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Abstract: Green innovation has become an important driving force for China’s economic transforma-
tion and development. This paper selects the 2010–2020 provincial-level regions in China as samples,
and adopts a multi-indicator comprehensive evaluation method to comprehensively, objectively
and scientifically evaluate the environmental carrying capacity of air pollution in two dimensions:
natural resource endowment and human activity impact, and also measures and calculates the
green innovation in each province, city and autonomous region to explore the specific impact of
green innovation on environmental carrying capacity and its spatial spillover effect; it also explores
the heterogeneous effects of green innovation on environmental carrying capacity under different
pollution environments. The conclusions show that: (1) Green innovation has a positive impact
on environmental carrying capacity. (2) There is a spatial spillover effect of green innovation on
environmental carrying capacity. In other words, in areas with higher PM2.5 concentration, that
is, lower environmental quality, green innovation has a weaker ability to improve environmental
carrying capacity; in areas with lower PM2.5 concentration, that is higher environmental quality,
green innovation has a stronger ability to improve environmental carrying capacity. (3) In the process
of green innovation affecting environmental carrying capacity, PM2.5 plays the part of a mediating
effect, indicating that green innovation is an intermediate transmission mechanism affecting envi-
ronmental carrying capacity, and the results show that the absolute value of the short-term indirect
effect is greater than the absolute value of the short-term direct effect, and the long-term direct effect
is greater than the long-term indirect effect.

Keywords: green innovation; regional environmental carrying capacity; PM2.5 concentration; spatial
spillover effect; China

1. Introduction

The ecological environment is the foundation of human survival and development,
and it is the common wish of all people from all countries to maintain a good ecological
environment. In recent years, China’s ecological environment protection is still in a critical
period of superimposed pressure and heavy burden; the results of ecological environment
quality improvement are not solid, and ecological environment protection has a long way
to go [1–4]. China’s ecological and environmental problems are essentially a matter of
high-carbon energy structure and high energy consumption and high-carbon industrial
structure, and pollutants and carbon dioxide emissions show significant homology. Almost
all of China’s major air pollutant emission sources, including sulfur dioxide and nitrogen
oxides, as well as about 50% of volatile organic compounds and 85% of primary PM2.5
emissions (excluding dust), are highly congruent with carbon dioxide emissions [5–8].
Therefore, during the key strategic period of China’s economic transition from the pursuit
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of scale to the pursuit of quality, it has become the consensus of the whole society to
rely on science and technology innovation to solve the problem of development and
environmental balance, and green innovation with energy saving and emission reduction
as the key technology has become an important means of green transition development
and environmental governance [9–11].

Green innovation is a general term for “pollution-free” or “less pollution” technologies,
processes and products that follow ecological principles and ecological economic laws,
save resources and energy, avoid, eliminate or reduce ecological pollution and damage,
and minimize negative ecological effects. Its content mainly includes: pollution control and
prevention technology, source reduction technology, waste minimization technology, recy-
cling technology, ecological process, green products, purification technology, etc. [12–17]. It
can be seen that green innovation is a new type of modern technology system in harmony
with the ecological environment system. Green innovation is also called eco-technology
innovation, which is a kind of technological innovation [18]. Generally, management in-
novation and technological innovation with the goal of protecting the environment are
collectively referred to as green innovation. There are two main ways to define green
innovation, starting from the characteristics of green innovation and outlining the main
features to arrive at the definition, and considering the production process and making
a systematic description of the green innovation process [19–23]. In the context of the
dramatic increase in resource pressure and increasingly stringent environmental protection
standards, a large number of green innovations have emerged in all fields except envi-
ronmental protection and its related industries, which have had a profound impact on
the macro social operation and the development of micro market players [24–30]. Macro
themes such as green performance, green benefits and diffusion mechanisms of science
and technology innovation have been attracting much attention, while empirical studies
on some micro issues, such as the factors influencing green innovation of enterprises and
the efficiency of green innovation of enterprises, have also accumulated a lot of practical
experience on the specific operation of green innovation in China [31–36]. In addition,
some scholars have also studied green management innovation independently [37–42].
At this time, green production technology innovation mainly includes the innovation of
green product design, green materials, green process, green equipment, green recycling
and treatment, green packaging and other technologies; green production management in-
novation includes the formulation of green enterprise management mechanism, green cost
management innovation, the adoption of advanced production methods, the establishment
of green marketing mechanism, the establishment of green networked supply chain and
the establishment of environmental evaluation and management system [43–48].

