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Abstract: Governments across the world are taking actions to address the high carbon emissions
associated with the construction industry, and to achieve the long-term goals of the Paris Agreement
towards carbon neutrality. Although the ideal of the carbon-emission reduction in building projects is
well acknowledged and generally accepted, it is proving more difficult to implement. The application
of building information modeling (BIM) brings about new possibilities for reductions in carbon
emissions within the context of sustainable buildings. At present, the studies on BIM associated
with carbon emissions have concentrated on the design stage, with the topics focusing on resource
efficiency (namely, building energy and carbon-emission calculators). However, the effect of BIM
in reducing carbon emissions across the lifecycle phases of buildings is not well researched. There-
fore, this paper aims to examine the relationship between BIM, carbon emissions, and sustainable
buildings by reviewing and assessing the current state of the research hotspots, trends, and gaps
in the field of BIM and carbon emissions, providing a reference for understanding the current body
of knowledge, and helping to stimulate future research. This paper adopts the macroquantitative and
microqualitative research methods of bibliometric analysis. The results show that, in green-building
construction, building lifecycle assessments, sustainable materials, the building energy efficiency
and design, and environmental-protection strategies are the five most popular research directions
of BIM in the field of carbon emissions in sustainable buildings. Interestingly, China has shown
a good practice of using BIM for carbon-emission reduction. Furthermore, the findings suggest that
the current research in the field is focused on the design and construction stages, which indicates
that the operational and demolition stages have greater potential for future research. The results
also indicate the need for policy and technological drivers for the rapid development of BIM-driven
carbon-emission reduction.

Keywords: building information modeling (BIM); carbon emissions; China; sustainable building;
building metaverse; lifecycle; design; policy; visualization; bibliometric

1. Introduction

The issue of global warming caused by carbon dioxide (CO2) emissions is a concern
for countries across the world [1]. The Paris Agreement, signed at the Paris Climate Con-
ference in year 2015, led to a consensus among several countries to aim to limit the global
average warming to 2 ◦C above the preindustrial levels, and to work towards limiting it to
below 1.5 ◦C [2]. To achieve this goal, the Special Report on Global Warming of 1.5 ◦C from
the Intergovernmental Panel on Climate Change (IPCC) emphasizes that, to limit warming
to 1.5 ◦C, global carbon emissions need to be halved by year 2030, and a carbon-neutrality
target needs to be achieved by mid-century [3]. The construction industry accounts for a sig-
nificant proportion of the world’s energy consumption and carbon emissions, of which
the construction and operation of buildings represent 36% of the total final energy use, and
nearly 40% of the greenhouse gas (GHG) emissions [4]. Therefore, reducing the energy
consumption and carbon emissions of buildings has great significance for environmental
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protection and sustainable development [5,6]. At present, governments around the world
are taking actions to address the problems related to the high carbon emissions of the con-
struction industry, and they are striving to achieve the carbon-neutrality goal [7,8].

The application of building-information-modeling (BIM) technology brings about new
possibilities for the development of sustainable buildings, for which predicting, managing,
and monitoring the impact of buildings on the environment through digital technology
can improve the design process [9]. Meanwhile, the use of BIM has the potential to
improve the energy efficiency of sustainable buildings and reduce carbon emissions, which
results in the provision of people with healthy and comfortable living environments [10].
In addition, BIM is at the heart of the digital transformation of the construction industry, and
it supports digital twins by acting as a data-management platform [11]. Augmented reality
(AR) and virtual reality (VR) technologies are now increasingly being used to enhance
the adoption of BIM [12], which seems to a trend towards a building metaverse.

Research into minimizing the energy consumption associated with carbon emissions
throughout the lifecycles of buildings is rapidly being developed [13]. However, it has
been argued that the previous studies related to carbon emissions lacked in-depth inves-
tigation [14]. At present, the studies on BIM and carbon emissions have concentrated on
the design stage of the building lifecycle, with topics focusing on the use of the building
energy and the calculation of the associated carbon emissions [15–18]. However, the ef-
fect of BIM in reducing the carbon emissions over the building lifecycle phases is not
well researched. Reducing building carbon emissions is of great significance to achiev-
ing the carbon-neutrality goal. As such, an increasing number of researchers are calling
for investigations into the impact of the BIM application on reducing carbon emissions
across all the building lifecycle stages [19]. Hence, the aim of this paper is to explore
the relationship between BIM and carbon emissions within the context of sustainable
buildings by reviewing and assessing the current research hotspots and trends in the use
of BIM for carbon-emission reductions across all the lifecycle stages of buildings, which pro-
vides a useful reference for understanding the current body of knowledge, and stimulates
future research.

2. Materials and Methods

This study adopted a mixed-research approach that comprised: (1) accessing relevant
publications from the Web of Science (WoS) database; (2) exploring the relationship between
BIM, carbon emissions, and sustainable buildings from both the macroquantitative and
microqualitative perspectives.

In the macroquantitative analysis, bibliometric methods were used to identify the re-
search structures and themes. The research methodology of bibliometric analysis provides
an objective and straightforward demonstration of the characteristics and trends of existing
research, informing and inspiring more in-depth studies [20]. First, the results-analysis
tools in the WoS database were used to analyze the number and sources of BIM publications
in the field of sustainable-building carbon emissions in the form of bar and pie charts in or-
der to obtain the current research progress and research trends. Second, the literature was
visually analyzed for the keywords, taking advantage of the different features of the biblio-
metric visualization software from VOSviewer and CiteSpace. VOSviewer is a software tool
for building and visualizing bibliometric networks. VOSviewer provides text-mining capa-
bilities that can be used to build and visualize co-occurrence networks of important terms
extracted from large volumes of scientific literature. In addition, VOSviewer’s interface is
easy to operate and more suitable for identifying and analyzing topic clusters [21]. Because
the keywords of the literature can distil the core content of the literature, the keyword-
co-occurrence-analysis method can well reflect the current academic research hotspots,
knowledge structures, and development trends of some disciplines [22]. The keyword-
co-occurrence method has been applied to many research fields, such as medicine, envi-
ronmental science, and engineering [23–26]. Due to the large timespan of the literature
search, VOSviewer’s presentation of the research hotspots in the temporal dimension is not
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ideal, but CiteSpace’s burst-detection-analysis function compensates for this shortcoming.
Based on CiteSpace’s keyword-burst detection, it is possible to identify the burst keywords
for each year of the research period, as well as to better analyze the research hotspots and
trends in the temporal dimension [27], thus combining the visual-measurement software
of the literature in a macroanalysis.

