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Abstract: The environmental concerns of global warming and energy consumption are among the
most severe issues and challenges facing human beings worldwide. Due to the relatively higher
predicted temperatures (150–180 ◦C), the latest research on pavement energy consumption and
carbon dioxide (CO2) emission assessment mentioned contributing to higher environmental burdens
such as air pollution and global warming. However, warm-mix asphalt (WMA) was introduced
by pavement researchers and the road construction industry instead of hot-mix asphalt (HMA)
to reduce these environmental problems. This study aims to provide a comparative overview of
WMA and HMA from environmental and economic perspectives in order to highlight the challenges,
motivations, and research gaps in using WMA technology compared to HMA. It was discovered
that the lower production temperature of WMA could significantly reduce the emissions of gases
and fumes and thus reduce global warming. The lower production temperature also provides a
healthy work environment and reduces exposure to fumes. Replacing HMA with WMA can reduce
production costs because of the 20–75% lower energy consumption in WMA production. It was also
released that the reduction in energy consumption is dependent on the fuel type, energy source,
material heat capacity, moisture content, and production temperature. Other benefits of using
WMA are enhanced asphalt mixture workability and compaction because the additives in WMA
reduce asphalt binder viscosity. It also allows for the incorporation of more waste materials, such as
reclaimed asphalt pavement (RAP). However, future studies are recommended on the possibility of
using renewable, environmentally friendly, and cost-effective materials such as biomaterials as an
alternative to conventional WMA-additives for more sustainable and green asphalt pavements.

Keywords: hot-mix asphalt; warm-mix asphalt; life cycle assessment; gas emission; energy consumption;
global warming; sustainable pavements

1. Introduction

The environmental concerns of global warming are among the most severe issues
facing human beings. A contributing factor in the flexible pavement, primarily using HMA,
is significant fuel and energy consumption, resulting in pollutant emissions [1]. In contrast,
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WMA technology was developed to meet sustainability’s economic and environmental
needs. However, humans have long been constructing flexible pavements to ensure smooth
and durable road pavements [2]. Hence, the pace of road construction has been increasing
globally, and 12 million km of roads were constructed in 2000; it is projected that 25 million
km of roads will be built by 2050 globally [3]. For example, in Malaysia, the Public Work
Department (JKR) reported that there was 237,022 km of roads in 2017 [4]. The construction
of about 90% of the world’s paved roads uses asphalt mixture, and the remaining 10% are
other types of pavement [5]. The increasing traffic volume necessitates using asphalt binders
and mixes with enhanced properties to ensure the durability of asphalt pavements [1].
Generally, asphalt mixtures comprise three main materials, namely aggregate, asphalt
binder, and filler. The aggregates and filler make up approximately 94–96% of the total
mixture weight, and the remaining 4–6% is asphalt binder. These materials are heated to
high temperatures of 150 and 180 ◦C to ensure proper aggregate coating by the asphalt
binder and adequate workability of the mixture. This process consumes a large amount
of energy and emits gases. One of the biggest problems faced by the world is global
warming [6]. The high pace of transportation contributes to the emissions of large amounts
of greenhouse gases that cause global warming [2,7–9]. According to the Inventory of
U.S. Greenhouse Gas Emissions and Sinks, transportation contributes about 27% of total
U.S. GHG emissions in 2020 [10]. The Kyoto Protocol adopted in 1977 aims to develop
technologies that reduce the emissions of gases that cause global warming. Therefore,
the road construction industry has adopted various techniques to control and reduce the
emission of greenhouse gases, and one of them is the warm-mix asphalt (WMA). Generally,
there are four types of asphalt mixtures, depending on their production temperature. (i) The
cold mix asphalt (CMA) produced at 0–30 ◦C; (ii) the half-warm mix asphalt (HWMA)
produced at 60–100 ◦C; (iii) the warm mix asphalt (WMA) produced at 110–140 ◦C; and
(iv) the hot mix asphalt (HMA) produced at 150–180 ◦C. Figure 1 shows the classification
of the asphalt mixes based on the production temperature [11]. It is noted that the energy
required to achieve the desired workability is exponentially increased from the CMA to
HMA, resulting in higher GHG emissions of HMA compared to other mixtures.
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The primary reason and motivation for adopting WMA techniques are to produce an
asphalt mixture at a temperature 10–40 ◦C lower than the conventional hot mix asphalt
(HMA), as shown in Figure 2. The low production temperature of WMA has three benefits.
It can significantly reduce environmental burdens, including global warming [2] and the
emissions of gasses and fumes [12–22]. The economic benefit of the lower production
temperature is directly proportional to the low energy consumption [18,23–34], which re-
duces the financial costs [35–37]. WMA production and paving are beneficial because they
modulate the mixture viscosity, enhance mixture workability, facilitate compaction [38–40],
allow the use of reclaimed asphalt pavement (RAP) [41–44], and provide better working
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conditions and a healthy work environment [45–47]. In more detail, and from the envi-
ronmental perspective, WMA technology reduces CO2 emission based on temperatures
during the paving process, which reflect the benefits of paving using WMA techniques that
directly affect the workability and compaction of the mixture. WMA techniques serve as
compaction aids and minimise the amount of pressure required [38–40]. Using the correct
laying and compaction temperatures is essential to avoid difficulties. Even though a general
temperature drop is permitted within WMA, a little higher temperature between 100 and
150 ◦C is recommended to be used. The paver screed angle of attack, material movement
between the equipment, and thermal segregation could be negatively impacted in certain
instances, such as temperature differentials occurring in the surface mix resulted [29]. It
is easier to achieve the required densities with WMA in most cases than HMA, even at
substantially lower temperatures [27]. This is due to the technologies that have been devel-
oped to produce WMA and also to the additives that are used to reduce the viscosity, which
makes the mixture easier to manipulate and compact at a lower temperature. However, the
operation and maintenance of facilities or plants used for WMA production need additional
care to avoid some operational problems [27]. High percentages of RAP can be used in
WMA without compromising the asphalt mixture’s workability [48]. Another motivation
for using WMA is the possibility of cold weather paving since the mix temperature is closer
to the ambient temperature. As a result, the reduction in mixed heat is less dramatic. This
closeness of temperatures results in a more extended paving season because there is more
time for paving and compaction, and increased hauling distance [35,36,49]. WMA plants
can be located close to urban areas because of their low levels of emissions, fumes, and
noise. The plants could also be at suitable distances from the construction sites, making
it possible to pave in non-attainment areas [24,27,38]. Furthermore, traffic lanes can be
opened sooner [50–52] due to the small temperature difference reduces the cooling time
after construction [38,48]. This is especially desirable in instances such as the rehabilitation
of airports and high-traffic roads [20,52,53].
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Figure 2. Comparison of HMA and WMA.