Environmental carrying capacity is also called environmental tolerance or environ-
mental endurance [49–53]. It refers to the limit of the ability of a region’s environment to
support human social and economic activities in a certain period of time and in a certain
environmental state, which reflects the maximum pollutants allowed by the environmental
unit, the ability of a specific environmental unit to permanently carry the discharge of
human activities [54–60]. Therefore, whether it is affected by green innovation or changes
in different scenarios that are significantly different from other environmental indicators,
the existing findings of established environmental capacity or carrying capacity studies are
not directly applicable to environmental carrying capacity [61–63]. Green innovation and
environmental carrying capacity are intrinsically linked in a complex way. As an innovation
directly pursued by environmental benefits, green innovation can not only improve the
environmental absorption capacity from the absorption side by transforming the ecosystem,
but also improve the environmental carrying capacity of pollutants by coupling with the
existing environmental absorption characteristics on the pollution emission side [64–66]. At
present, enterprises, as an important subject of environmental protection and governance,
enhance the environmental carrying capacity through green innovation indirectly, and the
impact of green innovation on environmental carrying capacity is not linear in the context
of China’s current environmental carrying capacity, which is generally close to the upper
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limit. Most studies agree that green innovation will have a significant effect on reaching
energy saving and emission reduction through technological upgrading and scientific
transformation, where an important mechanism is the enhancement of environmental
carrying capacity.

Whether the impact of green innovation on environmental carrying capacity, an en-
vironmental indicator, meets the expectation of energy saving and emission reduction,
identifying the specific environmental and economic effects of relevant green innovation,
and the similarities and differences of the impact mechanisms of green innovation on
environmental carrying capacity in different contexts is of great interest. Therefore, under-
standing the specific direction, extent and mechanism of green innovation on environmental
carrying capacity and its moderating factors under heterogeneous scenarios is extremely
valuable for exploring environmental carrying capacity, strengthening the effect of air
pollution control and broadening the ideas of air quality improvement. Therefore, this
paper takes Chinese provincial regions as the research object, adopts a multi-indicator com-
prehensive evaluation method, measures the green innovation capacity and environmental
carrying capacity of Chinese regions from two dimensions of natural resource endowment
and human activity influence, explores the specific influence of green innovation on envi-
ronmental carrying capacity and its spatial spillover effect and explores the heterogeneous
influence of green innovation on environmental carrying capacity under different pollution
environments, so as to provide a theoretical basis and a basis for environmental governance
and regional sustainable development. It also explores the heterogeneous effects of green
innovation on environmental carrying capacity in different polluted environments, and
provides a theoretical basis and decision-making reference for environmental governance
and regional sustainable development.

2. Model Construction and Data Selection
2.1. Benchmark Model

In this paper, based on the STIRPAT model and the EKC hypothesis [67–70], the
following benchmark model was constructed to examine the impact of green innovation
on regional environmental carrying capacity:

lnECCit = α0 + α1lnGinoit + α2(lnGinoit)
2 + α3Xit + εit (1)

In this, i is a cross-sectional unit of 31 provincial regions in mainland China and t
denotes the year; ECC is the explanatory variable regional environmental carrying capacity,
Gino is the core explanatory variable green innovation capacity and X is a set of control
variables; α0–α3 are parameters to be estimated; ε is a random disturbance term.