Due to the complexity of scientific development, the use of bibliometrics can only pro-
vide a general analysis of the laws of scientific development. To fill in the gaps in the macro-
analysis, and based on the findings of the macroquantitative analysis and the purpose
of this research paper, a microqualitative analysis was conducted. In the microanalysis,
the publications searched in the WoS database were first reviewed, and the strong relevant
literature on BIM in the field of sustainable carbon emissions was identified. This was
followed by the mapping of the strongly relevant literature to the building lifecycle, and
a comprehensive analysis of the impact of BIM on building carbon emissions at all stages
of the building lifecycle, to obtain more knowledgeable contributions.

The quantity and quality of the data have a significant impact on the results of biblio-
metric visualization. To ensure the comprehensiveness and higher reliability of the research
data, one of the largest and most important international databases, WoS, was used as
the data source for this study [28]. Additionally, to ensure the quality of the articles, the WoS
core collection was selected, for which the indexed results were set as journal articles and
reviews. The search was based on topics, with keywords such as “BIM”, “building infor-
mation model*”, “carbon emissions”, “carbon trading”, “carbon credits”, “low carbon”,
“sustainable building”, and “green building”.

The research-method flow is illustrated in Figure 1, and it comprises five steps:
(1) a search by topic in the WoS core collection to collect data; (2) an analysis of the current
status of the publications through bar charts and pie charts; (3) a keyword-co-occurrence
analysis through VOSviewer software, including network visualization and high-frequency
keywords; (4) keyword-burst detection through CiteSpace software; (5) a lifecycle-based
analysis of the impact of BIM on carbon-emission reduction within the context of sustain-
able buildings.
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3. Results
3.1. Number of Publications and Sources of Publications in the Field of Building Information
Modeling (BIM), Carbon Emissions, and Sustainable Buildings

The keyword searches, such as “BIM”, “building information model*”, “carbon emis-
sions”, “carbon trading”, “carbon credits”, “low carbon”, “sustainable building”, and
“green building”, generated a total of 524 results for the period from 2008 to 2021 (14 years),
of which the first related study in the WoS database is from year 2008. As shown in Fig-
ure 2, the graph of the publication statistics shows that the number of publications on
BIM associated with carbon emissions and sustainable buildings slowly increased from
year 2008 (2 articles) to 2018 (48 articles). Between the years 2018 and 2020, the number
of publications showed a rapid increase, of which the total 100 published articles in the year
2020 was more than twice the number of publications compared with 2018. Interestingly,
almost the same number (102) of articles were published in year 2021 and 2020, which
indicates that studies that investigate the relationship between BIM and carbon emissions
for sustainable buildings have become an emerging scheme.
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Figure 2. Number of articles published in each year on BIM in the field of carbon emissions within
the context of sustainable buildings from 2008 to 2021 (14 years) in the Web of Science (WoS) core
collection (generated by the authors).

The sources of the BIM publications in the area of carbon emissions within the context
of sustainable buildings are shown in Figure 3. A total of 524 articles have been published
in 150 journals, of which 50% of all the published articles are from 10 leading sources, which
are: Sustainability, with 11.64% of all the published articles, followed by Journal of Cleaner
Production (9.16%), Energy and Buildings (5.73%), Building and Environment (4.58%),
Automation in Construction (4.20%), Sustainable Cities and Society (3.63%), Renewable
Sustainable Energy Reviews (3.24%), Energies (3.05%), Building Research and Information
(2.48%), and Buildings (2.29%).
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Figure 3. Sources of published articles regarding BIM on carbon emissions for sustainable buildings
from 2008 to 2021 (14 years) in WoS (generated by the authors).

3.2. Results of Macroquantitative Analysis

The 524 articles were imported into the software VOSviewer (version 1.6.17) to gen-
erate a term diagram of the co-clustering for the keyword-co-occurrence analysis. A total
of 2434 keywords were generated, from which the minimum threshold number of the key-
word occurrence was 7 times, encompassing 112 keywords that met the threshold. They are
displayed using network and overlay visualization.

3.2.1. Network Visualization of BIM in the Field of Carbon Emissions for Sustainable
Buildings

Figure 4 shows a network-visualization map of the keyword co-occurrence in the field
of BIM and carbon emissions for sustainable buildings. In network visualization, there are
text labels, circles, connections, and color areas. By default, the items are represented by
the text labels and circles. The size of the circle indicates the frequency of the occurrence
of a keyword. The larger the circle, the more frequently the keyword appears. The distance
between the positions of two items and the thickness of the connecting lines represent
the strength of their direct affinity [29]. In addition, the more lines there are, the more
co-occurrence there is between the keywords. At the same time, the different colored areas
represent different clusters, and this view allows each individual cluster to be viewed [30].
Based on the network-visualization map of the keyword co-occurrence, it is possible to
analyze the knowledge structure and research hotspots of BIM in the field of carbon
emissions in sustainable buildings.
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Cluster 1 (red color), with the theme of sustainable-building construction, including
“BIM”, “construction”, “sustainability”, “green building”, and “framework”, indicates that
close links have been established between BIM and green building or sustainable construc-
tion. Cluster 2 (yellow color) is associated with the building lifecycle assessment, including
“life cycle assessment”, “carbon emissions”, “energy consumption”, “embodied energy”,
and “environmental impacts”. Cluster 3 (blue color) relates to sustainable-building materi-
als, including “buildings”, “systems”, “efficiency”, “concrete”, and “cement”. Cluster 4
(green color) is focused on the sustainable-building energy efficiency, with its “design”, “per-
formance”, “consumption”, and “energy efficiency”. Cluster 5 (purple color) is correlated
to environmental strategies, including “energy”, “green buildings”, “policy”, “emissions”,
“challenges”, “governance”, “sustainable development”, and “climate change”.

