The results of those classifiers demonstrate better
results than the single model working on our DDC dataset independently (see Table 7).
Again, the weighted mixture of four different models returns three different ensemble
classifiers, namely GNB + BNB + RF + DT, RF + DT + LGB + XGB, and LGB + XGB + GNB +
BNB. The obtained results from those three models are enhanced than all previous models
for the DDC datasets. The further combination of all the six models to assemble LGB + XGB
+ GNB + BNB + RF + DT can not produce as good results as the combination of four models.

Furthermore, for the DDC-2017 dataset, the ensemble models with two ML models
win three out of four cases such as Sn, Acc, and AUC, by a considerable margin (see 20th–
22nd rows of Table 7). Secondly, using the DDC-2011 dataset, the weighted combination
of two distinct classifier models, Bayesian with tree-based, Bayesian with boosting-based,
and tree with boosting-based, demonstrates that the suggested GNB + BNB + XGB +
LGB boosts overall accuracy and Sp while dropping Sn and AUC. However, applying
the same aggregation models for the DDC-2017 dataset shows that DT + RF + XGB +
LGB enhances the overall accuracy and AUC value. The other two models, GNB + BNB
+ XGB + LGB and GNB + BNB + DT + RF, can not provide any ensembling success.
Ultimately, the weighted ensemble of Bayesian, tree, and boosting-based prototypes does
not ameliorate categorization outcomes; instead, it degrades the execution for the DDC-2011
dataset, but for the DDC-2017 dataset improves the overall accuracy.

Likewise, using a statistical ANOVA test and the 5-fold cross-validation technique,
the experimental findings from several classification models employ the proposed best
preprocessing method. The AUC results of DDC-2011 and DDC-2017 validation tests are
plotted in box and whisker plots in Figure 3a,b, respectively. In ANOVA testing, α = 0.05
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is considered a threshold for rejecting the void supposition (all models’ mean values are
identical) if p-value ≤ 0.05, resulting in significant outcomes. The ANOVA test yields a
p-value of 3.52× 10−3 (≤ 0.05), indicating that an alternate hypothesis is acceptable and
none of the mean values are similar (correspondingly depicted in Figure 3). Moreover,
the ANOVA test is combined with a post hoc t-test to determine the classification model
which performs better in the suggested classification scheme, confirming the supremacy of
the proposed weighted ensemble DT + RF + XGB + LGB classification model.
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(a) AUC results for DDC-2011
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Figure 3. Box and whisker plots of AUC results acquired from 5-fold cross-validation on various ML
classifiers, where M-1 to M-13 represent GNB, BNB, RF, DT, XGB, LGB, GNB + BNB, RF + DT, LGB +
XGB, GNB + BNB + DT + RF, GNB + BNB + XGB + LGB, DT + RF + LGB + XGB, and GNB + BNB +
DT + RF + XGB + LGB, respectively.

3.4.3. Year-Wise Cross-Fold Validation

The previously presented findings have 5-fold cross-validation, and they were achieved
by utilizing either the DDC-2011 dataset or the DDC-2017 dataset. In contrast, we rec-
ommended using DDC datasets spanning two years (n = 2), with 5-fold cross-validation,
and applying three different scenarios to this part. In the first scheme, features are identified
by utilizing DDC-2017, and then those selected features are administered into the DDC-2011
dataset, after which the features from both datasets are concatenated with the features
that were initially selected. When applied to this synopsis, the feature ranking generates a
scale with a higher-to-lower order of F13, F11, F5, F12, and F7, which results in the highest
AUC for DDCs. In the second step of the process, features are chosen by referring only
to the DDC-2011 dataset. After that, the chosen features are applied to the DDC-2017
dataset, and then those features are concatenated with the features of both datasets. In this
particular instance, the sequence of the features used to calculate the optimal AUC is as
follows: F13, F5, F11, F12, and F7 (higher to lower order). In the final layout, both datasets
are joined together, and the RF approach is then used to select the features of the combined
dataset. As a result, the final feature ranking score is F13, F5, F11, F12, and F1, maintaining
the higher to lower order. The individual three examples that were employed for feature
selection techniques are shown in Table 8 as year-wise cross-validation. Six different ML
classifiers and their ensembles are trained and validated using each case separately.

