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Abstract: Time-resolved monitoring of microalgae agglomeration facilitates screening of coagu-
lants/flocculants (CFs) from numerous biopolymer candidates. Herein, a filtering-flowing analysis
(FFA) apparatus was developed in which dispersed microalgal cells were separated from coagu-
lates and flocs formed by CFs and pumped into spectrophotometer for real-time quantification.
Polysaccharides-based CFs for Microcystis aeruginosa and several other microalgae were tested.
Cationic hydroxyethyl cellulose (CHEC), chitosan quaternary ammonium (CQA) and cationic guar
gum (CGG) all triggered coagulation obeying a pseudo-second-order model. Maximal coagulation
efficiencies were achieved at their respective critical dosages, i.e., 0.086 g/gM.a. CHEC, 0.022 g/gM.a.

CQA, and 0.216 g/gM.a. CGG. Although not active independently, bacterial exopolysaccharides (BEPS)
aided coagulation of M. aeruginosa and allowed near 100% flocculation efficiency when 0.115 g/gM.a.

CQA and 1.44 g/gM.a. xanthan were applied simultaneously. The apparatus is applicable to other
microalgae species including Spirulina platensis, S. maxima, Chlorella vulgaris and Isochrysis galbana. Bio-
based CFs sorted out using this apparatus could help develop cleaner processes for both remediation
of harmful cyanobacterial blooms and microalgae-based biorefineries.

Keywords: time-resolved measurement; microalgae; coagulants/flocculants (CFs); filtering-flowing
analysis (FFA); kinetics model; cationic polysaccharides; bacterial exopolysaccharides (BEPS)

1. Introduction

Coagulation/flocculation process (CFP) is a prevalent pretreatment technology for
efficient removal of harmful cyanobacteria blooms (HCBs) from water bodies [1]. Micro-
cystis aeruginosa, a unicellular prokaryotic cyanobacterium, is one of the most pervasive
and hazardous HCBs species [2]. Its small colonies (30~100 µm) are vertically distributed
in water [3] and require coagulants (e.g., aluminum salts) together with flocculant aids
(e.g., polyacrylamide) to enhance agglomeration [4]. CFP has also been applied to facilitate
the dewatering of microalgal biomass from dilute suspensions through cell aggregation
and flocs formation [5]. Subsequently, biomass slurry (~7% dryness) is collected by siev-
ing for further drainage and bioproduct extraction [5]. However, the use of chemical
coagulants/flocculants (CFs) poses serious environmental and health risks, especially the
release of neurotoxic and carcinogenic substances [6]. Moreover, chemical CFs may cause
operation problems in downstream biorefining processes, such as inactivation of microbes
and enzymes, introduction of organic impurities, accumulation of non-biodegradable
sludge [7].

Bio-based CFs are environmental-friendly macromolecular materials derived from
plants [8], animals [9], fungi [10], or bacteria [11]. Modified tannin, chitosan, fungal chitin
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and bacterial exopolysaccharides (BEPS), have been investigated for sustainable HCBs
removal [8–11]. Applicability of bio-based CFs has also been verified in recovery of cell
biomass from growth cultures of Spirulina platensis [12], Chlorella vulgaris [13] and Isochrysis
galbana [14]. Since different microalgae species have different cell shapes, sizes and surface
charges, it is important to select and develop universal bio-based CFs from numerous
biosources. It is also desired to search for selective biocoagulants that could separate
harmful species, e.g., M. aeruginosa, from contaminated microalgal cultures. Every year
many new CFs-producing strains are reported, providing us with abundant candidates
for experimental trials. However, it is very laborious and time-consuming to perform
the screening work involving coagulation, filtration, drying and weighing step by step,
especially when studying combinations of different CFs.

