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Abstract: China’s carbon emissions trading scheme (ETS) is an institutional arrangement that China
intends to explore as a means of energy conservation and emission reduction. It is the core of China’s
goal of achieving carbon peaking and carbon neutrality. This paper regards the introduction of pilot
carbon emission trading policies as a quasi-natural experiment. Propensity Score Matching (PSM),
Differences-in-Differences (DID), and spatial Durbin methods were used to evaluate the policy effects
of pilot carbon emission trading policies on the carbon intensity of Chinese cities. We empirically
tested the impact mechanism using the panel data of 281 cities at the prefecture level and above in
China from 2006 to 2019. The results show that (1) the pilot policy of carbon emission trading has
significantly reduced the carbon intensity of Chinese cities and shows characteristics of heterogeneity;
(2) the dynamic effect test shows that the mitigation effect of the pilot carbon emission trading policy
has increased gradually with time; (3) the mediation effect shows that the pilot carbon emission
trading policy alleviates urban pollution in the region by improving the level of environmental
governance and jointly reduces urban carbon intensity by increasing the level of green technology
innovation; (4) the Durbin test suggests that pilot carbon emissions trading policy enforcement can
significantly improve the carbon intensity of the area surrounding the city. In summary, the national
carbon emissions trading market appears to be a successful experiment that also can contribute to
China’s sustainable development. Its promise in achieving the “double carbon” target provides
important policy implications.

Keywords: carbon emission trading pilot; carbon intensity; green technology innovation; environmental
governance level

1. Introduction

In the context of economic globalization, climate change is a major challenge for the
survival and development of mankind in the 21st century, while the economic development
of countries around the world always comes at the cost of energy consumption [1]. The
“Statistical Review of World Energy” released by BP shows that global energy demand
grew 2.9 percent in 2018, while carbon emissions rose 2.0 percent to reach their highest
point in the 21st century. Global primary energy consumption grew 2.9 percent, almost
double the average growth rate of 1.5 percent over the past decade [2]. At the same time,
carbon emissions from energy consumption grew by 2%, also the highest in years. The new
carbon emissions amounted to 600 million tons, which is equivalent to adding a third of
the emissions produced by the planet’s passenger cars. Therefore, it is of great significance
to implement effective means to achieve rapid carbon peaking and net zero emissions [3].

As the world’s largest developing country, China has become the world’s largest car-
bon emitter. China’s carbon dioxide emissions reached 11.3 billion tons in 2021, accounting
for 33 percent of the global total [4]. The Chinese government has announced its intentions
to undertake increasingly forceful measures with the goal of achieving a carbon peak before
2030 and carbon neutrality by 2060 [5]. This demonstrates China’s determination to achieve
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its “dual carbon” goal of carbon emissions and carbon neutrality and to actively undertake
the corresponding obligations of its international treaty obligations.

Carbon taxes and emissions trading systems are internationally recognized as effective
tools to reduce carbon emissions. According to China’s current situation, in order to ensure
people’s livelihoods, China temporarily does not tax carbon dioxide emitted by coal and
natural gas used by individuals. For China, the ETS has become the main tool to reduce
carbon emissions.

In December 1997, the Kyoto Protocol was adopted as the first additional agreement to
the United Nations Framework Convention on Climate Change (UNFCCC). As part of that
agreement, market mechanisms were recognized as a new path to reduce greenhouse gas
emission—that is, the right to emit carbon dioxide became regarded as a commodity, thus
forming the basis of carbon trading systems [6]. The European Emissions Trading System
(EUETS), the world’s largest carbon market, came into operation in 2005. The scheme
imposes emission limits on member countries; the sum of national emission allowances
does not exceed the emissions allowed under the Protocol. The allocation of emission
allowances takes into account factors such as historical emissions, projected emissions, and
emission standards of member countries [7].

The EU emissions trading system uses “Cap-and-Trade” rules. In order to limit the
total amount of greenhouse gas emissions, administrative permits for emissions are bought
and sold. The three major principles are the total trade principle, decentralized governance
mode, and development characteristics. Under the EUETS, EU member state governments
must agree to national emission caps set by the EUETS. Within this cap, companies can
sell or buy additional credits in addition to their allocated emissions, provided that overall
emissions fall within a specific quota. Firms that emit excess emissions beyond their
allocated or purchased allotment are penalized, while those with surplus allowances can
keep the emissions for future use or sell them to other firms. The EUETS has played an
exemplary role in the world’s development of carbon trading markets.

China’s carbon market construction started with local pilots [8,9] based on the EUETS.
In 2011, the Chinese government listed seven provinces and cities, including Beijing, as pilot
areas of the ETS. In 2013, these pilot carbon markets began online transactions. The aim
of the program is to cost-effectively reduce greenhouse gas emissions of enterprises in the
pilot provinces and cities. The goals include training talent and accumulating experience to
lay the foundation for a national carbon market [10]. At present, a national carbon market
has started with the power generation industry (2225 enterprises). Eight industries with
high energy consumption, including power, petrochemical, chemical, building materials,
steel, non-ferrous, paper-making, and civil aviation, will be included in the national carbon
market. It is expected to gradually include another seven industries over the 14th Five-Year
Plan period.

The carbon emission trading scheme (ETS), regarded as a vital market-driven carbon
mitigation instrument, could trigger technology innovation and accelerate a green economic
transition [11]. In 2015, China’s CO2 emission from fossil fuel consumption was about
9 billion tons. During the 14th Five-Year Plan period, overall carbon intensity is expected to
decrease by 18% and energy consumption per unit of GDP will be reduced by 13.5 percent.
Now, the ETS has introduced a system innovation. How to reduce the carbon intensity
of cities? What are the pathways that affect carbon intensity? This study will evaluate
the ETS policy from the perspective of regional carbon emissions. A thorough review
of the pilot policy’s impact on carbon emissions, and its relationship to China’s overall
development, will provide valuable experience for China’s efforts to deepen the reform
and transformation of its pattern of economic development.