2.2. Spatial Econometric Model

The three most common spatial econometric models for cross-sectional data include
the spatial autoregressive model (SAR), the spatial error model (SEM) and the spatial
Durbin model (SDM) [71–73]. The spatial autoregressive model (SAR) is usually applied
when the dependent variable is spatially correlated over regions, the spatial error model
(SEM) is applied when the independent variable is spatially correlated over regions and the
spatial Durbin model (SDM) is an extended form of the spatial lag model and the spatial
error model, which considers the role of autocorrelation of both the dependent variable
and the independent variable, and the model contains both the independent variable and
the dependent variable spatial hysteresis, considering that the dependent variable haze
pollution (PM) and the main independent variable urban innovation efficiency (E) are
spatially correlated in this paper. In order to ensure the reliability and scientific of the
statistical results, this paper, therefore, uses the spatial Durbin model (SDM) for subsequent
measurement to better estimate the spatial spillover effect of urban innovation efficiency
and its influence role on haze pollution in neighboring cities.
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The general form of the spatial Durbin model (SDM) is as follows:

y = ατn + ρWy + Xβ + WXδ + ε (2)

Based on the form of the base model used above, the model after taking the natural
logarithm of the indicators on both sides of the equation is:

lnECCit = β0 + ρ ∑N
j=1,j 6=i wijlnECCit + Xitβ + ∑N

j=1,j 6=i wijXitθ + µit (3)

µit = ϕ ∑N
j=1,j 6=i wijµit + εit (4)

Among them, wij denotes the elements of the geographic distance spatial weight matrix
W1 constructed based on the geographic distance between regions, the residual term is µij,
ρ is the spatial autoregressive coefficient, ϕ is the spatial autocorrelation coefficient and X
is the set of independent variable vectors.

2.3. Mediating Variable Model

In this paper, a mediating effects model consisting of the following three regression
equations is constructed to test the identification of transmission pathways:

lnECCit = θ0 + θ1lnGinoit + θ2(lnGinoit)
2 + θ3Yit + ξit (5)

Dit = β0 + β1lnGinoit + β2(lnGinoit)
2 + β3Yit + µit (6)

lnECCit = γ0 + γ1lnGinoit + γ2(lnGinoit)
2 + γ3Yit + γ4Dit + τit (7)

Y is the vector set composed of control variables; D is the mediating variable PM2.5;
ECC is the explanatory variable regional environmental carrying capacity, and Gino is the
core explanatory variable green innovation capacity [74]. According to the principle of
the mediating effect model, if the coefficients θ1 or θ2, β1 or β2, γ4 are significant, and the
coefficients γ1 and γ2 become smaller or less significant than θ1 and θ2, it indicates that
there is a mediating effect.

2.4. Research Object and Variable Selection
2.4.1. Research Object

Our study covers 31 provincial administrative regions in China. Due to a lack of data,
China’s Taiwan Province, Hong Kong Special Administrative Region and Macau Special
Administrative Region have not yet been included in our evaluation system. At the end
of 2021, there were 34 provincial administrative regions in China, including 23 provinces,
5 autonomous regions, 4 municipalities directly under the Central Government and 2 spe-
cial administrative regions. Beijing is the capital of China. China is divided into four main
regions, namely the Northeast Region, the Eastern Region, the Central Region and the
Western Region, of which the Northeast Region includes three provincial administrative
regions, namely Liaoning, Jilin and Heilongjiang; the Eastern Region includes 13 provincial
administrative regions or special administrative regions, including Beijing, Tianjin, Hebei,
Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Hainan, Taiwan, Hong Kong
and Macau; the Central Region includes six provincial administrative regions, includ-
ing Shanxi, Anhui Jiangxi, Henan, Hubei and Hunan, and the western region includes
12 provincial-level administrative regions, including Inner Mongolia, Guangxi, Chongqing,
Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang. In
terms of the degree of economic development, the eastern region of China is relatively
developed, including economically developed regions such as Guangdong, the largest
economic province, Shanghai, the largest economic city, Taiwan Province, and Hong Kong.
In terms of resident population, the eastern coastal regions are notable for the size of
their population, as they are both economically developed provinces and among the most
densely populated regions in China. In contrast, the vast western regions of China are
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less densely populated and less economically dense. In 2021, the gross regional product of
China’s eastern, central, western and northeast regions were USD 10,389 billion, USD3867
billion, USD 3715 billion and USD 863 billion, respectively, totaling USD 18,835 billion
(including data from Taiwan, Hong Kong and Macau, China), and the size of the resident
population of the four regions were 597,500 thousand, 364,450 thousand, 382,810 thousand
and 97,290 thousand, respectively, totaling 1,442,050 thousand (including data from Taiwan,
Hong Kong and Macau, China).The geographic and spatial distribution forms a pattern of
population-economic-social development that decreases in an east-central-west gradient
(Figure 1).
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2.4.2. Variable Selection and Data Sources