Time-resolved (TR) monitoring of dispersed cells during CFP of microalgae could
facilitate the screening process. Rapid and automatic acquisition of data supports further
rational design of CFs’ structures as well as formulation optimization. The high-resolution
kinetic profiles obtained could further reveal the correlation between structural features
of CFs and their performance in CFP of microalgae. This is beneficial to mechanism
elucidation of novel CFs candidates. Many TR methods have been reported for studying
microalgae. For instance, a TR fluoroimmunometric assay was established for detection of
microcystins [15]. TR microfluorimetry was developed for free radical and metabolic rate
detection in microalgae [16]. TR ICP-MS was employed for simultaneous cell counting and
determination of constituent metals in microalgal cells [17]. This paper reports a filtering-
flowing analysis (FFA) apparatus enabling TR measurement of microalgae agglomeration
for screening effective bio-based CFs. Polysaccharide-based CFs (PBCFs) were tested, and
the kinetics properties were investigated toward M. aeruginosa and four other microalgal
species.

2. Materials and Methods

Cationic guar gum (CGG) and chitosan quaternary ammonium (CQA) salt were pur-
chased from Tianjin Baima Technology Co., Ltd. (Tianjin, China). Cationic hydroxyethyl
cellulose (CHEC) was prepared following Wang and Ye’s method [18]. Xanthan was pur-
chased from Shandong Yousuo Chemical Technology Co., Ltd. (Shandong, China). Two
other bacterial exopolysaccharides (BEPS) were produced by Paenibacillus mucilaginosus
(GDMCC No. 62049) and Agrobacterium sp. (GDMCC No. 62125), respectively. These two
strains were isolated in our lab and preserved in Guangdong Microbial Culture Collection
Center (Guangdong, China). Both strains were cultivated, respectively, in medium contain-
ing sucrose 5 g/L, Na2HPO4 2 g/L, MgSO4 0.5 g/L, CaCO3 0.1 g/L, and FeCl3 0.005 g/L.
After incubation at 37 ◦C for 3 days, the culture broth was centrifuged (12,000 rpm) at 4 ◦C
for 10 min. BEPS in supernatant was precipitated with absolute ethanol. The precipitate
was re-dissolved and centrifuged to remove insoluble particles. The supernatant was
re-precipitated with ethanol. The finally obtained precipitate was freeze-dried to produce
purified BEPS. Details of these PBCFs including CHEC, CGG, CQA, xanthan, Agrobac-
terium mucopolysaccharides (AMP) and P. mucilaginosus exopolysaccharides (PmEPS) are
summarized in Table S1.

M. aeruginosa and four other microalgae species were all grown in BG11 medium
(Haibo Biotech. Co., Ltd., Shangdong, China) at 25 ◦C, 2000 Lux for 7 days. The growth
cultures were properly diluted with sterilized water to a certain optical density before use.
PBCFs (0.5 mL) were added in 50 mL of microalgal culture broth followed with magnetic
stirring to start CFP. The mixture suspension was filtered with a 30-mesh sieve tube and
pumped into a flowing quartz cuvette (optical path 1 cm) for quantification of microalgal
cells. Data were recorded every 1 s to produce a TR profile for further kinetics analysis.
The variation in cell concentration (∆c, g/L) was calculated from the Lambert-Beer law
(Equation (1)).

The coagulation number of microalgae at t min (Qt, gm) and adsorption capacity (qt,
gm/gCFs) of polysaccharides-based CFs were deduced from ∆c (Equations (2) and (3)). The
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unit gm means grams of dried microalgal cells and gm/gCFs represents grams of dried
microalgal cells coagulated by per gram of CFs. Specifically, gM.a. and gC.v. are used
to replace gm for expressing the dry mass of M. aeruginosa and C. vulgaris, respectively.
Flocculation efficiency (FE, %) was calculated from the coagulation amount at equilibrium
(Qe, gm) according to Equation (4).

∆c =
A0

λ −At
λ

ε
(1)

Qt = ∆c·V (2)

qt =
Qt

mCFs
(3)

FE =
qt·mCFs·ε

A0
λ·l·V

× 100% (4)

where, A0
λ and At

λ are absorbance at an identical wavelength at time 0 and t, u.a.; ε
represents absorption coefficient, L/g/cm; V is the volume of microalgae suspension, L;
mCFs is the dry mass of bio-based CFs, gCFs; l is the path length of cuvette, cm.