The rest of this study will be divided into the following parts. Part 2 is a literature
review. Part 3 is a theoretical hypothesis. Part 4 is the data and empirical framework. Part
5 is the regression analysis. Part 6 further analyzes the mediating effect and spillover effect.
Part 7 concludes and makes policy recommendations.
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2. Literature Review

Because carbon emissions cause negative externalities [12], the arguments of Pigou [13]
suggest government intervention through means such as taxation. Coase [14] held the
opposite opinion, believing that the government should regulate property rights and allow
the market to respond to externalities. In both cases, the instruments of the market are used
to address externalities. Dales [15] proposed commercializing pollution on the basis of
Coase, arguing that the pollution caused by companies is the property of the government,
and that businesses should be able to buy and sell freely in the market. This was the
embryonic form of the modern emissions trading system.

As mentioned above, although China’s ETS has borrowed some practices from the
EUETS, it is different. First, the EUETS consists of a “three-pillar” system of “carbon
trading”, “carbon tax”, and “carbon border tax”. This is slightly different from a carbon
emission quota, which is the basis of carbon emission trading in China. Second, the EU
emissions trading scheme adopted a cap-and-trade principle. That is, on the premise that
the total amount of emissions does not exceed the allowable upper limit, each emission
source can adjust its emissions through exchange of permits. The upper limit will be
reduced year by year. By contrast, carbon trading in China is divided into a primary market
and a secondary market. The primary market is mainly for “quota creation”, which is
managed by national authorities and entrusted to agencies to create and distribute carbon
emission rights quotas. The participants in the secondary market are mainly enterprises and
financial institutions. Third, the trading rules published by the Shanghai Ring Exchange
have price fluctuation limits within a daily limit. The EU carbon price, on the other hand,
has no price limit. Carbon prices in the European Union have risen rapidly in recent
years, more than doubling from pre-pandemic levels. Fourth, the industry coverage of the
EU carbon trading system, which started with the power industry and energy-intensive
industries, gradually expanded to the transportation sector and the production of specific
products such as steel and cement. At present, China’s carbon emission trading market is
focused on the electric power industry [16,17].

Existing research on emissions trading can be broadly divided into two categories.
The first category focuses on assessing the efficiency of the ETS design, including the effec-
tiveness of a carbon price in reducing emissions [18,19], the controllability of transaction
costs [20,21], and the rationality of quota allocation [22,23]. The second category focuses on
how the ETS affects macroeconomic variables. This study is in the second category.

From the perspective of energy conservation and emission reduction, earlier studies
mostly used scenario simulation to evaluate carbon emission trading. In terms of energy
saving, most scholars have used data simulation analysis. It has been found that ETS can
effectively reduce the consumption of non-renewable energy [24,25]. In terms of emission
reduction, Zhang et al. [26] simulated ETS implementation in China and found that inter-
regional commodity exchanges can alleviate carbon emissions, based on China’s provincial
panel data [27]. The simulations were analyzed in the case of both unconstrained and
constrained countries to assess the potential effectiveness of ETS in China. The study found
that ETS had the potential to reduce carbon intensity by 20.06% without having a negative
effect on GDP.

The development of the ETS systems in Europe and China provides the opportunity
to turn the simulation into reality. Most studies have found that ETS has reduced carbon in
pilot areas in China. Computable General Equilibrium (CGE) and Difference in Difference
(DID) models have been the main empirical evaluation methods used in recent years.
Liu et al. [1], using a regional CGE model, found that the Hubei province pilot ETS reduced
carbon emissions by about 1% in 2014. In an empirical study, Yucai et al. [28] used DID
to model the effect of the pilot ETS on energy conservation and emissions reduction; the
results showed that regulated industry energy consumption in the ETS pilot areas decreased
by 22.8% and carbon emissions by 15.5%.

Some scholars also have studied the possible economic losses caused by the imple-
mentation of ETS. Most scholars have found that EUETS has had no adverse effect on
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corporate profits and social welfare [29]. For China’s carbon trading market, however,
Wang and Pan [30] found that the implementation of ETS has led to a 0.28% decline in GDP.
This is because China’s economic development has been dependent on natural resources.
Hubler et al. [31] found that the economic losses of ETS in China may be around 1%.

In conclusion, the existing papers mainly study the impact of ETS on energy saving,
emission reduction, and economic loss. However, there are few studies on comprehensive
macro indicators, such as urban carbon emission intensity. Urban carbon emission intensity
is defined as the ratio of CO2 emissions to GDP in a city within a year. This indicator has
been widely used to evaluate China’s “double carbon” target [32].

In China, most studies on ETS use a CGE model or a DID model. There are a number
of limitations with these studies. CGE modeling is subject to defects such as difficulty in
meeting the assumptions on which it is premised, strong subjectivity of parameter setting,
and difficulty in determining whether its feedback mechanism measures real effects. The
DID model requires homogeneity of the sample, whereas in reality, there is heterogeneity
in relevant characteristics between the treated and control localities. In addition, most of
the relevant studies start from the provincial level, while implementing carbon emission
trading policies depends more on whether urban units can strictly implement the orders
of their superiors. Further, earlier studies have ignored the influence of spatial factors on
carbon intensity, although spatial factors have an important impact on carbon intensity and
neglecting spatial factors may lead to bias in simulation results.

Against this background, this study makes the following contributions. First, the intro-
duction of pilot carbon-emission trading policies is regarded as a quasi-natural experiment.
This allows the use of a PSM-DID model estimation method to assess the impact of ETS
on urban carbon intensity. The quasi-natural experiment not only meets the requirements
of a DID model, but also ensures optimal matching because of the large samples. This
gives more credibility to the research conclusions. Second, this study focuses on carbon
intensity at the city level. Considering that cities are an important part of local government
institutions in China, this makes the policy effect more plausible. Third, this study uses
spatial Durbin to test the spillover effect of ETS on surrounding areas, thus going beyond
the previous focus on the local area, which has ignored the surrounding area. This provides
a more complete picture of the impact of emissions trading policies.