“BIM”, “Green building”, and “sustainability” are very closely linked in Cluster 1 (red
color). The distances between the keywords in the network-visualization map roughly
indicate their relevance in the co-occurrence network, in which the closer the position of two
items, the stronger their correlation in terms of the occurrence links in the group of publi-
cations analyzed. The terms “green building” and “sustainable building” are deemed as
two terms with the same meaning [31]. The development of green buildings and standards
are instrumental in achieving the national targets for reducing carbon emissions, for which
BIM provides an important technical support to achieve the green-building concepts [32].
In addition, BIM contributes to the development of environmental-performance-evaluation
systems for green buildings, accelerating the process of the building assessment [33–35],
such as Leadership in Energy and Environmental Design (LEED), which assists design-
ers to evaluate the sustainability solutions during the conceptual design stage [36–39].
Furthermore, the role of BIM in supporting the carbon-emission calculation for green build-
ings greatly promotes the implementation and development of energy-conservation and
emission-reduction policies [40]. It is worth focusing on the fact that, although the concept
of sustainable buildings has been proposed for a long time, it has mainly been promoted
and applied in developed countries, while the promotion in developing countries still faces
problems associated with technology, funding, and energy [41], which encounter challenges
similar to the current implementation of BIM.

In Cluster 2 (yellow color), there is a strong link between “Life Cycle Assessment
(LCA)”, “carbon emissions”, and “carbon footprint”. To enhance and measure the sustain-
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ability performance in the construction industry, the LCA can be used to assess the envi-
ronmental impacts of buildings throughout all the lifecycle stages [42]. The integrated tool
based on BIM and LCA can calculate carbon emissions during the lifecycle of a building,
and it can thus help to set carbon-emission targets and sustainable policies [18,43–45].
In addition, the BIM-enhanced LCA system can be used to quickly assess building design
solutions and enable sustainable decision making [43,46,47]. Furthermore, LCA-based BIM
can support the selection of sustainable products and materials during the building design
and construction stages, thereby improving the sustainability of the building [48].

In Cluster 3 (blue color), “concrete”, “cement,” and “buildings” are very closely associ-
ated with each other. The choice of building material has a significant impact on the building
performance [49]. Concrete and its main material, cement, are the main building materials
in the world, but the production of cement produces large amounts of CO2, which is not
conducive to sustainable development in the construction industry [50–52]. With the devel-
opment of new technologies and the invention of new materials, there are opportunities to
reduce the carbon emissions from cement [53,54]. Prefabricated houses that are built with
innovative prefabrication technologies and that are facilitated by BIM have been shown to
reduce the carbon footprint of concrete and alleviate the environmental pressure caused by
construction [55]. In addition, BIM-assisted analyses of building materials, such as concrete,
steel, and cement, provide evidence to inform the development of policies and regulations to
reduce the energy consumption and emissions [56,57].

In Cluster 4 (green color), the energy efficiency has a close relation to keywords such
as “performance”, “design”, “modelling”, and “simulation”. The energy performance and
efficiency simulation for a building using data from BIM can help to derive sustainable and
sound decisions at the design stage, resulting in reduced energy consumption and carbon
emissions [9,58–62]. The collaboration between BIM and other energy-design software can
also yield key information for improving the energy efficiency [63]. In addition, BIM-based
technologies can be used to evaluate the existing building solutions or retrofit solutions,
thereby facilitating the development of net-zero-energy buildings (NZEBs) [64–67]. In ad-
dition to the design, the reliance on BIM technology aids in addressing the building energy
efficiency in the operational stage, which contributes to the carbon-emission targets [68,69].
Although BIM offers new opportunities to improve the building energy efficiency and min-
imize carbon emissions, it has been argued that there is a need to upskill stakeholders, such
as construction workers, through proper BIM education to meet the demands of the digital
transformation of the construction industry [70].

The keywords (e.g., “energy”, “green buildings”, “policy”, “emissions”, “challenges”,
and “governance”) are strongly connected in Cluster 5 (purple color). Although green build-
ings are more expensive to build upfront, they improve the energy consumption with the as-
sociated water efficiency, which saves operating costs and reduces the carbon footprint [71].
Green building has been considered one of the least costly approaches to mitigate climate
change [72]. Different countries around the world have developed a variety of policies and
measures to address the challenges of green-building development [45,73–76]. Although
the incentives of policies can promote the use of green-building technology (GBT) in the build-
ing industry, the effect of multiple policies on reducing the carbon emissions from urban
buildings is not the same as the associated effect of individual policies [72,77]. Assessing
the long-term environmental benefits of multiple policies is essential for policy improvement
and prioritization [78]. In terms of adjustment and climate change, the market-based policy
mechanisms, such as carbon taxes and carbon trading, assist to achieve the carbon-emission
targets while stabilizing industrial production [73].

Table 1 shows the top-10 keywords with co-occurrence strengths in the published
articles regarding BIM and carbon emissions for sustainable buildings from 2008 to 2021
(14 years), which are: “BIM”; “life cycle assessment”; “green buildings”; “design”; “con-
struction”; “carbon emissions”; “performance”; “sustainability”; “energy”; “residential
buildings”. Keywords with higher connection strengths and frequencies have more in-
fluence. Design and construction are the stages of the building lifecycle, indicating that
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the current focus of BIM in the field of carbon emissions for sustainable buildings is on
the early stages of the lifecycle: design and construction.

Table 1. High-frequency keywords of published articles regarding BIM in the field of carbon emissions
for sustainable buildings from 2008 to 2021 (14 years) via the network visualization of VOSviewer
software (generated by the authors).

Color 1 Cluster Keyword Occurrence Total Link Strength
1 BIM 173 723
2 Lifecycle Assessment 103 541
5 Green Buildings 127 475
4 Design 86 455
1 Construction 73 411
2 Carbon Emissions 67 369
4 Performance 76 362
1 Sustainability 71 339
5 Energy 61 295
2 Residential Buildings 41 225

1 The colors in the table are in line with the colors in Figure 4.

“Life cycle assessment” is a significant node in Figure 4, which is further revealed
in detail in Figure 5, with strong links to “BIM”, “design”, “construction”, “green building”,
“energy”, “carbon emissions”, and “performance”, which suggests that the LCA is already
well integrated in the field of sustainable design and construction. Design and construction
are the focuses of the studies on the lifecycle, and they play significant roles in influencing
the carbon emissions in sustainable buildings.
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Interestingly, “China” is the only keyword representing a country that appears as
a significant node in the network-visualization map (Figure 4), which is further highlighted
in detail in Figure 6. The keywords closely associated with China are “life cycle assess-
ment”, “carbon emissions”, “green building”, “BIM”, “design”, and “construction”, which
indicates that China has a certain influence in the field of BIM, carbon emissions, and sus-
tainable buildings. China has been the world’s largest carbon emitter since 2006 [79], and
it has now announced that it expects to reduce its carbon-emission level per unit of gross
domestic product (GDP) to 60–65% of the year 2005 by the year 2030, and to achieve
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carbon peaking around 2030 [80]. The construction industry in China generates approxi-
mately 30% of the total carbon emissions, and it is therefore a key industry for achieving
the national strategy targets on carbon emissions [81]. In addition, China has been actively
promoting economic instruments, such as carbon emissions and carbon taxes, to promote
the sustainable development of the construction industry [73,82]. In order to promote
the adoption of GBT in construction, the Chinese government has introduced a series
of industry standards and environmental-protection acts that support the development
of green buildings and BIM [81,83,84]. In this context, green and sustainable buildings and
BIM have significant market potential in China [17,85].
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Figure 4) in the WoS-core-collection database via VOSviewer software (generated by the authors).