In case-1, when compared to the performance of separate ML models, the XGB classi-
fier achieves much higher results in both Acc and AUC. On the other hand, while looking
at the other two situations, it has been seen that LGB performs better in three different
variables, namely Sp, Acc, and AUC. Unfortunately, RF displays a sensitivity of 100.0% in
all situations; hence, the RF model cannot be considered a reliable model for these DDC
datasets. The GNB + BNB+XGB+LGB ensemble classifier achieves a higher Acc and AUC
than the individual ML classifiers when applied to case-1 and case-2, respectively. When
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applied to the case-3 scenario, the DT + RF + XGB + LGB classifier demonstrates superior
performance compared to the other ensemble classifiers in terms of Sp, Acc, and AUC.

Table 8. Diabetes classification results are shown in case-1, case-2, and case-3, where features
are selected from the DDC-2017 dataset, DDC-2011 dataset, and both datasets, including missing
value imputation and hyperparameter tuning. The metrics of the best-performing single model are
highlighted in bold fonts, whereas the blue underlines are used to indicate them in the proposed
ensemble models.

Cases Different Classifiers Sn ↑ Sp ↑ Acc ↑ AUC ↑
GNB 0.904± 0.014 0.181± 0.016 0.575± 0.009 0.587± 0.008
BNB 0.796± 0.102 0.288± 0.144 0.565± 0.010 0.584± 0.006
RF 1.000± 0.000 0.000± 0.000 0.545± 0.000 0.545± 0.000
DT 0.741± 0.058 0.484± 0.088 0.624± 0.014 0.674± 0.029
XGB 0.748± 0.013 0.521± 0.022 0.644± 0.007 0.717± 0.008
LGB 0.641± 0.011 0.647± 0.010 0.643± 0.007 0.715± 0.006
GNB + BNB 0.815± 0.070 0.283± 0.100 0.573± 0.100 0.590± 0.007
RF + DT 0.778± 0.040 0.431± 0.070 0.620± 0.014 0.670± 0.031
LGB + XGB 0.703± 0.005 0.585± 0.015 0.649± 0.008 0.721± 0.007
GNB + BNB + DT + RF 0.839± 0.026 0.340± 0.090 0.612± 0.028 0.658± 0.027
GNB + BNB + XGB + LGB 0.787± 0.006 0.485± 0.013 0.650± 0.006 0.722± 0.009
DT + RF + XGB + LGB 0.746± 0.016 0.531± 0.020 0.649± 0.006 0.721± 0.006

Merged datasets
(Case-1)

GNB + BNB + DT + RF + XGB + LGB 0.803± 0.012 0.461± 0.019 0.647± 0.003 0.720± 0.007
GNB 0.904± 0.014 0.181± 0.016 0.575± 0.009 0.587± 0.008
BNB 0.796± 0.102 0.288± 0.144 0.565± 0.010 0.584± 0.006
RF 1.000± 0.000 0.000± 0.000 0.545± 0.000 0.545± 0.000
DT 0.754± 0.023 0.442± 0.051 0.612± 0.014 0.655± 0.022
XGB 0.734± 0.023 0.529± 0.027 0.641± 0.009 0.715± 0.009
LGB 0.644± 0.005 0.650± 0.014 0.647± 0.006 0.715± 0.006

GNB + BNB 0.815± 0.070 0.283± 0.100 0.573± 0.010 0.590± 0.007
RF + DT 0.835± 0.032 0.344± 0.053 0.612± 0.014 0.652± 0.022
LGB + XGB 0.696± 0.014 0.589± 0.017 0.647± 0.009 0.720± 0.007