3. Theoretical Background

The carbon emission trading system is mainly an exercise of the “Porter hypothesis,”
which holds that appropriate environmental regulation can encourage enterprises to carry
out more innovative activities [2]. These innovations will increase the productivity of firms,
thereby offsetting the costs of environmental protection and reducing total carbon emissions
at the societal level. Theoretically, the system is dominated by the government, which
uses market mechanisms to promote energy conservation and emission reduction [33].
First, the ETS sets a relatively strict carbon allowance for each company. Within this limit,
companies can carry out free carbon emissions. The excess needs to be purchased from the
carbon emissions retained by other companies. In essence, carbon permits have become
a commodity [34]. Because firms aim at profit maximization, companies make good use
of free credits while trying to avoid exceeding that limit; otherwise, high production costs
will be incurred. Second, ETS can promote corporate emission reduction because firms
will sell unused emissions credits if the carbon price is higher than the firm’s marginal cost
of emission reduction [35]. Therefore, a market-based trading system can be effective in
mitigating carbon emissions.

Establishing a carbon emission trading system can force enterprises to innovate, and
technological progress is one of the three major factors affecting the environment [36].
Green technology innovation depends on increasing investment in such innovation. The
emissions trading system encourages companies to actively develop and apply green
technologies [2]. Companies that invest more resources in reducing carbon emissions can
sell surplus carbon emission credits to high-carbon emission enterprises and obtain high
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profits [37]. Firms will tend to accelerate the process of green technology development in
order to achieve higher profits. This is the incentive effect. Conversely, for high carbon
emission enterprises, it is necessary to buy carbon emission credits from sellers, which will
increase production costs, compress profit margins, and reduce these firms’ competitiveness.
Under this pressure, enterprises have to carry out technological innovation [2]. This is the
punishment effect.

The incentive effect and punishment effect of market-based environmental regulation
such as ETS give the government more tools for environmental governance. Because
carbon dioxide does not harm health or production in the short run, and because it is
costly to enforce non-market forms of governance, it has been difficult for the focus of
environmental governance to shift quickly in the direction of reducing carbon emissions.
By encouraging innovation and providing opportunities for profit, ETS has effectively
improved the environmental governance level while ensuring that normal activities and
production can continue.

Improved environmental governance can promote a change of regional energy struc-
ture. In particular, ETS has the potential to reduce coal consumption [28]. This paper
applies the new economic geography to evaluate such changes. Firms will always look for
the optimal location in order to maximize profits [38]. Theoretically, a carbon emission trad-
ing system should have policy spillover effects [39], including alleviating regional carbon
emissions. It can also encourage high-tech enterprises to continue to innovate through its
incentive mechanism. However, it will also cause a large number of polluting enterprises
to incur high production costs due to its punishment mechanism. This is because polluting
enterprises in the region face increased production costs due to the need to buy carbon
emission rights, which reduces their profits. If there is no ETS policy in the surrounding
areas, polluting enterprises are expected to migrate to the surrounding areas. Conversely,
high-tech firms from surrounding areas are expected to migrate to the ETS area in order to
increase their profits by selling carbon credits. The transfer behavior of the two types of
enterprises can reduce carbon emissions in the ETS region while increasing emissions in
the area around the ETS [40]. The theoretical background of this study is shown in Figure 1.
Accordingly, the following hypothesis is proposed:

Hypothesis 1 (H1). The carbon emissions trading system has reduced the carbon intensity of the
pilot cities in China.

Hypothesis 2 (H2). Green technology innovation is one mechanism through which the carbon
emissions trading system reduces regional carbon intensity.

Hypothesis 3 (H3). Improving urban environmental governance is another mechanism through
which the carbon emission trading system alleviates regional carbon intensity.

Hypothesis 4 (H4). The carbon emission trading system has increased the carbon intensity of the
areas surrounding the pilot cities.
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4. Data and Methodology
4.1. Data Sources

Through screening and matching, this paper selected panel data of 281 cities in China
from 2006 to 2019 as the research object. A total of 37 cities at the prefecture level and
above were designated as pilot carbon emission trading cities. These 37 cities constitute the
experimental group, and the remaining cities were analyzed as the control group. Most of
the data in this study come from data already publicly available in China, including the
National Bureau of Statistics (https://data.stats.gov.cn/, accessed on 15 August 2021), the
China City Statistical Yearbook, the China Energy Statistical Yearbook, and the Statistical
Yearbooks of 281 cities. The data were drawn from reports on social development, including
statistics on the main energy consumption of local industries above city size, total industrial
output value, urbanization rate, etc. Patent data were derived from the State Intellectual
Property Office (https://www.cnipa.gov.cn/, accessed on 20 August 2021).

4.2. Variable Selection

Urban carbon intensity is based on the total amount of carbon emissions to be mea-
sured. In this study, a material balance algorithm was used to calculate the total carbon
emissions. Carbon emissions are estimated using the chemistry of carbon dioxide produced
during energy consumption.

Carbonit = ∑n
v=1 Qvt ×Wv ×Mv × Rv × 44/12 (1)

Qvt is the annual actual consumption of the V type of energy in the city in year t.
According to the 26 fossil fuels listed in the China Energy Statistical Yearbook, they are
combined into nine final energy consumption types: coal, coke, crude oil, gasoline, kerosene,
diesel, fuel oil, natural gas, and electricity. Because electricity is not a direct energy source,
the concept of secondary energy reflects the fact that electricity is produced by consuming
other energy; therefore, this study will not measure electricity separately. Wv, Mv, Rv are
the energy calorific value conversion coefficient, carbon emission coefficient, and carbon
oxidation factor, respectively. The data come from the average low calorific value of the
China Energy Statistical Yearbook and IPCC (2006). As (44/12) is known to be the ratio of
carbon dioxide to carbon molecular weight, the carbon dioxide emissions of 281 cities in
China from 2006 to 2019 can be calculated. Since this study uses historical CO2 emission
data, and is not based on carbon trading schemes, it should be considered post hoc analysis,
and therefore calculation errors caused by different ways of allocating emission reduction
targets can be avoided.