From the literature review, it was revealed that several researchers have studied
and compared the possibility of using WMA technology as an alternative to conven-
tional HMA from the physical, rheological, mechanical and performance perspectives.
However, reviews on the environmental and cost-effectiveness utilisation of WMA as a
sustainable alternative to HMA are very limited. Therefore, this paper provides a detailed
and comparative overview of using WMA as a sustainable alternative to conventional
HMA from environmental and economic perspectives. The motivations, challenges and
research gaps (recommendations and future directions) associated with using WMA tech-
nology as an alternative to HMA in asphalt pavement construction are also explored
and highlighted in this review to better understand and promote WMA technology for
sustainable construction.
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2. Sustainable Materials

Sustainable development requires using fewer raw natural materials due to the high
cost and energy consumption for extraction and transportation. Sustainable development
also reduces the emissions of greenhouse gases and uses recyclable materials without
compromising the standard requirements. Figure 3 shows that sustainable development
comprises three interrelated areas, economic development, social development, and preser-
vation of the environment. In detail, the economic aspect contributes to profits and cost-
effectiveness, while the social aspect represents the contribution of the standard of living
and equal opportunity to sustainability. Besides, the environmental aspect reflects the
natural resources, pollution prevention, and biodiversity. Figure 3 also clearly implied that
WMA technology supposes to be consistent with sustainable development that considers
the environmental, economic, and social aspects toward equitability and viability [28].
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Among the goals of constructing sustainable roads are to ensure safe, comfortable, cost-
effective travel, reduce waste generation, and reduce the use of raw materials. It prevents
the plundering the natural resources by using waste materials as a substitute [54]. Using
waste materials in road construction can reduce the overall environmental impacts [55] and
requires developing energy-efficient and eco-friendly paving technology [56,57]. Warm mix
asphalt technologies enable the utilisation of higher percentages of recycled materials [28],
which facilitate the design of perpetual and sustainable pavement based on the 4R policies
(reclaim, recycle, reuse, and reduce). Using waste materials in pavement construction and
rehabilitation can reduce energy consumption. Various types of recycled aggregates are
used in WMA pavements, including reclaimed asphalt pavement (RAP), Recycled Asphalt
Shingles (RAS), construction and demolition, and industry by-products (for example,
copper or steel slags) [58]. The primary advantage of WMA is the potential to use a higher
quantity of RAP [13,21,37,41–44,59–61]. Using RAP to replace the raw material eliminates
the need to extract base raw materials and dump asphalt; this reduces the material and
end-of-life consequences [31].