All kinetics plots were fitted with pseudo-first-order (or Lagergren equation, Equation (5)),
pseudo-second-order (Equation (6)) and Weber and Morris models (Equation (7)) using
Origin 9.0 [19].

ln
(
qe − qt

)
= ln qe − k1t (5)

t
qt

=
1

ksq2
e
+

t
qe

(6)

qt = kipt
1
2 + C (7)

where qe (gm/gCFs) and qt (gm/gCFs) are the adsorption capacities in the equilibrium state
and at time of t, respectively; k1 (1/min), ks (g/g/min) and kip (g/g/min1/2) are the
rate constants in Equations (5)–(7), respectively; C is a constant related to thickness and
boundary layer.

3. Results
3.1. Quantification of Microalgae by Visible Spectroscopy

All microalgae strains investigated including M. aeruginosa, S. platensis, S. maxima,
C. vulgaris and I. galbana had an identical absorbance peak at 680 nm in culture broths
(Figure 1a). Lambert–Beer Law is valid for all of them within the cell concentration range
of 0.03~0.3 g/L, on the basis of oven-dried mass (Figure S1). Their respective absorption
coefficients (ε) are summarized in the legend box in Figure 1a. The microalgal pigments
are all intracellular components [20] because neither supernatants nor filtrates of cultures
had detectable A680 signals. Therefore, there was no colorful extracellular metabolite that
interfered with the quantification of microalgal cells by visible spectroscopy. The stability
of data output was tested in our FFA apparatus since stable colloidal particles of microalgal
cells may be destabilized by shear stress [21]. Figure 1b shows all cell particles of M.
aeruginosa, C. vulgaris and I. galbana completely penetrated the holes of filter (30 mesh,
or 600 µm of hole size), producing steady consistent absorption lines along with time up
to 10 min. A small deviation within ±0.0005 u.a. represents the systematic error range
of this apparatus. Obviously, shear stress due to magnetic stirring, filtering, and fluid
flowing did not influence the TR coagulation measurement of the three microalgae. Profiles
of S. platensis and S. maxima showed slight decline trend with a slope of −0.0243 and
−0.0201 u.a./min caused by 1 g/L of cells, respectively. Considering their larger size
dimensions (Table S1) than the other three microalgae species, such instability could be
mainly attributed to self-coagulation of cell particles rather than interception by the filter or
other reasons [22]. These decline factors should be taken into consideration in subsequent
coagulation measurements and kinetics calculation. In addition, potential interference
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from optical absorption by PBCFs was also evaluated (Figure S2). All the tested PBCFs
at a concentration of up to 200 mg/L had spectra (400~1000 nm) overlapped with the
control line. In summary, the FFA apparatus enables stable output of data during the CFP
of microalgae.
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3.2. TR Kinetic Coagulation Profiles and Model Fitting Curves

Overall TR profiles of A680 variation were recorded for M. aeruginosa and other mi-
croalgal species. The FFA apparatus was started up with magnetic stirring (stirrer diameter
5 mm, length 15 mm, speed 800 rpm) and continuous flow circulation of microalgal sus-
pension (20 s for a cycle; 10 mL of dead volume) in a 200 mL flask. After resisting for 15 s
(delay time for checking stability), a certain number of cationic polysaccharides, e.g., CHEC,
were pipetted to initiate coagulation (See the dosing timepoint in Figure 2a). Decrease in
A680 was first recorded at around 45 s because the initial mixture with coagulates filtered
out could only be detected after filling the cuvette cell in spectrophotometer from the
stirring flask.

The obtained TR profiles can be roughly divided into two phases: fast (logarithmic)
and slow (linear). The curve-to-tangent (CT) point of the two phases or the time approach-
ing quasi-stable state was determined by the dosage and species of cationic polysaccharides.
Figure 2a also demonstrated good data reproducibility from triplicated independent mea-
surements. Standard deviation of A680 at any point in the fast and slow phase was within
±0.009 and ±0.003 u.a., respectively. Therefore, minor changes in M. aeruginosa concentra-
tion over ±2.83 mg/L (0.142 mg in the 50 mL test flask) could be sensitively detected.