By referring to relevant literature and considering the actual situation [34], the fol-
lowing control variables were selected to conduct propensity matching scores: regional
economic development level (PGDP), industrial structure (IND), urban population (PP),
degree of openness to the outside world (OPEN), efficiency of financial development (FS),
scale of financial development (FD), and government environmental intervention (WODK).
The specific calculation methods are shown in Table 1.

Table 1. Description of variables.

Index Measure

PGDP Real GDP per capita in cities is measured in logarithms (Yuan per person)
IND Ratio of the added value of secondary production to the gross city product (%)
PP The logarithm of the resident population at the end of the year (million)

OPEN Ratio of foreign investment to gross city product (%)
FS The ratio of total social loans to gross urban product (%)
FD The ratio of total social savings to gross urban product (%)

WODK
The proportion of the use of environmental words in the total words of the

government work report. (e.g., environmental protection, green, low-carbon,
energy-saving and emission reduction, etc.) (%)

https://data.stats.gov.cn/
https://www.cnipa.gov.cn/
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4.3. Model Setting

The reference measurement model of this paper is set as follows:

Carbonit = α0 + α1treatedit ∗ timeit + ∑N
i=1 β jcontrolit + µi + γt + εit (2)

where i represents the individual city and t represents the year. Carbonit is the carbon
emission of city i in year t. The year dummy variable timeit takes a value of 0 before
the introduction of the carbon emission trading pilot policy (the policy impact point is
set as 2013) and 1 after the establishment, and treatedit is a group dummy variable. The
ETS pilot cities are assigned a value of 1, non-ETS pilot cities are assigned a value of
0, and treatedit ∗ timeit is the interaction term of the two and takes the value of 0 or 1.
Here, 1 represents the pilot cities after 2013, and 0 represents non-pilot cities and the pilot
cities before 2013. The coefficient α1 before the interaction term of treatedit ∗ timeit is an
important explanatory variable that represents the policy effect of emissions trading on
urban carbon intensity. This paper will introduce various control variables affecting urban
carbon intensity into the multi-stage DID regression. The bidirectional fixed effect of city
and year will be introduced for further analysis.

4.4. Propensity Score Matching Results and Descriptive Statistics
4.4.1. Counterfactual Matches with the Equation Estimates

Rosembaum and Rubin proposed the Propensity Score Method [41]. Simulation ex-
periments show that the ATT can obtain unbiased estimation results under a series of
assumptions. It can be defined as “an algorithm that matches the treatment group and the
control group based on the conditional probability of participants, namely the propensity
score, under the condition of given observable characteristics”. The propensity score is
defined as:

P(Xi) = Pr{expi = 1|Xi} (3)

According to Equation (3), the propensity score similarity between the treatment group
and the control group is matched, and its effectiveness depends on two preconditions. The
first is conditional independence. The second is that the conditions for common support
are met. The independence condition means that ETS pilot cities or non-pilot cities are
independent of carbon intensity after controlling the common influencing factor X, and the
common support condition ensures that cities in each treatment group can match cities in
the control group through propensity score matching. The average treatment effect ATE of
city i can be expressed as

E[4i] = E
[
lny1

i

(
ny1

i , f y1
i

)∣∣∣expi = 1, P(Xi)
]
− E

[
lny0

i

(
ny0

i , f y0
i

)∣∣∣expi = 1, P(Xi)
]

(4)

To estimate P(X) is to estimate the probability that the city is or is not an ETS pilot. A
Probit or Logit binary choice model is most commonly used. In this paper, a Probit model
is used to obtain the predicted probability value Pi of city i in the treatment group and Pj of
city j in the control group. The average treatment effect (ATT) of ETS on carbon intensity is
as follows:

β =
1
M ∑i∈(exp=1) [lnyi(nyi, f yi)−∑i∈(exp=0) Y(NY, FY)

(
pi, pj

)
lnyj

(
nyj, f yj

)
] (5)

where M is the number of cities in which ETS was piloted. Y(NY, FY)
(

pi, pj
)

represents
the case when lny0

i (ny0
j , f y0

j ) of city j is replaced by lny0
i (ny0

j , f y0
j ) of city i. This represents

the weight assigned to lny0
i (ny0

j , f y0
j ) of city j. When the corresponding assumptions are

met, especially when the mean values of variables in the treatment group and the control
group are not different, the propensity score matching method can obtain the ATT, and
a “clean” policy treatment effect can be obtained. Of course, being able to eliminate this
noise completely requires being able to control for all variables that may have an impact on
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choice and outcome when matched. According to the matching method (radius matching,
caliper matching, local linear regression matching, etc.), the weight function selection is
also different. This study first selects the nearest neighbor matching with k = 4, and then
selects other matching methods in the robustness test.

4.4.2. Plot of Propensity Score Matching Kernel Density Function

The quality of propensity score matching can be examined by a plot of kernel density
functions. If there is more overlap between the treatment group and the control group
in the figure, this indicates that the test propensity match score is better. Figure 2 shows
the kernel density function of the two groups of cities before and after propensity score
matching. The solid line represents the cities in the processing group, and the dashed line
represents the cities in the control group. As shown in Figure 2, prior to PSM, the two
groups showed large differences in both skewness and kurtosis. After PSM, the change
trend of the two groups is consistent, and there is a high degree of line segment coincidence.
This indicates that the propensity score matching has a significant effect. This provides a
good data basis for the use of the DID method in the empirical part of this paper.
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4.4.3. Balance Test of Propensity Score Matching and Variables of Descriptive Statistics

In order to make the results of PSM more robust, the results should satisfy the two
groups of cities, and there is no obvious difference in each matching variable. The method
to judge whether PSM is effective generally carries out the balance test of propensity score
matching. Note the absolute value of the standard deviation of the matching variable. If
the absolute value of the standard deviation is smaller, it indicates that the matching effect
is better. Table 2 results show that most of the matching variables decrease significantly
in the absolute value of the PSM standard deviation. The t-test value also changed from
significant to insignificant. This indicates that the null hypothesis that the mean of each
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variable is consistent after matching is accepted. Propensity matching scores are valid.
Table 3 shows the descriptive statistics of variables after PSM.