3.2.2. CiteSpace Keyword-Burst Detection

Burst-detection analysis identifies and explores the frontiers of the research and latest
trends in a particular field. Burst detection in CiteSpace is mainly based on Kleinberg’s
algorithm [86], which identifies time periods in which a target trend is uncharacteristically
frequent. A burst keyword is a keyword that suddenly increases in the number of references
or occurrences within a certain period. Its basic principle is to identify hot words based
on the growth rates of the frequencies of their occurrences. The time-dependent nature
of these keywords is often considered to be at the forefront of the research in a particular
field [87]. The detection of bursting keywords allows for obtaining research hotspots and
predicting future research trends. The top-20 bursting keywords were obtained through
CiteSpace. Figure 7 shows the top-20 keywords with the strongest citation bursts, of which
the “keywords” represent the burst terms; “Year” represents the start of the analysis,
which spans 2008–2021; “Strength” represents the intensity of the burst; “Begin” represents
the year of the start of the keyword burst; “End” represents the year of the end of the burst;
the red line represents the duration of the burst [88].
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As shown in Figure 7, “sustainable building” and “optimization” became research
hotspots in 2012, and this lasted for four years, which is the longest duration of all the burst-
ing words. Sustainable buildings have huge potential to reduce the greenhouse effect [89].
Rising energy costs and the need for greater energy efficiency have raised the public aware-
ness of the need to reduce the energy consumption throughout the lifecycles of buildings,
and they have led to efforts to integrate green- and sustainable-building initiatives into
the traditional building design, construction, and operation processes to optimize build-
ings towards sustainability [39]. “Simulation” was a research hotspot in 2016, which is
the strongest (strength: 3.84) of the bursting keywords. Advances in information technol-
ogy have enabled BIM to become an energy-simulation tool for early integrated building
design [90]. In addition, the bursting keywords in 2021 are “LEED” and “circular economy”,
which are also current research hotspots in the sustainable-building sector. The growing
demand for sustainable buildings over the past few years has resulted in several coun-
tries establishing their own green-building rating systems. LEED is the most widely used
building-assessment system worldwide, and it is used in several countries/regions, includ-
ing the United States, Canada, Brazil, Mexico, India, and China [38,91]. The current research
shows that the integration of BIM with LEED can speed up the LEED-certification process
by assessing the sustainability of buildings at the design stage [37]. Due to the increasing
demand for buildings to be environmentally friendly, some public-sector buildings are
being required to use BIM from the design stage, which has led to an increasing number
of building projects requiring both BIM and LEED [92]. The circular economy (CE) has
great potential in the construction industry, which currently has an unmatched impact
on the environment with the requirements of sustainable development [93]. The bursting
keywords emerged in recent years for a relatively short periods of time, which indicates
that the hotspots of research on BIM in field of carbon emissions for sustainable buildings
have changed rapidly over time [94]. Studies have focused on climate change since 2011,
after which sustainable buildings gained attention. In recent years, “government”, “cities”,
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“tools”, “LEED”, and “circular economy” have become hotspots, indicating that the carbon
emissions in sustainable buildings have gradually improved, for which government policy
plays an important role.

3.3. Microqualitative Analysis

In order to analyze the specific role of BIM in sustainable buildings in relation to carbon
emissions, 81 articles closely related to BIM, sustainable buildings, and carbon emissions
were selected for a microqualitative analysis from the 524 publications in the macroanalysis,
and the articles were mapped across the building lifecycle stages, including the design,
construction, operation, demolition, and full lifecycle. The selection of strong relevant liter-
ature was based on the following criteria: first, the articles dealt with the three knowledge
concepts of BIM, sustainable buildings, and carbon emissions; second, the articles could be
mapped to the stages of the building lifecycle for analysis.

As shown in Table 2, the mixed-research method [95–99] is mainly used in the de-
sign stage, followed by case analysis [9,60,100,101] and modeling [35,102,103], to explore
the BIM decision-making model for reducing carbon emissions in sustainable buildings.
The environmental impact associated with the design stage is up to 70% of the whole
impact throughout the building lifecycle phases [104]. The integration of BIM with decision-
making tools helps to address the difficulties of making sustainable-material decisions early
in the design process [105]. BIM-assisted multiple-criteria decision making (MCDM) allows
for an analysis of the key factors that affect the carbon emissions and energy efficiency
in sustainable buildings [96], in which the MCDM allows alternatives to be evaluated and
optimal decisions to be made [97,106]. By implementing BIM and LCA with a database,
the environmental impacts of the design solutions can be measured at an early stage [103],
which allows for a faster and more accurate quantification and assessment of the en-
vironmental impacts of different building materials for selecting the most sustainable
building materials at the design stage [69,107]. A BIM-based approach to building design
optimization can help with the tradeoff between the lifecycle cost (LCC) and lifecycle
carbon emissions (LCCEs) of a building design, which aids designers to provide cost-
effective and environmentally friendly design solutions [108]. In addition, the BIM-assisted
LEED-certification system provides a framework to calculate the points that are earned
at the concept stage for automatically assessing the sustainability of the building [37].
The integration of BIM and the LEED-certification process at the conceptual design stage
also allows for the automatic calculation of the LEED-certification points to be compiled
and the associated registration costs for the green and certified materials. In terms of energy
use, the integration of BIM with energy-modeling packages enriches the energy analysis
of the building, which leads to significant energy cost savings and reductions in electric-
ity and carbon [9,61,63,95,101]. In addition, BIM enhances the quantitative assessment
of the implied carbon emissions, and it optimizes the design at the building-element (BE)
level, enabling low-carbon design concepts to really take hold [99]. The use of BIM of-
fers various opportunities for integration with systems of building analysis and decision
making [109], which provides building designers faster and more accurate approaches
for design decision making that have a positive impact on the building carbon emissions
and sustainability assessment of the building [64].
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Table 2. The role of BIM in the building design stage in terms of carbon emissions (generated by
the authors).