CFP curve plots (Figure 2b) were generated from the TR profiles by deducing qt
from A680 according to Equations (1) and (3). The adsorption capacity, qt, represents the
coagulation performance of cationic polysaccharides per unit mass. Figure 2b shows the qt
curve became lower when CHEC dosage was promoted from 0.014 to 0.086 g/gM.a. although
many more M. aeruginosa cells were coagulated in total. As more CHEC (e.g., 0.144 g/gM.a.)
was used, a curve showing less efficient coagulation was obtained as demonstrated in
Figure 2a. This is probably due to the repulsive interactions among M. aeruginosa cell
particles bound with excessive positively charged CHEC. After plotting the measured Qt at
9 min (denoted as Q9′ , See Figure 3a), it is clear that there was a critical concentration point
below which Q9′ increased with CHEC dosage, while above that Q9′ decreased. Higher
CHEC dosage up to 0.288 g/gM.a. led to poorer coagulation.
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All the CFP curve plots of M. aeruginosa with addition of cationic polysaccharides
could be well fitted by pseudo-first-order (R2 > 0.94) and pseudo-second-order adsorption
kinetics models (R2 > 0.99, Figure 2b,c). The measured qt at 9 min (q9′ ) was proportional to
the qe deduced from the two models as illustrated in Figure 2d. The qe deduced from the
pseudo-first-order model (qe

1st) was apparently lower than q9′ . The qe values predicted
with pseudo-second-order model (qe

2nd) were more consistent with the experimental q9′

values. The qe
2nd was 1.03~1.05 folds of q9′ while qe

1st was 0.92~0.94 folds of q9′ , depending
on the selection of cationic polysaccharides (Figure 2d). Obviously, the pseudo-second-
order model was more appropriate to describe the TR coagulation curves of M. aeruginosa,
reflecting chemical adsorption mechanisms such as ion exchange and surface complexation
dominate the CFP [23].

Coagulation of S. platensis, S. maxima, and C. vulgaris by CQA also followed the
pseudo-second-order model (R2 > 0.985, Table 1). Initial coagulation velocities derived
from the model ks·qe

2 were compared, and data in Table 1 showed S. maxima was most
readily removed. Among all tested species, I. galbana was a particular one that could not be
coagulated by any of the studied cationic polysaccharides.
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Table 1. Parameters of pseudo-second-order kinetics models for comparison of different microalgae.

Microalgae PBCFs Dosage
(gCFs/gm)

ks
(gCFs/gm/min)

qe
(gm/gCFs)

ks·qe
2

(gm·gCFs/min) R2

M.
aeruginosa

CHEC 0.07 3.23 0.437 0.60 0.9906

CQA 0.07 5.13 0.423 0.93 0.9902

CGG 0.07 4.92 0.16 0.13 0.9897

S. platensis CQA 0.07 10.08 0.44 1.97 0.9895

S. maxima CQA 0.07 11.11 0.43 2.64 0.9863

C. vulgaris CQA 0.07 128.51 0.06 0.39 0.0989

I. galbana CQA 0.07 Not coagulated

Weber and Morris kinetics model could not describe the whole coagulation curve over
9 min (Figure S3). It predicted well only the CFP data in the initial 4 min with correlation
coefficients (R2) higher than 0.9. Data in Figure S3 showed the highest R2 was only 0.946 for
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the tested specimen. Obviously, the Weber and Morris model was not suitable to describe
the coagulation of microalgae by cationic polysaccharides.

BEPS such as AMP, PmEPS and xanthan did not coagulate M. aeruginosa or other
microalgae investigated in this work even at concentrations as high as 0.5 g/L (7.2 g/gM.a.),
as shown in Figures 2c and S4. Since both BEPS and microalgal cells carry negative
charges on the surface, Coulombic repulsion forces of the charged cells were reinforced
with increase in the strength of the electric field. Obviously, electrostatic neutralization is
necessary for achieving coagulation.

3.3. CFP Performance of Cationic Polysaccharides toward M. aeruginosa and C. vulgaris

M. aeruginosa, a typical prokaryotic bloom-forming cyanobacterium, and C. vulgaris,
a cell-factory eukaryotic microalgae for biorefinery, were used to further explore the CFP
behaviors of cationic polysaccharides. Results in Figure 3 show that Qe predicted by
pseudo-second-order model was similar to Q9′ and also increased with the dosage of CFs
to a critical concentration point above which the coagulation amount was decreased. For
M. aeruginosa, the maximum values of Qe were 2.60, 2.88 and 1.65 mgM.a., achieved by
0.086 g/gM.a. CHEC, 0.216 g/gM.a. CGG, and 0.022 g/gM.a. CQA, respectively, which were
in consistence with the dosages for maximal Q9′ . Among them, CQA showed the highest
efficiency for coagulation of M. aeruginosa, reaching 88.3% flocculation efficiency at a small
dosage of 0.022 g/gM.a..