Table 2. Balance test of propensity score matching.

Variable Sample Match
The Mean Standard Deviation (%)

t Test p > |t|
Treat Control Deviation To Reduce

PGDP
Before 10.576 10.432 20

99.3
0.000

After 10.576 10.575 0.1 0.982

IND
Before 3.818 3.844 −11.2

99.3
0.026

After 3.818 3.836 7.8 0.203

PP
Before 6.084 5.962 19

97
0.000

After 6.084 6.088 −0.6 0.926

OPEN
Before 0.003 0.003 23.7

95.6
0.000

After 0.003 0.003 1 0.877

FS
Before 0.725 0.727 −1.2 −550.3

0.824
After 0.725 0.706 7.8 0.182

FD
Before 0.820 0.812 1.8 −236.8

0.694
After 0.820 0.794 5.9 0.323

WODK
Before 0.003 0.003 11.5

78.1
0.017

After 0.003 0.004 -2.5 0.692

Table 3. Descriptive statistics.

Variable Size Means Std. Dev. Min. Max.

CARBON 3432 −2.876 0.650 −5.113 −0.355
PGDP 3432 10.453 0.691 7.926 13.056
IND 3432 3.840 0.242 2.460 4.450
PP 3432 5.980 0.611 3.959 8.136

OPEN 3432 0.003 0.003 0 0.019
FS 3432 0.727 0.263 0.083 2.547
FD 3432 0.814 0.411 0.112 2.683

WODK 3432 0.003 0.001 0 0.012

5. Empirical Analysis
5.1. Results of Dual Difference Regression

In order to more clearly identify the causal impact of ETS on urban carbon intensity,
the above control variables will be introduced in this section. The model combining city
individual fixed effects (Id) and year fixed effects (Year) is used for further analysis, and
the results are shown in Table 4. The results in column (1) show that, without adding
any control variables, the coefficient of Treated*time is significantly negative at the level
of 1%. The results in columns (2)–(4) show that, after the introduction of other control
variables, the coefficient of Treated ∗ time is significantly negative at the 1% level. This
indicates that ETS can effectively reduce urban carbon intensity. In order to make the
results more reliable, Column (5) shows the test results of the generalized method of
moments estimation for dynamic instrumental variables. The coefficient of Treated ∗ time
is still significantly negative at the level of 1%, which further verifies the conclusion of this
paper. This empirical study also preliminarily shows that the introduction of pilot carbon
emission trading policies can effectively reduce urban carbon intensity, and Hypothesis 1
is established.
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Table 4. Dual difference regression.

Variable (1) (2) (3) (4) (5)

Treated ∗ time
−0.625 *** −0.173 *** −0.150 *** −0.142 *** −0.316 ***

(0.264) (0.026) (0.024) (0.024) (0.027)

PGDP
−0.643 *** −0.618 *** −0.636 *** −0.288 ***

(0.009) (0.010) (0.011) (0.024)

IND
0.178 *** 0.155 *** 0.248 *** 0.116 **
(0.034) (0.031) (0.038) (0.051)

PP
−0.616 *** −0.576 *** −0.197 ***

(0.075) (0.083) (0.013)

OPEN
1.394 1.759 −3.730

(1.962) (1.836) (2.606)

FS
0.127 *** 0.501 ***
(0.037) (0.043)

FD
0.010 −0.109 ***

(0.034) (0.027)

WODK
3.211 9.683 *
(1.96) (5.746)

Constant
−4.061 *** 1.952 *** 5.448 *** 4.932 *** −0.911 ***

(0.001) (0.156) (0.427) (0.488) (0.298)

Id YES YES YES YES NO

Year YES YES YES YES YES

R2 0.153 0.894 0.903 0.905 0.451

Sample size 3432 3432 3432 3432 2839

Note: *, **, and *** represent the significance levels of 10%, 5%, and 1% respectively. The clustering standard error
is shown in brackets.

5.2. Heterogeneity Analysis
5.2.1. Regional Heterogeneity Test

On the whole, ETS can effectively reduce the carbon intensity of cities. However,
different cities in China are located in different external environments. This leads to obvious
differences across urban regions. In particular, the pilot policy of carbon emission trading
has great relevance to the energy environment. The economically developed eastern region
and the economically less-developed central and western regions have obvious differences
in infrastructure and other conditions. Table 5 shows the regional heterogeneity results. The
results in columns (1)–(3) show that the eastern region is inferior to the central and western
regions in terms of coefficient and significance level. This indicates that the ETS policy in
the eastern region is less effective in reducing carbon intensity. Relative to the central and
western regions, the eastern region has a large population and more developed economy,
with a concentration of various industries. As a result, the consumption of electric energy
and heat energy caused by industrial electricity and residential electricity is large. Due
to the normal economic and social activities in the eastern region, ETS cannot reduce the
carbon intensity of the city in a short time. However, in China’s central and western areas,
the population is lower and the economic development level is weaker. In those regions, the
establishment of carbon emission trading pilots can effectively reduce the carbon intensity.
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Table 5. Regional heterogeneity test.

Variable The Eastern Region The Central Region In the Western Region

Treated ∗ time
−0.067 * −0.207 *** −0.239 ***
(0.035) (0.020) (0.021)

Constant
6.132 *** 4.524 *** 4.777 **
(1.194) (0.694) (1.954)

Control YES YES YES

Id YES YES YES

Year YES YES YES

R2 0.909 0.916 0.900

Sample size 1324 1405 703

Note: *, **, and *** represent the significance levels of 10%, 5%, and 1% respectively. The clustering standard error
is shown in brackets.