GNB + BNB + DT + RF 0.891± 0.023 0.247± 0.065 0.598± 0.018 0.647± 0.021
GNB + BNB + XGB + LGB 0.783± 0.009 0.492± 0.014 0.650± 0.004 0.722± 0.008
DT + RF + XGB + LGB 0.748± 0.014 0.525± 0.018 0.647± 0.005 0.721± 0.006

Merged datasets
(Case-2)

GNB + BNB + DT + RF + XGB + LGB 0.810± 0.008 0.456± 0.022 0.649± 0.006 0.720± 0.007
GNB 0.912± 0.014 0.136± 0.053 0.559± 0.020 0.579± 0.017
BNB 1.000± 0.000 0.000± 0.000 0.545± 0.000 0.545± 0.000
RF 1.000± 0.000 0.000± 0.000 0.545± 0.000 0.545± 0.000
DT 1.000± 0.000 0.000± 0.000 0.545± 0.000 0.545± 0.000
XGB 0.712± 0.012 0.560± 0.008 0.643± 0.007 0.714± 0.010
LGB 0.650± 0.010 0.654± 0.013 0.652± 0.008 0.724± 0.010

GNB + BNB 0.966± 0.023 0.043± 0.014 0.545± 0.008 0.576± 0.012
RF + DT 1.000± 0.000 0.000± 0.000 0.545± 0.000 0.545± 0.000
LGB + XGB 0.690± 0.009 0.609± 0.005 0.653± 0.006 0.726± 0.010

GNB + BNB + DT + RF 0.983± 0.021 0.016± 0.018 0.543± 0.003 0.577± 0.010
GNB + BNB + XGB + LGB 0.788± 0.018 0.493± 0.035 0.653± 0.010 0.726± 0.012
DT + RF + XGB + LGB 0.761± 0.009 0.530± 0.005 0.656± 0.005 0.728± 0.009

Merged datasets
(Case-3)

GNB + BNB + DT + RF + XGB + LGB 0.834± 0.017 0.428± 0.036 0.649± 0.012 0.722± 0.012
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In addition, a statistical ANOVA test and a 5-fold cross-validation approach are em-
ployed in order to evaluate the results of the experiments conducted with the different
classification models that made use of the suggested optimal preprocessing method. The re-
sults of the validation tests on the consolidated DDC-2011 and DDC-2017 datasets are shown in
the form of a box and whisker plot in Figure 4. The ensemble classifier GNB + BNB+XGB+LGB
is the top-performing classifier in case-1 and case-2, as shown in Figure 4. On the other hand,
for case-3, DT + RF + XGB + LGB is the best performing ensemble classifier.
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Figure 4. Box and whisker plots of AUC results acquired from 5-fold cross-validation on different
ML-based classifiers, where M-1 to M-13 represent GNB, BNB, RF, DT, XGB, LGB, GNB + BNB, RF +
DT, LGB + XGB, GNB + BNB + DT + RF, GNB + BNB + XGB + LGB, DT + RF + LGB + XGB, and GNB
+ BNB + DT + RF + XGB + LGB, respectively.

3.4.4. Comparative Studies

We provide new DDC datasets (see details in Section 2.1), which were used in all
of the experiments described in this paper. To the best of our knowledge, utilizing the
combined BHDS data of 2011 and 2017–18, there is no work that applied or proposed any
ML techniques for early diabetes prediction. This is despite the fact that some studies are
attempting to investigate the prevalence of diabetes in Bangladesh as well as the factors that
influence the disease [71–74]. However, according to the findings of research that evaluated
ML-based classifiers for automated detection and classification of diabetes in Bangladesh
using BHDS 2011 data, the Bagged CART classifier exhibited the greatest area under the
ROC curve (AUC) of 0.600 [75]. On the other hand, we employed both BHDS 2011 and
BHDS 2017 datasets and were successful in achieving an AUC of 0.832. Using data from the
2011 BDHS, Chowdhury et al. [71] discovered that the overall prevalence of diabetes was
11%, and that the frequency was somewhat lower in males (10.6%) than in women (11.2%).
Respondents in the age group of 55–59 years with higher educational achievement and
better social status had higher odds of having diabetes than those from a lower age group
with no education and lower social status, respectively. They also found that socioeconomic
level, location of residence, regions, overweight and obesity, as well as hypertension, were
significant correlates with diabetes [71]. Since there are not enough studies that use the
same DDC dataset for an accurate comparison, we are unable to compare our findings with
those that have been published in a detailed tabular format. As an alternative, we have
designed and implemented various variants of ML models and their ensembles.