The coagulation capacities at equilibrium (qe) of the three cationic polysaccharides were
measured using M. aeruginosa and C. vulgaris and the results are shown in Figure 3c,d. CQA
had a significantly higher coagulation capacity within the dosage range of 0.01~0.05 g/gM.a.
than that of CHEC or CGG. A drastic decrease in qe with dosage of CQA suggests that
excessive CQA macromolecules led to repulsion instead of agglomeration of neutralized
microalgal cells. CHEC exhibited moderate capacity and a downward trend with a lower
slope than CQA, while CGG had a relatively flat curve of qe vs. dosage (Figure 3a). Different
activities of these coagulants were probably due to their intensive cationic charge densities
on surface as expressed by zeta potential (Table S1).

In the case of C. vulgaris, the critical concentration point for CQA was around 0.03 g/gC.v.,
lower than that of CHEC or CGG (both around 0.057 g/gC.v.). However, maximal Qe by
CQA in Figure 3b was only 6.53 mgC.v. (Qmax was 11.71 mgC.v.), less than that by CHEC
(7.90 mgC.v.) or CGG (8.71 mgC.v.). CGG had qe at a higher level than CQA or CHEC
within the dosage range of 0.04~0.11 g/gC.v. (Figure 3d). On the other hand, CGG in
this concentration range had a relatively low CFP efficiency toward M. aeruginosa than C.
vulgaris (Figure 3c). Different performance of these coagulants allowed selective separation
of M. aeruginosa from C. vulgaris. For example, when 0.05 g/gm CGG was applied, C.
vulgaris could be selectively coagulated from the contaminants of M. aeruginosa.

3.4. Performance of BEPS as Flocculation Aids

Our apparatus is also applicable to develop dual-component CFs. Figure 4 shows
BEPS including AMP, PmEPS and xanthan could all serve as flocculation aids to enhance the
CFP efficiency of M. aeruginosa by cationic polysaccharides. Two approaches for addition of
BEPS, stepwise or simultaneously with cationic polysaccharides, were studied in the FFA
apparatus (Figure 4). Kinetic measurements of A680 variation clearly demonstrated that
both addition methods led to higher flocculation efficiency (FE) of microalgal cells. Maximal
FE approaching 100% was achieved by simultaneous addition of CQA (0.115 g/gM.a.)
and xanthan (1.44 g/gM.a.), while stepwise addition of them could remove about 90% M.
aeruginosa cells through CFP (Figure 4a,b). The contribution ratio of CQA to xanthan was
4:5 as calculated from the A680 at 4 min in Figure 4a. In fact, the contribution of xanthan
was still dependent on the presence of CQA because a single addition of xanthan did not
initiate measurable microalgae agglomeration (Figures 2c and S4). Xanthan in the other two
combinations (with CHEC and CGG, repectively) also promoted the flocculation efficiency
(Figure 4c), showing its universal applicability as flocculation aids. Similar tends were
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observed in the combination sets consisting of PmEPS and AMP although they were less
efficient than xanthan.
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The constant ks and initial coagulation velocity (v0) of M. aeruginosa with addition of
dual-component PBCFs were calculated from data in Figure 4b and are shown in Figure 4d.
The addition of BEPS, especially xanthan, decreased the value of ks but increased v0,
suggesting additional adhesive function of BEPS in cooperation with CQA. Further deep
mechanism investigations are necessary to be performed. Our apparatus is applicable to
generate precise kinetics data and save laborious batch measurements.