5.2.2. Quantile Regression Test

The regional heterogeneity of ETS on urban carbon intensity has been analyzed above.
This part will analyze the quantile heterogeneity of ETS on carbon intensity—that is, the
policy effect of ETS on high and low carbon intensity. It can be seen from Table 6 that,
regardless of the value of M (M is the quantile), ETS always has a dampening effect on
carbon intensity. Moreover, the impact of ETS on carbon intensity at different quantiles
also changes significantly. Specifically, the emission reduction effect of ETS on cities with
higher carbon intensity is more obvious. Figure 3 shows the trend of ETS regression on
urban carbon intensity quantiles. The horizontal axis in the figure shows the different
quantile decimal points of the ETS on urban carbon intensity. The vertical axis shows
the regression coefficients of each variable. The dashed lines of the line segments repre-
sent the OLS regression estimates of the corresponding explanatory variables. The region
between the two dotted lines represents the confidence interval of the OLS regression
value (confidence 0.95). The solid lines are the quantile regression estimation results of each
explanatory variable. The shaded part is the confidence interval (confidence 0.95) of the
quantile regression estimate. Figure 3 further shows that the emission reduction effect of
ETS on cities with higher carbon intensity is more obvious.

Table 6. Quantile regression.

Variable M = 0.1 M = 0.3 M = 0.5 M = 0.7 M = 0.9

Treated ∗ time
−0.203 *** −0.220 *** −0.328 *** −0.435 *** −0.520 ***

(0.055) (0.033) (0.021) (0.028) (0.045)

Constant
0.049 0.041 0.255 0.459 1.513 ***

(0.355) (0.232) (0.345) (0.283) (0.359)

Control YES YES YES YES YES

Id YES YES YES YES YES

Year YES YES YES YES YES

R2 0.283 0.286 0.289 0.283 0.264

Sample size 3432 3432 3432 3432 3432

Note: *** represent the significance levels of 1%. The clustering standard error is shown in brackets
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5.3. Robustness Test
5.3.1. Parallel Trend Test

This section presents the results of parallel trend tests. The specific test formula is set as:

Carbonit = α0 + ωd ∑d=5
d=−5 treatedit ∗ timeit + ∑N

i=1 β jcontrolit + µi + γt + εit (6)

The main variables in the above formula have the same meaning as in Formula (1),
where d_5 represents 5 years before the introduction of ETS policy, and d5 represents the
5th year after the introduction of ETS policy. The coefficient ωd is the focus of this paper’s
test. If the coefficient estimate is insignificant before ETS, significantly negative after ETS,
and shows a difference in marginal effects, then the parallel trend assumption is satisfied.
As shown in Figure 4, before the ETS, the effect on carbon intensity is not significant. After
the establishment of the ETS, the coefficient is significantly negative. The marginal effect
of ETS on carbon intensity mitigation is strengthened over time, showing a long-term
emission reduction effect. This proves the rationality of using the PSM-DID method in
this paper.
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5.3.2. Change the Sample-Matching Method

The nearest neighbor matching method with K = 4 was selected above for data match-
ing and processing. In order to make the above conclusion more robust, this part re-selects
the matching party for data matching. In this part, the methods of Mahalanobis distance
matching, caliper matching, radius matching, and kernel matching were used to re-match
the data. Table 7 shows the results of difference-in-differences estimation by various match-
ing methods. After changing the propensity matching scoring method, the estimated
results are close to the regression results above. This indicates that the above regression
results are reliable, verifying that that ETS can effectively reduce urban carbon intensity.

Table 7. Results of replacing the matched DID.

Variable Mahalanobis Distance Matches Caliper Match Radius of a Match Nuclear Match

Treated ∗ time
−0.168 *** −0.141 *** −0.168 *** −0.141 ***

(0.026) (0.024) (0.026) (0.024)

Constant
4.530 *** 4.932 *** 4.530 *** 4.861 ***
(0.469) (0.488) (0.469) (0.493)

Control YES YES YES YES

Id YES YES YES YES

Year YES YES YES YES

R2 0.872 0.905 0.872 0.904

Sample size 3934 3432 3934 3434

Note: *** represent the significance levels of 1%. The clustering standard error is shown in brackets.

5.3.3. Placebo Test

The cities in which ETS was piloted may have been chosen as pilots due to their
relatively complete infrastructure and high economic development potential. Therefore, in
order to eliminate the interference of other unobservable factors with the conclusions of this
paper, a placebo test was used to further prove the reliability of the previous conclusions.
In this part, the interaction terms are randomly selected 1000 times to check whether the
coefficients are significantly different from the benchmark estimation results. The results are
shown in Figure 5. The dashed line indicates that the actual estimated coefficient obtained
by PSM-DID is −0.142. The coefficient estimate is lower than 1000 random draws. This
indicates that the placebo test in this part is valid. Thus, the reliability of the conclusions of
this paper is proven.
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6. Further Analysis
6.1. The Mediation Effect Test

The above empirical results show that introducing the carbon emission trading pilot
policy has alleviated the carbon intensity of cities. Then, how does ETS affect the carbon
intensity, and what is the specific mechanism? According to the above theoretical analy-
sis, this paper argues that the pilot carbon emissions trading policy acts through green
technology innovation and environmental governance. Therefore, this paper will examine
the intermediary mechanism from the two channels of green technology innovation and
environmental governance.

Mit = β0 + δ2treatedit ∗ timeit + ∑N
i=1 wjcontrolit + µi + γt + ε1it (7)

Carbonit = θ1 + δ3treatedit ∗ timeit + δ4Mit + ∑N
i=1 ejcontrolit + µi + γt + ε2it (8)

In the above equation, M represents the mediating variables, which are green tech-
nological innovation (Inno) and environmental governance (Trash), respectively. Among
them, green technological innovation is represented by the number of green invention
patents and green utility model patents granted per capita in cities [42]. A larger value in-
dicates a higher level of green technology innovation. The calculation of the environmental
governance level index is measured by the sum of waste water, waste gas, and solid waste
generated by the city. A smaller value indicates a higher level of environmental governance.