The explanatory variable is Environmental Carrying Capacity (ECC), which is mea-
sured by the comprehensive weighting method. In the process of constructing the indicator
system, seven representative indicators are selected from two dimensions, namely, endow-
ment of natural conditions and influence of human activities, by drawing on the research
results of scholars from various disciplines, to systematically construct an indicator system
for measuring the absorption capacity of the environment to air pollutants [75]. It should
be noted that in order to ensure the single nature of the indicators, the urban green area
is deducted from the urban construction land area in the selection of urban construction
land area data, so that the urban construction land area more effectively reflects the size
of the physical space carrier for human production and life [76]. The article selects the
entropy weight method to objectively assign values to each index, and assesses the amount
of information obtained by determining the entropy value see Table 1 below.
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Table 1. Environmental Carrying Capacity (ECC) Indicator System.

Secondary Indicators Specific Indicators Unit Nature Average Weight

Natural Conditions
Endowment

Surface water resources billion m3 Positive 0.225

Wetland area million hm2 Positive 0.216

Forest area million hm2 Positive 0.168

Annual precipitation mm Positive 0.142

Human Activity
Impacts

Greening coverage of built-up areas % Positive 0.078

Urban construction land area km2 Negative 0.076

Environmental emergencies times Negative 0.095

The explanatory variable is the number of granted green patents. A study of a large
body of literature found that patent data is a valid measure of the level of scientific and
technological innovation in a certain field. The definition of green patents in this study is
taken from the International Patent Green Classification List issued by the World Intellectual
Property Organization, and the number of authorized green patents in each province is
used as a green innovation indicator.

The mediating variable is PM2.5. Analyzed from the perspective of environmental
carrying capacity, air pollutants can be divided into primary and secondary pollutants
according to the formation process [76–78]. The so-called primary pollutants refer to
pollutants emitted directly from the sources, such as carbon monoxide and sulfur dioxide.
Secondary pollutants, on the other hand, are pollutants formed from primary pollutants
by chemical or photochemical reactions, such as ozone, sulfate, nitrate, secondary organic
particulate matter, etc. Among them, PM2.5 is the main source of primary pollutants, so this
paper selects PM2.5 as a heterogeneous variable to study the impact of green innovation
on environmental carrying capacity in two main aspects. On the one hand, PM2.5 has
become the hot environmental issue of most concern to the society’s livelihood and the
international community, whereas on the other hand, the impact of PM2.5 on economic
growth, industrial structure upgrading, trade and carbon reduction are also behaviors
worthy of human reflection.

The control variables include: fiscal expenditure (pe), measured by the number of
fiscal expenditures within the general budget of the local government, which can represent
the public services provided by the government, including haze control; industrial structure
(sec), measured by the share of secondary industry output in GDP; and degree of openness
to the outside world (FDI), measured by the actual amount of foreign direct investment
(FDI) and the “pollution halo” and “pollution paradise” hypothesis. The former hypothesis
suggests that foreign investors introduce environmentally friendly enterprises into the
investment location and thus improve the host country’s environment, while the latter
hypothesis suggests that foreign investors aggravate environmental pollution in the host
country by transferring highly polluting enterprises. Energy saving (es) is measured by the
total annual LPG supply, and the burning of fossil fuels is regarded as an important source
of haze pollution, and the use of LPG reduces the burning of fossil fuels, thus contributing
to haze control; population concentration (pop) is expressed by the number of people per
unit density.

The data for the above-mentioned mediating and control variables are obtained from
the China Statistical Yearbook (2011–2021) as well as from the official statistics publicly
available on the websites of the provincial-level regional statistical bureaus.