Table 1 shows the effect of using different recycled materials in WMA pavements. It
can be reported that many recycled materials that were used as a partial or total aggregate
replacement led to an improvement in the mechanical performance of WMA mixtures.
The addition of RAP materials to the WMA mixture results in a reduction of permanent
deformation due to the enhancement of the stiffness modulus of the RAP/WMA-modified
mixtures [62]. Furthermore, the composite of RAP and WMA technologies led to improved
fatigue resistance mixtures as a result of the balance between the stiff RAP materials
and WMA additives that reduce the viscosity and stiffness of the asphalt [63]. Steel slag
and furnace slag as waste materials showed an improvement in the fatigue resistance of
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asphalt mixtures due to the enhanced stiffness modulus [64,65]. It can also be noticed that
the combination of RAP materials with steel slag, crumb rubber or glass fibre results in
better moisture, fatigue and rutting resistances [63,66,67]. In contrast, using high RAP
materials content in asphalt mixture led to lower moisture susceptibility and fatigue
resistances [62,68]. As a fibre additive to WMA, jute fibre significantly improves fatigue
and fracture resistance due to the enhancing of the adhesion properties of aggregate and
binders toward adequate tensile strength [69]. It was also claimed that the addition of
hydrated lime and nano-hydrated lime to WMA as fillers enhances the moisture damage
resistance as a result of improved cohesion and adhesion properties [70,71].

Table 1. The recycled materials used in WMA.

Usage Type of Waste and WMA Additive Effect Reference

Aggregate

Glass (10% *)
+ ZycothermTM (0.05, 0.10, 0.15 and 0.20% **)

Reduce resilient modulus, creep, and
moisture susceptibility [72]

Furnace slag (30% *) + Sasobit® (4% **) or
RedisetTM (2% **)

Improve fatigue resistance and stiffness
modulus [64]

Steel slag (40% *) + Surfactant-based
chemical additive (0.5% **)

Improve the fatigue resistance and
mechanical properties of asphalt mixtures [65]

RAP (0, 20 and 40% *)+ Steel slag (0 and
40% *) + Sasobit® (1.5% **)

RAP improves moisture sensitivity and
resilient modulus

Steel slag improves the resilient modulus
The mixes containing RAP and/or slag have

a lower rutting potential
The WMA containing RAP and/or steel slag

has enhanced fatigue resistance

[63]

RAP (30 and 60% *) + crumb rubber (CR) (0,
10 and 20% *) + Sasobit® (4 and 5.5% **)

RAP and crumb rubber have a positive effect
on moisture susceptibility

The result of the fatigue test showed that
using RAP and CR improves the fatigue

resistance of the asphalt mixtures

[66]

RAP (0, 20, 40 and 50% *) + Glass fibre
(0.3% ***) + Sasobit® (1.5% **)

Improved rutting and moisture susceptibility
resistance [67]

RAP (20, 30, 40, 50 and 60% *) + Mobile
engine oil (10, 12.5, 15, 17.5 and 20% **) +

EvothermTM (0.5% **)

Higher RAP proportion results in lower OBC
of the RAP-WMA mixes

The tensile strength ratio (TSR) decreased
with higher amounts of RAP material.

Higher rejuvenator dosage reduced the TSR

[73]

RAP
The use of WMA increases permanent

deformation but adding RAP in the mixture
resulted in less rutting

[62]

RAP The 50% RAP WMA has a good fatigue
performance [68]

Fibre Jute fibre (0, 0.3, 0.5 and 0.7% ***) + Sasobit®

(3% **)
Enhanced fracture resistance [69]

Additive or filler

Hydrated Lime (1% ***) + Advera (0.25%**),
Sasobit (3.0%**), and Cecabase RT (0.35% **) Enhanced moisture susceptibility [70]

Nano hydrated lime (1% ***) + Aspha-Min
(0.3% ***), Evotherm (0.5% **), and Sasobit

(1.5% **)

Increase the indirect tensile strength (ITS)
and TSR [71]

* By aggregate weight, ** By asphalt binder weight, *** by mixture weight.

3. Components and Production of Asphalt Mixture

WMA and HMA have the same components. WMA is easy to use, and its production
does not require major modifications to the existing HMA plant. However, the manufac-



Int. J. Environ. Res. Public Health 2022, 19, 14863 6 of 23

turing of HMA contributes to a higher percentage of CO2 emissions both in the initial
construction stage [65] and the rehabilitation process [66]. The only difference between
WMA and HMA is the production temperature [74]. The preparation of HMA requires
a high-temperature range of 150 to 180 ◦C, while the WMA is prepared at a temperature
range of 110 to 140 ◦C [48,75–80]. Table 2 presents the advantages and disadvantages of
HMA and WMA [21,31,48,77,81,82].

Table 2. The advantages and disadvantages of asphalt mixes.