Traditional parameter estimation methods require the assumption of a normal distri-
bution of data. The use of stepwise regression may have some impact on the assessed policy
effects. Therefore, the Sobel test and Bootstrap method were used to test the mediating
effect in this part. The Bootstrap test uses the mixed effects hypothesis. In this paper, the
original sample was randomly sampled repeatedly with n = 1000. The asymmetry in the
distribution of indicators was corrected. This can significantly improve the accuracy of
model testing under a complex mediation structure.

Table 8 shows the mediation test results. When Inno is used as a mediating variable,
the coefficient before Treated ∗ time is significantly positive at the 1% level. This indicates
that the introduction of the pilot policy of carbon emission trading has promoted the
level of urban green technological innovation. The coefficient of urban carbon intensity is
significantly negative at the 1% level. This shows that the improvement of green technology
innovation alleviates urban carbon intensity, and the path of “carbon emission trading pilot
policy-green technology innovation-urban carbon intensity” is established. This proves
Hypothesis 2.

When the level of environmental governance is used as a mediating variable, the
coefficient before Treated ∗ time is significantly negative at the 1% level. This shows
that the introduction of the pilot policy of carbon emission trading has improved the
level of urban environmental governance. The coefficient of urban carbon intensity is
significantly positive at the 1% level. This indicates that the improvement of environmental
governance will alleviate urban carbon emissions. The path of “Carbon emission trading
pilot policy—environmental governance level—urban carbon intensity” is established. This
proves Hypothesis 3.

Table 8. Results of mediating effect test.

Variable

Green Technology Innovation Environmental Governance

(1) (2) (3) (4)

Inno Carbon Trash Carbon

Treated ∗ time
0.931 *** −0.055 *** −0.119 *** −0.079 ***
(0.140) (0.008) (0.039) (0.008)

Inno
−0.016 ***

(0.001)
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Table 8. Cont.

Variable

Green Technology Innovation Environmental Governance

(1) (2) (3) (4)

Inno Carbon Trash Carbon

Trash
0.013 ***
(0.003)

Constant
−30.76 *** 1.884 *** 3.910 ** 1.169 ***

(5.346) (0.317) (1.515) (0.305)

Control YES YES YES YES

Id YES YES YES YES

Year YES YES YES YES

Sobel test Z = −6.094 *** Z = −2.333 **

The Bootstrap test [−0.023, −0.007] (BC) [−0.004, −0.0003] (BC)

R2 0.765 0.979 0.851 0.985

Sample size 3432 3432 3432 3432

Note: ** and *** represent the significance levels of 5%, and 1% respectively. The clustering standard error is
shown in brackets.

6.2. Spatial Spillover Effect Test
6.2.1. Model Set and Related Analysis

According to the above analysis, the impact of the pilot carbon emission trading
policy on carbon intensity may have a spatial spillover effect, which needs further analysis.
Therefore, this paper establishes a spatial econometric model based on the equation:

Carbonit = β0 + β1W × Carbonit + β2CDit + β3W × CDit + ∑N
i=1 qjcontrolit + µi + γt + εit (9)

where W is the spatial weight matrix. Equation (7) adds the spatial interaction term
(W × CD) of the core explanatory variable (CD) to the equation. The model estimates
the spatial spillover effects of the explained and core explanatory variables. Regarding the
selection of the spatial weight matrix, this paper chooses the geographical inverse distance
matrix to study the possible spatial spillover effect.

Before the spatial econometric analysis, it is necessary to determine whether there is
a spatial correlation of urban carbon intensity. In this paper, the global Moran’s I index
is used to test the spatial correlation of carbon emissions. Table 9 reports the regression
results of each year. For 2006~2019, Moran’s I index shows significance under the 1% level,
which shows a spatial correlation in urban carbon intensity.

Table 9. Results of spatial correlation test.

Year Moran’s I Z Value Year Moran’s I Z Value Year Moran’s I Z Value

2006 0.141 *** 27.849 2011 0.128 *** 25.399 2016 0.172 *** 33.931
2007 0.136 *** 26.840 2012 0.128 *** 25.332 2017 0.173 *** 34.062
2008 0.131 *** 25.889 2013 0.133 *** 26.313 2018 0.168 *** 33.182
2009 0.130 *** 25.670 2014 0.143 *** 28.317 2019 0.183 *** 36.064
2010 0.133 *** 26.251 2015 0.156 *** 30.766

Note: *** represent the significance levels of 1%. The clustering standard error is shown in brackets.

6.2.2. Analysis of Regression Results

Table 10 shows the regression results of the spatial Durbin model with double fixed
effects. Columns (1)–(3) represent the direct effect, indirect effect, and total effect after
coefficient decomposition respectively. From R2 and the Sigma2 and log-likelihood statistics,
the fit of the model is better and the overall regression reliability is higher. As column
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(1) shows, the Treated ∗ time coefficient is −0.141, and is significant at the 1% level. This
means that the establishment of carbon emissions trading pilot cities can alleviate local
urban carbon intensity, which is consistent with the results of the benchmark in front
of the regression. Column (2) shows that the Treated ∗ time coefficient is 0.168 and is
significant at the 1% level. This means that the establishment of pilot emissions trading
can increase the carbon intensity in areas surrounding the region. W ∗ Treated ∗ time
before the time coefficient is 0.399 and is significant at the 1% level. This means that, when
pilot emissions trading was set up in this region, the ETS produced a spatial spillover
effect, increasing the carbon intensity of the surrounding area. Because of the region’s strict
carbon trading controls, polluting companies cannot afford the high prices of carbon credits
and move to surrounding areas. As the above result shows, the establishment of a pilot
emissions trading city not only can reduce the carbon intensity of the city, but also can affect
surrounding cities. The environmental regulation in the region, through the strict design
of the carbon trading system, relies on the power of the government. The expansion of
the implementation of tertiary industries such as service, acceleration of the upgrading of
industrial structure, and finally, the improved efficiency of energy utilization can alleviate
the carbon intensity of the region, but may cause enterprises to transfer, which can increase
the carbon intensity in the surrounding areas. This proves hypothesis 4.