Source Year Research Method Research Topic

Barone, G [95] 2021 Model and case study BIM and energy modeling

Haruna [96] 2021 Questionnaire and modeling BIM and multicriteria-decision-making (MCDM)
integration

Marzouk [97] 2021 Model and case study BIM and MCDM integration
Khahro [9] 2021 Case study Energy costs and carbon optimization
Xue [107] 2021 Literature review Circular economy

Carvalho [98] 2021 Model and case study BIM and building-sustainability-assessment (BSA)
integration

Marrero, M [110] 2020 Modeling Integration of BIM and lifecycle assessment (LCA)
Cang, YJ [99] 2020 Model and case study Calculation of implied carbon emissions

Jalaei [37] 2020 Model and case study BIM and Leadership in Energy and Environmental
Design (LEED) integration

Wei [38] 2020 Model and case study Building costs and energy efficiency
Galiano-Garrigos [60] 2019 Case study Energy-performance and carbon-footprint assessment

Chen, SY [65] 2019 Model and case study Net-zero-energy buildings (NZEBs)
Carvalho [100] 2019 Case study BSA

Tushar [101] 2019 Case study Energy-consumption optimization
Najjar [69] 2019 Model and case study Integration of BIM and LCA
Singh [62] 2019 Case study Building energy assessment

Eleftheriadis [111] 2018 Model and case study Structural design optimization
Lee [61] 2018 Case study Green BIM

Eleftheriadis [102] 2018 Modeling Relationship between structural costs and carbon
emissions

Akcay et al. [112] 2017 Model and case study BIM and LEED integration
Chen et al. [106] 2016 Model and case study BIM and MCDM integration

Liu et al. [108] 2015 Case study The tradeoff between lifecycle cost (LCC) and lifecycle
carbon emissions (LCCEs)

Jalaei, F et al. [36] 2015 Model and case study BIM and LEED integration

Cemesova et al. [63] 2015 Case study BIM and building-performance-simulation (BPS)
integration

Jun et al. [35] 2015 Modeling Green BIM template (GBT)
Jrade, A et al. [103] 2013 Modeling Integration of BIM and LCA

Bank et al. [105] 2011 Modeling BIM and system-dynamics (SD) integration

As shown in Table 3, the main research methods used in the construction phase of BIM-
aided building carbon emissions are modeling [64,113–115] and case studies [116–118]. The re-
furbishment of buildings obtains attention at this stage. During the construction or renovation
of a building, a large amount of energy and materials are used, and a large amount of carbon
is produced [119]. Based on BIM, the carbon emissions during construction can be effectively
assessed, which provides a good reference for the selection of low-carbon-emission materials.
In addition, the longer the distance of the delivery of the construction material to the construc-
tion site, the greater the carbon emissions [114]. The integrated framework based on BIM
and the web-map service (BIM–WMS) facilitates the selection of the construction-material
suppliers and the planning of the material-transport routes [115]. Interestingly, refurbishment
is effective at achieving a better energy performance to reduce carbon emissions [117]. A
scan-to-BIM approach was used to assess the feasibility of retrofitting options for existing
buildings [64]. Moreover, based on the BIM integration with energy-modeling software,
the building energy performance can be optimized to determine the most energy-efficient
and cost-effective strategy for the building renovation [117,118,120,121]. However, challenges
remain in BIM for building renovations and retrofitting, with the data capture being the first
and most critical issue for renovation projects [122]. With the vast number of metadata
available from BIM models, the analysis of such building data using artificial-intelligence
(AI) techniques offers new options for decision making based on continuous system learn-
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ing [113]. This is important for deep refurbishment projects to improve the energy efficiency
of buildings towards NZEBs.

Table 3. The role of BIM in the construction stage in terms of carbon emissions (generated by
the authors).

Source Year Research Method New Build Renovation Research Topic

Zhao [64] 2021 Modeling * NZEBs
Mulero-Palencia [113] 2021 Modeling * Machine learning

Guo [123] 2021 Mixed * Green-building assessment and
optimization

Piselli [120] 2020 Case study * Energy renovation of historic
buildings

Sun [114] 2020 Modeling * Calculation of carbon emissions
during construction

Chen [115] 2019 Modeling * Integration of BIM and web-map
services (WMSs)

Edwards [119] 2019 Review * Sustainability decision making
Tzortzopoulos [117] 2019 Case study * Transformation program assessment

Ozarisoy [118] 2019 Model and case
study * Low-energy design strategies

Hu [121] 2018 Model and case
study * Educational building renovation

Kim [124] 2017 Modeling * Building energy optimization

Sattary [125] 2016 Model and case
study * Bioclimatic principles

* indicates that the literature contains the content.

As shown in Table 4, the research themes during the operations phase focus on the per-
formance of the building operations and the tradeoffs between the implicit and operational
energy, with modeling [44,68,116,126] and case studies [127–129] as the main research meth-
ods. The operation and maintenance stages take the longest and cost the most to the project
owner compared with the other building lifecycle phases [130]. Studies have shown that
the operating energy (OE) accounts for the major share of a building’s lifecycle energy use,
followed by the embodied energy (EE), while other stages of the lifecycle consume less en-
ergy [131]. The increase in the global energy use demonstrates the urgent need to effectively
and comprehensively reduce the energy and carbon footprints of buildings [132]. Reducing
the OE could increase the EE, demonstrating the importance of the tradeoff between the OE
and EE [133]. A BIM-driven design process can efficiently address the tradeoffs between
specific and operational energy sources [127,134]. In addition, the use of BIM to assist
the energy efficiency during the operation and maintenance phases of a project facilitates
bridging the gap between the predicted and actual energy consumption of a building,
which contributes to the goal of reducing the carbon footprint of the building [68].

Table 4. The role of BIM in the operation and maintenance stages in terms of carbon emissions
(generated by the authors).