4. Discussion

A major function of the FFA apparatus is to provide time-resolved kinetic profiles
microalgae coagulation. The three kinetics models used in this study were originally
developed for a mathematical description of adsorption process [24]. Coagulation and
flocculation are very similar with adsorption of free cell particles onto CFs-attached cell
aggregates. These models have been widely used to evaluate the performance of bio-based
CFs in microalgae recovery [25–27]. Coagulation of microalgae by eggshell [25], fungal
pellets [26], and anaerobic sludge-derived BEPS [27] had all been found well fitted with
pseudo-second-order kinetics model. However, in these reports, experimental data for the
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modeling study were obtained by batch sampling and one-by-one measurement [25–27].
The fitted curves contained usually less than 10 points, not to mention that the time
intervals were generally higher than 5 min in order to reduce the time delay error. The
present method provides time-resolved profiles by using the automatic apparatus with
high resolution and reliability, significantly saving time and labor.

Marine microalgae have been widely utilized for the production of value-added
compounds [28]. Therefore, pH, salts and temperature have to be controlled to simulate
their native growth conditions [28]. It is convenient to study the harvest of cell biomass by
CFs under varied environmental parameters. Controlled temperatures would be available
by placing the stirring flask in a magnetic water bath. Desired pH values and ion strengths
could be obtained by addition of chemicals into the reaction flask.

A spectrophotometer was used as detector in the present apparatus, which allows
simultaneously monitoring coagulation of two different colorful microorganisms. For
instance, Serratia marcescens is a Gram-negative bacillus commonly found in water and soil,
capable of producing prodigiosin, an intracellular red pigment [29]. A S. marcescens strain,
LTH-2, and its pigment were reported having strong Microcystis-lysing activity [30]. It is
important to study the effect of CFs on the microalgae-bacteria ecosystem. Then it can be
done using our apparatus to record the variations in absorbance at the respective specific
wavelengths for S. marcescens and M. aeruginosa. Dual-wavelength calculation methods can
be established following Liu et al.’s previous article [31]. A drawback is that this research
method seems inapplicable to colorless bacteria.

Edible microalgae cultures are often contaminated by M. aeruginosa. Selective separa-
tion of different microalgal species could be very useful in the microalgal biorefinery [32].
Selective adsorbents for the above purpose have been long considered as a technical bar-
rier [33]. Our data in Figure 3 showed a possibility of developing particular bio-based CFs
for selective separation of C. vulgaris from M. aeruginosa. It may help minimize the accumu-
lation of cyanotoxin in bioproducts from C. vulgaris. The optimal application techniques
including CFs components, dosage, temperature and some other conditions deserve further
exploration.

5. Conclusions

Our FFA apparatus enables online filtering of coagulates, real-time flowing detection
and quantification of microalgae biomass variation. It is applicable to measuring TR pro-
files of microalgae agglomeration and rapid screening of bio-based coagulants/flocculants.
Among all tested candidates, cationic polysaccharides had strong coagulation capacity
toward M. aeruginosa and four other microalgae species. Their TR coagulation profiles
obeyed pseudo-second-order kinetics model. Maximal coagulation of M. aeruginosa was
achieved at the respective critical dosages which were 0.086 g/gM.a. CHEC, 0.022 g/gM.a.
CQA and 0.216 g/gM.a. CGG. Different coagulation performance of these cationic polysac-
charides potentially allows selective separation of M. aeruginosa from beneficial microalgae,
i.e., C. vulgaris. Bacterial exopolysaccharides did not coagulate any tested microalgae
independently but could aid cationic polysaccharides to promote the flocculation efficiency.
Maximal flocculation efficiency approaching 100% was achieved by simultaneous addition
of 0.115 g/gM.a. CQA and 1.44 g/gM.a. xanthan. This apparatus is also applicable to develop
the dual-component polysaccharides-based coagulants/flocculants for microalgae harvest.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph192114610/s1, Table S1: Zeta potential and size dimensions
of microalgae and polysaccharides; Figure S1: Visible spectra of different microalgae suspensions, (a)
M. aeruginosa; (b) S. platensis; (c) S. maxima; (d) C. vulgaris; (e) I. galbana; Figure S2: Visible spectra
of different cationic polysaccharides and BEPS; Figure S3: Weber and Morris kinetic profiles of M.
aeruginosa and C. vulgaris coagulation by cationic polysaccharides, (a) M. aeruginosa; (b) C. vulgaris;
Figure S4: Time-resolved kinetic profiles of microalgae coagulation by AMP, PmEPS and xanthan.
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