3. Analysis of the Results
3.1. Spatial Measurement Benchmark Regression Results

The spatial econometric model cannot be established without the spatial weight
matrix, which reflects the way of influence between geographical elements. In order to fully
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consider the reality of economic attributes of each region, this paper constructs the inverse
economic distance matrix to reflect the spatial economic relationship between urban units.
As the first step of spatial econometric model, a spatial autocorrelation test can analyze
the distribution characteristics of corresponding variables in a geographic space, and the
Moran index is generally used to reflect spatial autocorrelation in empirical studies. In this
paper, the global Moran index is used to reflect the overall clustering of the environmental
carrying capacity of spatial units (Table 2).

Table 2. Regional Environmental Carrying Capacity Moran’s I Statistical Values 2010–2020.

Year Moran’s I Values Year Moran’s I Values

2010 0.056 *** 2016 0.048 ***

2011 0.048 *** 2017 0.064 ***

2012 0.052 *** 2018 0.071 ***

2013 0.061 *** 2019 0.062 ***

2014 0.055 *** 2020 0.072 ***

2015 0.061 *** Average 0.058 ***
Note: *** indicates significant at the 1% level.

As can be seen from Table 2, the Moran indices of the environmental carrying capacity
of provincial regions in China from 2010 to 2020 are all greater than zero and significantly
positive at the 1% significance level, indicating that the spatial spillover of the studied
environmental carrying capacity is strong, and the high values of the environmental
carrying capacity are clustered with the high values and the low values are adjacent to the
low values, with positive spatial correlation. Combined with the interpretation of spatial
econometric model selection above, the following four non-spatial general panel models
are constructed in this paper, and the LM test and Robust-LM test are used to determine
whether the spatial models can be constructed. It can be found through Table 3 that the
model rejects the non-spatial panel model by LM test and significance test, and the panel
model with spatial factors should be selected.

Table 3. LM test for the ordinary panel model.

Inspection Hybrid OLS Space Fixation Fixed Time Double Fixed in Time and Space

LM-lag 236.523 *** 231.821 *** 202.132 *** 202.085 ***

Robust LM-lag 9.236 *** 9.123 *** 1.852 1.812

LM-error 326.785 *** 326.782 *** 252.023 *** 251.233 ***

Robust LM-error 102.356 *** 103.758 *** 61.783 *** 61.247 ***

Note: *** indicates significant at the 1% level.

Further analysis of the test results in Table 3 shows that the LM-lag, LM-error and
Robust LM-error values of the model pass the test at the 1% significance level, indicating
that the SEM model can be chosen. In this case, the applicability of the SDM model needs
to be tested to see if it can be weakened to the SEM model by Wald and LR. The results in
Table 4 prove that the test is still significant and thus the SDM model cannot be degraded
into the SEM model. Meanwhile, the Hausman test of the spatial Durbin model rejects the
random effects, so the SDM model with spatial fixed effects is chosen.
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Table 4. Wald test and LR test for spatial Durbin model.

Wald lag 71.256 *** (0.000)

LR lag 76.425 *** (0.000)

Wald error 19.485 ** (0.013)

LR error 20.126 ** (0.011)
Note: ***, ** indicates significant at the 1% and 5% level.

For the dynamic spatial Durbin model, the model parameters are consistently esti-
mated using the great likelihood estimation method (QML) in this paper. Meanwhile,
in order to compare the rationality of introducing one period of environmental carrying
capacity lag, the estimation results of both the static SDM model with spatial fixed effects
and the dynamic SDM model are presented in Table 5. Compared with the static spatial
Durbin model, the dynamic spatial Durbin model includes one period lag of environmental
carrying capacity and the coefficient is significantly positive, indicating that if the envi-
ronmental carrying capacity of the previous period increases, the environmental carrying
capacity of the current period will also increase, which has an obvious trend of homothetic
effect and there is a path-dependent effect in time dimension. Thus, if the time lag effect of
the explanatory variables is not considered, the model estimation results may be biased.

Table 5. Spatial measurement benchmark regression results.