Source Year Research Method Research Topic

Venkatraj [134] 2020 Mixed Tradeoffs between embodied and
operational energy

Cheng [46] 2020 Case study Integration of BIM and LCA

Piselli [116] 2020 Case study Application of facility energy
management

Chen [126] 2019 Case study Workflow design



Int. J. Environ. Res. Public Health 2022, 19, 12820 14 of 26

Table 4. Cont.

Source Year Research Method Research Topic

Shadram [127] 2018 Model and case study Tradeoffs between embodied and
operational energy

Petri [68] 2017 Case study Building operations and energy
performance

Costa [128] 2013 Modeling Building operations and energy
performance

Gokce [129] 2013 Model and case study Energy-efficient building operations

As shown in Table 5, the impact of BIM on the carbon emissions during the building
demolition phase has been less studied than in the other building lifecycle phases. The main
themes of the studies focus on the greenhouse gases generated by construction waste, and
the management and disposal of construction waste. The research methods for the studies
in this phase are case studies [135], modeling [136], and reviews [50,137]. Based on BIM, it
is possible to assess the carbon emissions of the building in the demolition phase during
the building lifecycle, with the site-treatment phase being the largest contributor to the car-
bon emissions of the demolition phase [138]. Because the construction and demolition
waste (CDW) end-of-life disposal process is a source of GHG emissions, the BIM-based
quantification of CDW GHG emissions can lead to targeted GHG-reduction measures [136].
In addition, the application of BIM can increase the high recovery rate of CDW to achieve
sustainable waste management [135]. Concrete has the highest emissions among the large
amount of CDW, and asphalt has the highest CO2-emission capacity [136]. Furthermore,
if concrete is recycled and reused at the end of its lifecycle, then the lifecycle of the GHG
emissions can be reduced in the end-of-life phase [50].

Table 5. The role of BIM in the demolition stage in terms of carbon emissions (generated by the authors).

Source Year Research Method Research Topic

Shi [135] 2021 Model and case study Construction and demolition waste disposal
technology

Li [137] 2020 Review Construction and demolition waste
management

Xu [136] 2019 Modeling Greenhouse gas (GHG) emissions
Wang [138] 2018 Case study Integration of BIM and LCA

Wu [50] 2014 Review GHG emissions from concrete

As shown in Table 6, during the whole lifecycle, studies focus on the impact of BIM on
the overall carbon emissions of sustainable buildings, and on the means of using the latest
technology to assist in reducing the carbon emissions of buildings. This stage mainly
adopts mixed-research methods [56,139–144], followed by modeling [40,51,145–147] and
review methods [13,16,42,148,149]. BIM has been employed with green-building concepts
(green BIM), which acts as a model-based process that generates and manages coherent
building data throughout the project lifecycle to improve the building energy-efficiency
performance and contribute to the achievement of the sustainable development goals [13].
Green BIM has a strong capability for holistic BIM-based green-building analysis, where
the energy modeling and analysis can have a significant impact on determining the building
performance in terms of the carbon emissions, energy use, sustainable-material selection,
and cost savings [16]. BIM-based analyses for energy consumption that correspond to
different orientations reveal that a well-oriented building can save significant amounts
of energy throughout its lifecycle [150]. 5D BIM models allow for optimal decisions to
be made regarding the appropriate energy and cost-effective envelope components [145].
Associating BIM modeling with LCA is the best procedure for achieving sustainable devel-
opment and environmental protection, and for empowering the decision-making process
in the building sector [15]. The approach can be used to determine which building ele-
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ments are significant in the LCA. Furthermore, the integration of BIM and LCA allows
for the assessment of the total carbon footprint of a building throughout its lifecycle, and it
aids in completing the optimization of the greenhouse gas emissions throughout the lifecy-
cle [4,18,51], for which the LCA is integrated with the BSA at an early stage of the project,
based on the BIM approach. As such, designers can quickly assess the environmental
impacts of their buildings while conducting concise sustainability assessments with few
resources, addressing all the sustainability issues [141].

Table 6. The role of BIM across whole lifecycle stages in terms of carbon emissions (generated by
the authors).

Source Year Research Method Research Topic

Gardezi [139] 2021 Model and case study The relationship between physical characteristics
and carbon footprint

Marzouk [151] 2021 Interviews BIM and green-building assessment
Kurian [51] 2021 Modeling Building carbon-footprint estimation

Li [56] 2021 Model and case study Assembled concrete buildings
Figueiredo [140] 2021 Model and case study Sustainable-material selection

Shukra [16] 2021 Review Holistic green BIM
Carvalho [141] 2020 Model and case study Integration of BIM and LCA
Fokaides [142] 2020 Mixed Intelligent buildings

Dalla Mora [42] 2020 Review Integration of BIM and LCA
Kaewunruen [143] 2020 Model and case study Whole-life costs and carbon emissions

Wen [144] 2020 Mixed BIM and green-building assessment
Montiel-Santiago [152] 2020 Model and case study Sustainability and energy efficiency

Pucko [145] 2020 Modeling Building envelope
Wang [4] 2020 Model and case study Integration of BIM and LCA

Palumbo [48] 2020 Model and case study Integration of BIM and LCA
Lu [18] 2019 Model and case study Integration of BIM and LCA

Muller [148] 2019 Review Interoperability of BIM
Petrova [146] 2019 Modeling Data-driven sustainable design

Yang [45] 2018 Model and case study Integration of BIM and LCA
Gan [153] 2018 Model and case study A holistic BIM framework for low-carbon design

Marzouk [154] 2017 Model and case study GHG calculations
Xie [40] 2017 Modeling BIM and carbon calculations

Najjar [15] 2017 Model and case study Integration of BIM and LCA
GhaffarianHoseini [149] 2017 Review Postconstruction-energy-efficiency testing

Lu [57] 2017 Model and case study Integration of BIM and LCA
Peng [155] 2016 Model and case study BIM and carbon calculations

Abanda [150] 2016 Model and case study The effect of the building orientation on
the building energy consumption