3.4.5. Strengths and Drawbacks of Our Proposed Ensemble Classifier

Although our predictive ensemble-based model (DT + RF + XGB + LGB) proclaims
low accuracy of 73.5%, the results of our article provide a real provocation for the relevant
research community to further improve the accuracy rate by using our suggested DDC
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dataset. However, it offers an acceptable AUC of 83.2%, which is one of the most robust
metrics calculated from the ROC curve. The ROC curve represents the true positive rate
versus the false positive rate. Therefore, it is evident that the outcomes moderately handle
type I and type II errors. One of the constraints of this study is that our algorithm has
been applied to only 7529 patients. It would be great to use this algorithm on an enormous
population, for example, 10 million people, and check the true positive rate versus the false
positive rate. Apart from these limitations, we are now publicly providing our dataset as
well as codes so that other researchers could use these as a starting point and propose a new
algorithm to predict diabetes and compare it with our results. One of the recommendations
is that, as we have applied machine learning and their ensembles, it would be great to
explore modern deep learning techniques.

4. Conclusions

Employing the suggested ML-based ensemble model, in which preprocessing plays a
critical role in ensuring robust and accurate prediction, enabled this research to achieve its
goal of making an early prediction of diabetes. The quality of the dataset was improved due
to the presented preprocessing technique; the key considerations were selecting features
and filling in missing values. The implementation of these preprocessing methods is
required, which necessitates doing an exhaustive examination of the ablative processes in
order to choose the most suitable approaches. In addition, when compared to previous
research, this study produces a more accurate estimation despite including only four to
five features, namely the body mass index (BMI) of the respondent, their present age, their
average systolic pressure, and their average diastolic pressure, as well as their occupation,
which is easily explicable. A weighted ensemble of machine learning classifiers may
enhance the categorization consequences according to the suggested framework. This is
accomplished by assigning a weight to the probability of the outcomes produced by the
ensemble candidates’ models. In terms of its potential to forecast diabetic disease classes
in various medical settings, we anticipate that the model that we have developed would
display both generality and flexibility. In addition, the extensive DDC dataset that was
introduced from the South Asian country of Bangladesh (2011 and 2017–2018), which
was the first dataset in this location, will continue to be helpful in future studies that
involve the use of demographic information. This dataset can be found at GitHub (https:
//github.com/kamruleee51/Diabetes-classification-dataset, accessed on 20 September
2022). In addition, the diabetes detection findings of our work provide an open challenge
to the associated research community to further improve the results by applying our
suggested DDC dataset.
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54. Jović, A.; Brkić, K.; Bogunović, N. A review of feature selection methods with applications. In Proceedings of the IEEE 2015 38th
International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija,
Croatia, 25–29 May 2015; pp. 1200–1205.

55. Lei, S. A feature selection method based on information gain and genetic algorithm. In Proceedings of the IEEE 2012 International
Conference on Computer Science and Electronics Engineering, Hangzhou, China, 23–25 March 2012; Volume 2, pp. 355–358.

56. Chen, C.; Zhang, Q.; Yu, B.; Yu, Z.; Lawrence, P.J.; Ma, Q.; Zhang, Y. Improving protein-protein interactions prediction accuracy
using XGBoost feature selection and stacked ensemble classifier. Comput. Biol. Med. 2020, 123, 103899. [CrossRef] [PubMed]

57. Ye, Y.; Liu, C.; Zemiti, N.; Yang, C. Optimal feature selection for EMG-based finger force estimation using lightGBM model.
In Proceedings of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN),
New Delhi, India, 14–18 October 2019; pp. 1–7.

58. Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79. [CrossRef]
59. Krstajic, D.; Buturovic, L.J.; Leahy, D.E.; Thomas, S. Cross-validation pitfalls when selecting and assessing regression and

classification models. J. Cheminform. 2014, 6, 1–15. [CrossRef]
60. Awal, M.A.; Masud, M.; Hossain, M.S.; Bulbul, A.A.M.; Mahmud, S.H.; Bairagi, A.K. A novel bayesian optimization-based

machine learning framework for COVID-19 detection from inpatient facility data. IEEE Access 2021, 9, 10263–10281. [CrossRef]
61. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter

optimization. J. Mach. Learn. Res. 2017, 18, 6765–6816.

http://dx.doi.org/10.3389/fgene.2018.00515
http://dx.doi.org/10.1016/j.aci.2018.12.004
http://dx.doi.org/10.1109/ACCESS.2019.2929866
http://dx.doi.org/10.1186/s40537-019-0175-6
http://dx.doi.org/10.1007/s13755-019-0095-z
http://www.ncbi.nlm.nih.gov/pubmed/31949894
http://dx.doi.org/10.1016/j.jksuci.2020.01.010
http://dx.doi.org/10.1016/j.inffus.2021.02.015
http://dx.doi.org/10.1145/1007730.1007737
http://dx.doi.org/10.1016/j.neunet.2018.07.011
http://dx.doi.org/10.11591/ijeecs.v14.i3.pp1552-1563
http://dx.doi.org/10.1007/s10115-015-0870-3
http://dx.doi.org/10.1016/j.compbiomed.2022.105671
http://dx.doi.org/10.1007/s00521-009-0295-6
http://dx.doi.org/10.1038/srep10312
http://www.ncbi.nlm.nih.gov/pubmed/25988841
http://dx.doi.org/10.1016/j.compbiomed.2020.103899
http://www.ncbi.nlm.nih.gov/pubmed/32768046
http://dx.doi.org/10.1214/09-SS054
http://dx.doi.org/10.1186/1758-2946-6-10
http://dx.doi.org/10.1109/ACCESS.2021.3050852


Int. J. Environ. Res. Public Health 2022, 19, 12378 25 of 25

62. Ustuner, M.; Balik Sanli, F. Polarimetric target decompositions and light gradient boosting machine for crop classification: A
comparative evaluation. ISPRS Int. J. Geo-Inf. 2019, 8, 97. [CrossRef]

63. Taha, A.A.; Malebary, S.J. An intelligent approach to credit card fraud detection using an optimized light gradient boosting
machine. IEEE Access 2020, 8, 25579–25587. [CrossRef]

64. Hasan, M.K.; Jawad, M.T.; Dutta, A.; Awal, M.A.; Islam, M.A.; Masud, M.; Al-Amri, J.F. Associating Measles Vaccine Uptake
Classification and its Underlying Factors Using an Ensemble of Machine Learning Models. IEEE Access 2021, 9, 119613–119628.
[CrossRef]

65. Harangi, B. Skin lesion classification with ensembles of deep convolutional neural networks. J. Biomed. Inform. 2018, 86, 25–32.
[CrossRef]

66. Hsieh, S.L.; Hsieh, S.H.; Cheng, P.H.; Chen, C.H.; Hsu, K.P.; Lee, I.S.; Wang, Z.; Lai, F. Design ensemble machine learning model
for breast cancer diagnosis. J. Med. Syst. 2012, 36, 2841–2847. [CrossRef] [PubMed]

67. Sikder, N.; Masud, M.; Bairagi, A.K.; Arif, A.S.M.; Nahid, A.A.; Alhumyani, H.A. Severity Classification of Diabetic Retinopathy
Using an Ensemble Learning Algorithm through Analyzing Retinal Images. Symmetry 2021, 13, 670. [CrossRef]