Variables OLS Returns Static SDM Model Dynamic SDM Model

L.ECC 0.925 ***

Gino 0.825 *** 0.752 *** 0.142

pe −0.253 −0.225 −0.208

sec −0.335 * −0.305 * −0.204 *

FDI 1.126 1.058 0.523

es −5.652 ** −5.456 ** −0.032

pop −3.325 −3.365 −0.192

wxGino 1.085 *** 0.589 ***

wxpe −0.563 ** −1.389 ***

wxsec −0.652 *** −0.488 ***

wxFDI 2.112 * 1.563 *

wxes −14.059 *** −1.752

wxpop −36.256 *** −4.562

ρ 0.189 *** 0.098 ***

R2 0.352 0.198 0.752

log-L −5510.563 −3852.23

Note: ***, **, * indicate significant at the 1%, 5% and 10% levels.

The positive regional spillover effect of green innovation is obvious, and environmental
policies have different effects on green innovation in different regions. The results indicate
that the spatial pattern of green innovation and spatial governance all produce significant
differential results on the environment, and there is a spatial spillover effect of green
technology on the enhancement of environmental carrying capacity. Since the spatial
Durbin model contains both the spatial lagged terms of the explanatory and explanatory
variables, Anselin and Gallo argue that the model estimation results at this point are biased
for analyzing the marginal impact effects of the explanatory variables on the explanatory
variables, so the results in Table 4 can only be used as a preliminary judgment. Lesage and
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Pace also point out that the spatial Durbin model estimation has the same problem, and find
that the partial differential approach can remedy this deficiency. In the case of this paper,
the effect of decomposition by this method can measure the effect of green innovation
on environmental carrying capacity relatively correctly. In addition, the dynamic spatial
Durbin model used in this paper includes the time lag term of environmental carrying
capacity, and the effects of each explanatory variable on environmental carrying capacity
need to consider the long-term effects that include the time lag factor, that is, the model
estimation has short-term effects and long-term effects, which reflect the short-term and
long-term effects of green innovation on environmental carrying capacity, respectively.
From the data in the table, the long-term effect of green innovation on environmental
carrying capacity is significantly larger than the short-term effect. The main reason is that
green innovation is a long-term behavior, while environmental carrying capacity is also
a long-term behavior. Therefore, there is a difference between short-term and long-term
effects of green innovation on environmental carrying capacity. In summary, the results of
further effect decomposition are shown in Table 6. From the total effect of Table 6, it is clear
that green innovation has a significant contribution to the improvement of environmental
carrying capacity in both the short and long term.

Table 6. Effect decomposition of the base regression.

Variables

Short-Term Long-Term

Direct Indirect Total Direct Indirect Total

Effect Effects Effect Effect Effects Effect

Gino 0.156 0.698 *** 0.865 *** 6.895 1.023 7.856 ***

Control variables Control Control Control Control Control Control

Note: *** indicates significant at the 1% level.

3.2. Robustness Test
3.2.1. Transformation Space Weight Matrix

The above empirical results are analyzed under the inverse economic distance matrix
dominated by economic distance. In this paper, we use the nested weight matrix of
economic-cum-geospatial distance for robustness testing, and comparing the results in
Tables 6 and 7, the signs are basically consistent with the significance and the underlying
regression model, indicating that the effect of green innovation on environmental carrying
capacity is robust.

Table 7. Decomposition of spatial effects under nested matrices.

Variables

Short-Term Long-Term

Direct Indirect Total Direct Indirect Total

Effect Effects Effect Effect Effects Effect

Gino 0.002 2.459 ** 2.452 ** 0.562 2.956 3.126 **

Control variables Control Control Control Control Control Control

Note: ** indicates significant at the 5% level.

3.2.2. Analysis of Endogeneity Problem

Although the dynamic spatial Durbin model can solve the endogeneity problem
caused by omitted variables, the endogeneity problem that green innovation and envi-
ronmental carrying capacity are mutually causal cannot be solved. Based on the use of
the dynamic spatial Durbin model, this paper further takes the explanatory variables and
their spatial lagged terms of second and third order, green innovation and their respective
spatial lagged terms of second and third order as the instrumental variables through the
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systematic GMM method. In addition, the air circulation coefficient is used as one of
the instrumental variables. As an exogenous variable formed and objectively existing
in natural geography, the air circulation coefficient has an impact on the environmental
carrying capacity, and there is a correlation between it and green innovation, which is a
more appropriate instrumental variable.