Table 10. Regression results of spatial Durbin model.

Variable (1) (2) (3)

Treated ∗ time
−0.141 *** 0.168 *** −0.141 ***

(0.024) (0.026) (0.024)

W ∗ Treated ∗ time 0.399 ***
(0.063)

Log-likelihood 4258.507

sigma2 0.006 ***
(0.001)

Control YES

Id YES

Year YES

R2 0.316

Sample size 3 934
Note: *** represent the significance levels of 1%. The clustering standard error is shown in brackets.

7. Conclusions and Recommendations
7.1. Conclusions

This paper regards the carbon emission trading system as a quasi-natural experiment.
Using the panel data of 281 cities in China from 2006 to 2019, this paper empirically exam-
ined the policy effect and spatial spillover effect of ETS on urban carbon intensity in China
by using PSM-DID and spatial Durbin models and analyzed it from multiple perspectives.

First, ETS helps mitigate urban carbon intensity. However, this effect has heteroge-
neous characteristics. The mitigation effect of the carbon emission trading system on the
carbon intensity in the eastern region is not significant. By contrast, the mitigation effect
on carbon intensity in the central and western regions is very significant. Compared with
the central and western regions, the eastern region has a large population, developed
economy and various industries. Industrial and residential consumption of electricity
and heat energy is huge. Setting up pilot carbon emission trading in the eastern region,
while also promoting economic activities in that region, cannot significantly reduce the
carbon intensity of cities in a short period of time. In the central and western regions of
China, the population is small, and the level of economic development is weak. Setting up
carbon emission trading pilots in those regions can effectively reduce the carbon intensity
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of the regions. The results of the quantile test show that the emission reduction effect
of ETS is more obvious for cities with higher carbon intensity, and the marginal effect of
emission reduction is larger for cities with higher carbon intensity, so there is more room
for emission reduction.

Second, the parallel trend test shows that the longer the carbon emission trading
system is established, the more obvious is the mitigation effect on urban carbon intensity.
The longer the carbon emission trading system is established, the more time the pilot
enterprises have to carry out technological innovation, and the more obvious the effect of
mitigating urban carbon intensity measurement will be.

Third, this paper further analyzes the influence mechanism of ETS from the two aspects
of green technological innovation and environmental governance. The results show that
the carbon emission trading system can encourage enterprises to carry out technological
innovation to reduce emissions, thus alleviating urban carbon intensity. By improving the
level of environmental governance and reducing the emission of all kinds of pollutants,
this also reduces the corresponding carbon emissions, which then alleviates the carbon
intensity. This is consistent with most of the literature results.

Fourth, spatial spillovers show that the ETS, although able to mitigate the carbon
intensity of the pilot cities, causes the carbon emissions of the surrounding non-pilot cities
to rise. This is because the penalty mechanism of ETS leads to high environmental costs
that cause enterprises to transfer to surrounding non-pilot areas. As a result, the carbon
intensity of surrounding areas increases.

7.2. Recommendations

First, the development of ETS should always adhere to the combination of “market
determination” and “government regulation”. On the one hand, policy makers should
continue to insist on the decisive role of the market in the allocation of carbon emission
rights, and should use supply and demand mechanisms, competition mechanisms, price
mechanisms, and other means to promote the effective operation of carbon trading markets.
This requires constantly adjusting the incentives of enterprises through surplus carbon
emission rights and adjusting the penalties imposed on enterprises with insufficient carbon
emission rights through market means. Thus, the cost of carbon emissions is internalized
into the cost-benefit analysis of the enterprise and becomes an important variable for
maximizing corporate profits, thus promoting carbon emission reduction. On the other
hand, policy makers should give full play to the regulating and supporting role of the
government. The government should formulate laws and regulations suitable for the
healthy and effective operation of the market in order to make up for market failures
such as monopoly, information asymmetry, and externalities caused by market limitations,
thereby constantly improving the market environment.

Second, the carbon reduction effect of ETS is regionally heterogeneous. There are signif-
icant differences between different regions due to their local level of economic development,
industrial structure, energy structure, and other factors. Therefore, each transaction pilot
cannot adopt a “one size fits all” attitude when formulating policies. The construction of
carbon trading markets should be carried out according to local conditions. In this way,
achieving carbon reduction targets also can promote high-quality economic development.

Third, scientific and technological research and innovation of enterprises is the key to
the carbon reduction effect of the ETS. The government, enterprises, and society should pay
special attention to the important role of scientific and technological R&D and innovation
in carbon trading policies. It is recommended to continuously increase the R&D investment
of all enterprises and encourage them to carry out technological innovation in order to
constantly update the production process. This will promote the green development
of enterprises. The government should also effectively improve its own environmental
governance level in order to improve its ability to prevent and control urban pollution.
Through the development of a series of laws and regulations to assist the operation of the
ETS system, strict penalties should be imposed on enterprises that violate the system.
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Fourth, the spatial spillover effect among different cities increases the carbon intensity
of surrounding cities. On the one hand, local governments in non-pilot areas are encouraged
to actively learn from the experiences of pilot areas in order to reduce the carbon intensity
of the region. However, carbon leakage through spatial spillovers undermines the goal
of reducing emissions. New mechanisms should be considered to prevent companies
from avoiding emission rules. A hybrid mechanism that combines the carbon ETS with
other environmental regulation tools is recommended. For example, a carbon tax could be
imposed on emissions in non-pilot areas to discourage firms from leaving pilot areas.

The above is the main content of this paper, but the research of this paper still has
limitations. This study uses an econometric approach based on historical data from a pilot
carbon trading program in China. We also believe that carbon tax is one of the effective
ways to reduce the carbon intensity of cities. If carbon tax projects are implemented in
these cities, a more reasonable conclusion can be obtained by comparing the effects of
carbon trading and carbon tax. Since China has no plan to implement carbon tax at present,
such data cannot be obtained to reconstruct the regression model of carbon tax cases. This
prevents more reasonable conclusions from being drawn. If China has some concrete
practice in carbon tax, the author will study it.
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