68. Masud, M.; Bairagi, A.K.; Nahid, A.A.; Sikder, N.; Rubaiee, S.; Ahmed, A.; Anand, D. A Pneumonia Diagnosis Scheme Based on
Hybrid Features Extracted from Chest Radiographs Using an Ensemble Learning Algorithm. J. Healthc. Eng. 2021, 2021, 8862089.
[CrossRef] [PubMed]

69. Cheng, N.; Li, M.; Zhao, L.; Zhang, B.; Yang, Y.; Zheng, C.H.; Xia, J. Comparison and integration of computational methods for
deleterious synonymous mutation prediction. Briefings Bioinform. 2020, 21, 970–981. [CrossRef]

70. Dai, R.; Zhang, W.; Tang, W.; Wynendaele, E.; Zhu, Q.; Bin, Y.; De Spiegeleer, B.; Xia, J. BBPpred: Sequence-based prediction of
blood-brain barrier peptides with feature representation learning and logistic regression. J. Chem. Inf. Model. 2021, 61, 525–534.
[CrossRef]

71. Chowdhury, M.A.B.; Uddin, M.J.; Khan, H.M.; Haque, M.R. Type 2 diabetes and its correlates among adults in Bangladesh: A
population based study. BMC Public Health 2015, 15, 1070. [CrossRef]

72. Sathi, N.J.; Islam, M.A.; Ahmed, M.S.; Islam, S.M.S. Prevalence, trends and associated factors of hypertension and diabetes
mellitus in Bangladesh: Evidence from BHDS 2011 and 2017–18. PLoS ONE 2022, 17, e0267243. [CrossRef]

73. Islam, M.M.; Rahman, M.J.; Tawabunnahar, M.; Abedin, M.M.; Maniruzzaman, M. Investigate the Effect of Diabetes on Hypertension
Based on Bangladesh Demography and Health Survey, 2017–2018; Research Square: Durham, NC, USA, 2021.

74. Rahman, M.A. Socioeconomic Inequalities in the Risk Factors of Noncommunicable Diseases (Hypertension and Diabetes) among
Bangladeshi Population: Evidence Based on Population Level Data Analysis. PLoS ONE 2022, 17, e0274978. [CrossRef]

75. Islam, M.M.; Rahman, M.J.; Roy, D.C.; Maniruzzaman, M. Automated detection and classification of diabetes disease based on
Bangladesh demographic and health survey data, 2011 using machine learning approach. Diabetes Metab. Syndr. Clin. Res. Rev.
2020, 14, 217–219. [CrossRef]

http://dx.doi.org/10.3390/ijgi8020097
http://dx.doi.org/10.1109/ACCESS.2020.2971354
http://dx.doi.org/10.1109/ACCESS.2021.3108551
http://dx.doi.org/10.1016/j.jbi.2018.08.006
http://dx.doi.org/10.1007/s10916-011-9762-6
http://www.ncbi.nlm.nih.gov/pubmed/21811801
http://dx.doi.org/10.3390/sym13040670
http://dx.doi.org/10.1155/2021/8862089
http://www.ncbi.nlm.nih.gov/pubmed/33728035
http://dx.doi.org/10.1093/bib/bbz047
http://dx.doi.org/10.1021/acs.jcim.0c01115
http://dx.doi.org/10.1186/s12889-015-2413-y
http://dx.doi.org/10.1371/journal.pone.0267243
http://dx.doi.org/10.1371/journal.pone.0274978
http://dx.doi.org/10.1016/j.dsx.2020.03.004

	Introduction
	Materials and Methods
	Proposed Datasets
	Data Source
	Study Variables

	Proposed Methodologies
	Missing Value Imputation (MVI)
	Feature Selection (FS)
	K-Fold Cross-Validation
	Hyperparameter Optimization
	ML Classifiers

	Evaluation Metrics

	Results and Discussion
	Results for Missing Imputation
	FS Results
	Optimization Results
	Classifiers' Results
	Single ML Model's Results
	Proposed Ensemble Models' Results
	Year-Wise Cross-Fold Validation
	Comparative Studies
	Strengths and Drawbacks of Our Proposed Ensemble Classifier


	Conclusions
	References