As shown in Table 8, the Sargan test accepts the original hypothesis at the 10% sig-
nificance level, so the instrumental variables selected above are valid; in addition, the
AR (1) test is significant and the AR (2) test is insignificant, indicating that the nuisance
terms are not autocorrelated, which shows that the estimation results of this paper using
the systematic GMM approach to address endogeneity are reasonable. Table 4, when
compared with the estimated results in Table 8, even though the sign of the green inno-
vation coefficient changes, neither of them is significant, indicating the robustness of the
underlying regression results. Meanwhile, both the lagged term and spatial lagged term
of environmental carrying capacity are significantly positive, which verifies the existence
of path dependence in the time dimension and significant spatial demonstration effect of
environmental carrying capacity.

Table 8. System GMM Estimation Results.

Gino 0.3543 1.273 WxGino 1.039 2.593

L.ECC 0.746 365.341 wxL.ECC 0.152 36.926

Sargan-test 246.583 0.265

3.3. Mediating Effect Test

Environmental pollution PM2.5 was selected as the mediating variable of green inno-
vation affecting environmental carrying capacity. Drawing on Feng Han and Ligao Yang’s
mediating effect test, the significance of the coefficients is used to determine the role of
PM2.5 in the relationship between green innovation and environmental carrying capacity
by constructing a recursive model.

The estimation results of Equation (1) in Table 9 are consistent with the results of the
decomposition of the effects of the base regression in the previous section and will not be
repeated here. The results of Equation (2) to test the effect of green innovation on reducing
PM2.5 concentration show that the effect of green innovation is significant, and the total
effect of PM2.5 in Equation (3) is significant and has a significant inhibitory effect on the
improvement of environmental carrying capacity of the surrounding urban provinces in
the short term, where the short-term direct effect is −0.011 and the short-term indirect
effect is −0.125 and the absolute value of the short-term indirect effect is greater than the
absolute value of the short-term direct. The absolute value of the short-term indirect effect
is greater than the absolute value of the short-term direct effect, and the long-term direct
effect is greater than the long-term indirect effect, but it is not significant. In summary,
PM2.5 plays a part of the mediating effect in the process of green innovation affecting
environmental carrying capacity, indicating that PM2.5 plays an important role in the
transmission mechanism of green innovation affecting environmental carrying capacity.
That is, it shows that in areas with higher PM2.5 concentration or poorer environmental
quality, green innovation has a weaker ability to enhance environmental carrying capacity;
in areas with lower PM2.5 concentration or higher environmental quality, green innovation
has a stronger ability to enhance environmental carrying capacity. Compared to areas
with higher PM2.5 concentration or poorer environmental quality, green innovation on
environmental carrying capacity is influenced by the local environmental quality. Therefore,
the environmental carrying capacity of green innovation is stronger for areas with lower
PM2.5 concentration or higher environmental quality.
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Table 9. Mediating effect test based on PM2.5.

Variables Type of Effect Equation (1) Equation (2) Equation (3)

InPM2.5

Short-term direct effects −0.011

Short-term indirect effects −0.125 ***

Short-term aggregate effect −0.142

Long-term direct effects 0.852

Long-term indirect effects 0.048

Total long-term effect 0.856 ***

Gino

Short-term direct effects 0.152 *** 0.054 ** 0.138

Short-term indirect effects 0.623 *** 0.421 0.652 ***

Short-term aggregate effect 0.852 0.489 0.754 ***

Long-term direct effects 7.112 0.174 −6.865

Long-term indirect effects 1.103 1.121 2.412

Total long-term effect 8.132 *** 1.125 *** −5.568 ***

Control variables Control Control Control Control

Note: ***, ** indicate significant at the 1% and 5% levels.