Wong [13] 2015 Review Green BIM
Lee [147] 2015 Modeling BIM green template

As shown in Figure 8, research related to BIM around sustainable-building carbon
emissions is concentrated in the full-building lifecycle stage and design stage, with the de-
sign and construction stages accounting for 48% of the overall microanalysis publications,
and with only 16% of the publications focusing on the operational and demolition stages
of the building. Although the nD capabilities of BIM make it potentially applicable through-
out the full-building lifecycle phase, designers and contractors are primarily concerned
with the application of BIM in the design- and construction-management stages. The ca-
pabilities of BIM are not well utilized in the operations, or in the demolition stages [149].
From an implementation-based value perspective, the implementing BIM shows a de-
creasing order of value throughout the lifecycle of a building [144]. Perhaps the wealth
of the metadata that are available from BIM models opens up new possibilities for analyses
at all stages of the building lifecycle [113]. The integration of BIM with a building manage-
ment system (BMS) has the potential to improve the sustainability of the postconstruction
phase of a building, which can go a long way to remedy the current deficiencies in the ap-
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plication of BIM [149]. In general, the integration of BIM and carbon-emission-enhanced
frameworks will play a more important role in sustainability in the digitalization of the con-
struction industry, in which the effective decision-making framework will help to achieve
the goal of reducing carbon emissions [151].
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4. Discussion
4.1. BIM Research Hotspots and Development Trends on Carbon Emissions within the Context
of Sustainable Buildings

BIM is in a process of rapid development to facilitate strategies for carbon-emission
reduction. This is mainly due to both policy and technical reasons. On the policy side,
several countries/regions have taken effective measures to curb the carbon emissions that
emanate from buildings [156], in which Chinese researchers have been very active and have
achieved significant results, as indicated in the results of Section 3.2.1. It is interesting to note
that, of the 524 publications included in the macro analysis, China contributed 168, or about
32%, of the total number of publications. To achieve environmental sustainability, China’s
12th and 13th Five-Year Plans have given significant impetus to the development of green
buildings [157,158]. To achieve the goals of “carbon neutrality” and “carbon peaking”,
China has introduced various legal measures and financial incentives in the 14th Five-Year
Plan, which covers the years from 2021 to 2025, to improve the energy efficiency in high-
carbon sectors using digital technology [159]. Studies have shown that BIM is becoming
a key tool for the sustainable transformation of China’s construction industry [160,161].
China is therefore promoting the development of BIM in the field of sustainable buildings
and carbon-emission reduction in many ways, including academic, policy, and technical.

The results of the burst-word detection suggest that LEED and the CE were the cur-
rent hot policies that past studies were concerned with. There are currently a large number
of LEED-registered and certified building projects internationally [162]. As green-building-
assessment standards are crucial to the sustainable development of buildings, in recent years,
there has been more and more attention paid to and studies on green-building-assessment
tools [163]. There are studies that claim that LEED buildings contribute to reduced energy
use, reduced carbon emissions, and greater human health benefits [164–166]. However, LEED
requires appropriate monitoring and reporting mechanisms to ensure that it achieves its due
design level. Otherwise, the actual performance of the building may not be as expected [167].
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BIM-based capabilities can simplify the LEED-certification process and save time and re-
sources [168]. The integration of BIM and value engineering can measure the relationship
between the construction cost and energy saving while obtaining a LEED-compliant and cost-
effective design solution [38]. Building owners and designers can benefit from the integration
of BIM and LEED-certification systems to enable a sustainability assessment of the build-
ing process [37]. The CE and circular construction (CC) have received increasing attention
over the past decade [169]. Research on the application of CE principles to the construction
industry has grown in recent years [170]. The CE principles promote the maximum reuse
of materials and minimize waste generation, leading to environmental and economic bene-
fits [171,172]. Therefore, the CE assists in saving resources, and in reducing carbon footprints,
the risk of the material supply, and price fluctuations [107,172]. Based on the accumulation
of the building lifecycle information, BIM can provide effective decision making in the de-
sign phase of buildings based on the principles of the CE [173]. In the demolition stage
of buildings, the use of BIM to reduce the construction waste has attracted more attention,
which is instrumental for reducing carbon emissions and implementing the CE principles
in buildings [174].

In terms of technology, the results of this research indicate that the development
of LCA technology plays an important role in the impact of BIM on carbon emissions
in sustainable buildings. BIM offers opportunities to improve the data transparency and
compliance checks, as well as to automate LCA assessments [175]. The integration of BIM
with LCA contributes to the advancement of the CE, as it enables the assessment of the entire
lifecycle [107], which is a growing trend [176]. Although BIM and LCA integration can
significantly reduce a building’s energy use and carbon footprint during the design phase,
the potential of BIM and LCA for building carbon emissions in the other lifecycle phases
has not yet been fully exploited. In the future, the integration of BIM and LCA is expected
to play a more important role in carbon quantification and mitigation [43].

Furthermore, BIM is the first step towards the Industrial Revolution 4.0, of which
digital twins and virtual reality are key elements [177]. BIM has been treated as a type
of digital twin that offers the opportunity to integrate the physical and digital worlds, which
greatly contributes to solving the industry’s challenges. As a result, over the past few years,
researchers have been applying digital twins to solve industry problems, including those
in the construction industry [178]. Although digital twins have being implemented in con-
struction, most of the attention has been focused on the design and construction phases,
neglecting the demolition and restoration phases [178]. In addition, BIM and various XR
technologies (VR, AR, and MR) have shown great potential to change the way that the AEC
industry designs, builds, operates, and monitors [179]. The metaverse based on the inte-
gration of XR and BIM enables the project remote collaboration of partners [180]. With
the background of the coronavirus pandemic, the establishment of a building metaverse
will pave the way for new opportunities in managing the carbon emissions of buildings.
Furthermore, building intelligence is one of the future trends in the construction industry,
which is a shift that requires the design, monitoring, and control of the data and infor-
mation related to the energy assessment of the built environment through technologies
such as BIM and digital twins. Thus, in the future, the digitization of the building sector
will contribute significantly to the achievements of building energy, carbon-emission, and
environmental-performance goals [141].

4.2. Challenges for the Use of BIM in Managing Carbon Emissions for Sustainable Buildings

The results of the microqualitative analysis indicate that BIM contributes to carbon-
emission reduction throughout the lifecycle of a building, but the current studies mainly
focus on the practice in the design phase, with less attention paid to the operation and
demolition phases. This could be associated with the green-building-rating dilemma
of carbon emissions, in which most certified green buildings are only effective in the design
phase and perform unreliably in the operational phase [144].
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There is a consensus in the literature that appropriate design decisions at the initial
stage of a building project have a noticeable impact on the sustainability of a building,
including the reduction in carbon emissions. Several studies report that holistic approaches
through BIM facilitate the design of sustainable buildings, in which the integration of BIM
with LCA or LEED promotes the selection of sustainable building materials and improves
the building sustainability to reduce carbon emissions [37,69,107]. However, the interoper-
ability is still the biggest challenge to BIM, and the integration of LCA with BIM suffers
from a lack of data and difficulties in data exchange [37,47,107]. In addition, the most BIM-
based LCA studies to date have focused on one-off assessments, rather than on iterative
assessments in the building design process for sustainable decision making [181]. The cost
of LEED in terms of BIM and LEED integration is expensive, and less and less owners are
actively seeking LEED certification. The energy-performance tools that are part of the BIM
paradigm can help with sustainable building decisions [37]. However, the tools used can
influence the results and thereby produce poor decisions regarding carbon emissions [60].

During the construction phase, the BIM-based assessment of the carbon emissions
provides a reliable reference for the selection of low-carbon-emitting materials [114]. In-
terestingly, refurbished buildings are more energy efficient, environmentally friendly, and
cheaper than new buildings [182]. Although BIM has been widely used in new build-
ings, it is still in its infancy in building-refurbishment projects [119]. The assessment
of the options for building refurbishment in terms of carbon emissions is needed to con-
sider the energy-efficiency benefits of the building, the disruption caused to occupants, and
the costs involved in the renovation process [117].

Studies have shown that the operations and maintenance phases have the most
important role in the reduction in greenhouse gas emissions throughout the lifecycle
of a building [44]. Currently, only a few studies have addressed BIM methods for improv-
ing the building energy efficiency and reducing carbon emissions during the operations
phase. However, energy simulations performed in BIM software, such as Autodesk Revit,
may not provide accurate results, as the simulation may not capture some of the data
of the building, such as the heat-transfer pathways of the building [140].

In terms of the demolition phase, the studies are concerned with the disposal of
construction-waste debris. Adopting sustainable deconstruction strategies, such as reuse
and recycling, can also result in economic, energy, and carbon savings [148]. Additionally,
the demolition phase is an increasing contributor to global greenhouse gases due to contin-
ued industrialization and urbanization [183]. However, the carbon emissions previously
generated in construction and demolition waste have been largely ignored [138]. Further-
more, there are increasing concerns about the carbon emissions generated by the on-site
collection and sorting during the recycling of demolition waste [138].

The assimilation of all the professional models and integrated facility data with BIM is
very complex, and it is difficult to achieve data interoperability, as different BIM models
from various disciplines are built via a variety of BIM software [143]. As such, the main
challenges at present are the usability and model complexity of the BIM software specified
for carbon emissions in green buildings, and the lack of interoperability across the BIM
packages. Additionally, BIM faces the challenge of the penetration and learning costs [144].
From an economic perspective, BIM’s high initial investment costs and unpredictable
returns have also hindered its development [184]. The lack of senior management attention
also has a significant impact on the use of BIM in sustainable construction [185].

Building information models are considered to be the key components in future
construction practice, in which their benefits for productivity and reliability are widely
acknowledged. It is becoming increasingly important to use tangible performance data
early in the design phase to influence the decisions and prevent errors on carbon emissions.
Reusing existing BIM data repositories and operational building data can enable data-
driven databases for sustainable building designs that aim to reduce carbon emissions [146].
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5. Conclusions

This paper adopts a mixed-research method to quantitatively and qualitatively ex-
plore the current status, hotspots, challenges, and research trends in the application of BIM
in the field of sustainable buildings that target carbon emissions. The research employed
a bibliometric approach to obtain relevant studies by querying the WoS database with
keywords, and it visualized the relationship between BIM, carbon emissions, and sus-
tainable buildings through keyword co-occurrence via VOSviewer software, including
network visualization and high-frequency keywording, and citation-burst detection via
CiteSpace software for a macroanalysis from 2008 to 2021, followed by a microanalysis
on the role of BIM in reducing carbon emissions during the sustainable-building lifecycle
stages. The main contributions of this paper are as follows: (1) this is the first attempt
to explore the relationship between BIM, carbon emissions, and sustainable buildings
for the last 14 years (from 2008 to 2021) using bibliometric analysis; (2) this is the first
use of a visualization software tool to analyze the trends, research hotspots, and appli-
cations of BIM to support carbon-emission reduction within the context of sustainable
buildings; (3) compared with the existing studies, this paper presents a comprehensive
analysis of the impact of BIM on reducing carbon emissions across the design, construc-
tion, operation, and demolition stages of buildings, in which the current research status
in the field of each lifecycle stage was explored and critically analyzed. Sustainable con-
struction, building lifecycle assessment, sustainable building materials, energy efficiency,
and environmental strategies are the five most popular research directions of BIM that
enables carbon-emission reduction. Moreover, this paper examined the policy and tech-
nology reasons for the rapid development of BIM for the reduction in carbon emissions
for sustainable buildings. To meet the goals of the Paris Agreement, many countries have
adopted policies and measures to achieve carbon neutrality in sustainable buildings by
setting legislation, industry standards, carbon taxes, and carbon trading, for which BIM, as
an important digital tool for the construction industry, plays an important role in the carbon
emissions of sustainable buildings. However, from a technical point of view, there are still
challenges, such as interoperability, in integrating BIM with LCA for an energy-efficiency
simulation that results in carbon reduction. Furthermore, BIM, as a kind of digital twin
in the construction industry, has a wide opportunity scope for development in carbon
emissions. Sustainable buildings enhanced by emerging technologies, such as VR and
AR, could be the key for the construction industry to open the gate towards a metaverse
in the building and construction environment. Within the context of the pandemic, the cur-
rent trend in metaverse development paves a way for BIM approaches in the field of carbon
emissions for sustainable buildings. As such, the findings of this analytical research provide
pointers to inform designers, builders, and policymakers in the development of BIM-driven
carbon-emission-reduction strategies. This is timely considering the current political global
carbon-neutrality target and the target of reducing carbon emissions by half by 2030, as well
as the technical development of the emerging building metaverse. Although the current
studies in the field have been developing rapidly, the studies mainly focus on the design
stage. As such, the carbon-emission reduction through BIM in the later stages of the build-
ing lifecycle could be explored in future research. The bibliometric analysis in this paper
was conducted based on the WoS-core-collection database. Future research could be ex-
tended to other databases, such as Scopus, to provide a collective view of the potential and
value of BIM and emerging technologies, and especially the future building metaverse,
in reducing carbon emissions in buildings.
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