4. Conclusions and Recommendations
4.1. Conclusions

This paper selects the 2010–2020 provincial-level regions of China as samples, adopts
a multi-indicator comprehensive evaluation method to comprehensively, objectively and
scientifically evaluate the environmental carrying capacity of air pollution from two di-
mensions: natural resource endowment and human activity impact, and also measures
the green innovation of each province, city and autonomous region to explore the specific
impact of green innovation on environmental carrying capacity and its spatial spillover
effect; it also explores the heterogeneous impact of green innovation on environmental
carrying capacity under different pollution environments.

(1) Whether in the short term or in the long term, green innovation makes a significant
contribution to the improvement of environmental carrying capacity; green innovation
can bring beneficial environmental effects not only to reduce the increase of pollutants,
but also to purify and absorb the pollutants already produced from the direction
of pollution treatment and so on. Due to the existence of environmental carrying
capacity, pollution is not absolutely irreversible; the environment has the possibility
of repair and treatment, and the environmental carrying capacity directly affects
the whole process of pollutant generation. Environmental carrying capacity will be
enhanced to reduce the concentration of pollutants once the pollutants exceed the
environmental carrying capacity form cumulative pollution, causing serious damage
to the ecology; the reduction of the concentration of pollutants will also generate
the environmental carrying capacity of sustainable maintenance, and the two form
a dynamic virtuous cycle. It can be seen that there is a significant and complex
correlation between pollutant concentration and environmental carrying capacity, and
it can be speculated that the sensitivity of environmental restoration capacity under
different pollutant concentrations is affected by various factors; for example, the effect
of green innovation on environmental carrying capacity under different pollutant
levels may also be affected by different pollutants.

(2) Green innovation has a significant spatial spillover effect on the enhancement of
environmental carrying capacity. This indicates that green innovation does not always
play a positive role in enhancing the environmental carrying capacity, and in some
cases this enhancement will be weakened. This indicates that ecological protection
and environmental management is a complex system project, which cannot rely on
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a single element or a complete market mechanism to get the maximum benefit. The
development of green innovation requires the establishment of sound environmental
protection rules and regulations and supporting regulations, targeted protection
and incentives for relevant green innovation and coordinated development between
regions and sectors to maximize the benefits of green water and green mountains.

(3) In the process of green innovation affecting environmental carrying capacity, PM2.5
plays a part in the mediating effect, indicating that PM2.5 plays an important role in
the transmission mechanism of green innovation affecting environmental carrying
capacity. This shows that the two-way influence relationship between pollutants and
environmental carrying capacity affects the extent of green innovation in pollution
control, in which the regional environment is in a sustainable state with low PM2.5
concentration and green innovation can more effectively promote the environmental
carrying capacity to improve the ability to clean pollutants, while the region with
high PM2.5 concentration and severe pollution is closer to the development from
emergency critical scenario to pessimistic scenario. This conclusion demonstrates that
the pollution level represented by PM2.5 concentration is an important regulating
variable for green innovation to improve the environmental carrying capacity, and
also provides ideas for optimizing air pollution management.

4.2. Recommendations

Green innovation is essentially ecotechnological innovation, with the development of
green industries as an important initiative to promote economic restructuring and highlight
the concept and connotation of green on a macro level, and the promotion of energy
conservation and efficiency in the production, distribution, distribution, consumption
and construction of enterprises on a micro level. The significance of the research in this
paper proposes the profound implication of green innovation on environmental carrying
capacity enhancement, pointing out that green innovation has a positive contribution to
environmental carrying capacity, and in this sense, China needs to further promote eco-
technological innovation, advance a mode of economic growth and social development
that aims at efficiency, harmony and sustainability, promote an accelerated transformation
of the mode of economic development, actively cultivate new economic featuring low
carbon emissions growth, reduce consumption, reduce losses and pollutant emissions,
stop waste through green innovation in energy conservation and emission reduction,
reduce consumption, reduce losses and pollutant emissions, stop waste in all aspects
of energy production to consumption, use energy effectively and rationally, practice the
concept of green development, build a resource-saving and environment-friendly society,
continuously promote the modernization of China’s green innovation governance system
and governance capacity, continuously promote regional environmental carrying capacity,
and in the process of economic growth focus on environmental, social and ecological effects
to build a beautiful China.
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