Mix Type Production
Temperature Advantages Disadvantages

Hot-mix asphalt 150–180 ◦C
• Superior mixture performance
• Lower initial cost

• High production temperature
• High emissions
• High energy consumption

Warm-mix asphalt 110–140 ◦C

• Low production temperature
• Low emissions
• Energy saving
• Better working conditions
• Longer haul distance
• Minor wear and tear on the plant
• Less binder ageing

• Low mixture performance
• Higher initial cost due to the use of

additives
• Poor aggregate coating and bonding

The mixing and compaction temperatures of WMA can be reduced using organic
additives, chemical additives, and water-foaming techniques [9,83,84]. In 2022, Rahmad
et al. investigated the use of PG76 in integration with a chemical WMA additive to reduce
the temperature during compaction based on environmental sustainability aspects, Rediset,
and groundwater and soil contamination. However, it was found that there had been
no chemical reaction between PG76 and Rediset. It was also found that after 64 days
submerged under water, Rediset-PG76 had no effect on the adjacent water source and
soil [8] summarises the different additives and technologies for WMA [21,31,58,84,85].
Even though the technologies differ, they all seek to reduce bitumen viscosity, enhance
workability, reduce emissions, and maintain the desired performance. Several studies have
shown in Table 3 that these technologies can reduce air pollutants (emissions) and energy
consumption [12,21,22,27,49,58,81,83,86–91]. Even though the low temperature for produc-
ing the mixes the production and paving has several advantages, it could result in poor
performance, such as incomplete aggregate drying, poor bitumen coating, and moisture
susceptibility due to the presence of water. However, researchers have conducted extensive
investigations on these issues and proposed solutions [21]. Furthermore, detailed studies
on the cohesion and adhesion failure mechanisms based on advanced laboratory techniques
and computational simulation could help in further understanding the reasons behind
such common issues toward proposing solutions. In addition, a composite of polymers and
nanomaterials into WMA technology could mitigate such moisture susceptibility problems.

Generally, organic additives such as wax or fatty amides reduce asphalt binder vis-
cosity at temperatures over their melting point. These additives should have a melting
point higher than the maximum service temperature of the asphalt mixture to increase the
rut resistance of the asphalt at high temperatures and limit embrittlement at low tempera-
tures [28]. Chemical additives are liquid surfactants that act at the microscopic interface
and do not change the asphalt binder’s viscosity; they are surface agents that increase
wetting qualities by lowering the tension between asphalt binders and aggregates and thus
reduce internal friction [92,93]. Foaming technologies lower the asphalt binder viscosity by
introducing small amounts of water into the hot asphalt binder. As the water evaporates, it
expands the binder and reduces binder viscosity; this results in a better aggregate coating.
The degree of expansion is dependent on several factors, such as binder temperature and
water content [52].
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Table 3. Warm mix technologies and additives.

Type of
Additive WMA Process Product Company Dosage Location Temperature

◦C

Organic
Additive

FT Wax Sasobit® Sasol 1.0–2.5% * Worldwide 20–30 (R)

Montan Wax Asphaltan B Romonta
GmbH 2.0–4.0% * Germany 20–30 (R)

Fatty Acid
Amide Licomont BS Clariant 3.0% * Germany 20–30 (R)

Wax 3E LT or Ecoflex Colas Not specified France 20–30 (R)

Chemical
additive

Emulsion Evotherm® MeadWestvaco 0.5–0.7% * USA,
worldwide 85–115 (R)

Surfactant Rediset Akzo Nobel 1.5–2.0% * USA, Norway 30 (R)

Surfactant Cecabase RT CECA 0.2–0.4% ** USA, Norway 30 R(R)

Liquid
Chemical Iterlow IterChimica 0.3–0.5% * Italy 120 (P)

Foaming
Technique

Water-
containing Aspha-Min® Eurovia and

MHI 0.3% ** Worldwide 20–30 (R)

Water-
containing Advera® PQ Corporation 0.25% ** USA 10–30 (R)

Water-based WAM Foam
KoloVeidekke

and Shell
Bitumen

2–5% water * Worldwide 100–200 (P)

Water-based Low Energy
Asphalt (LEA®) LEA-CO 3% water with

fine sand
USA, France,
Spain, Italy 60–80 (P)

Water-based Low Emission
Asphalt

McConaughey
Technologies

3% water with
fine sand USA 90 (P)

Water-based LT Asphalt Nynas 0.5–1.0% * Netherlands 90 (P)

Water-based LEAB® Royal Bam
Group 0.1% * Netherlands 90 (P)

Water-based Double Barrel
Green Astec 2.0% water * USA 116–135 (P)

* By asphalt binder weight, ** by mixture weight, P; Production temperature, R; Reduction temperature.

An asphalt mixture is a composite of aggregates, asphalt binders, and fillers. Additives
or modifiers are occasionally added to the asphalt binder to improve its performance [94–98].
Aggregates are the main element of asphalt pavements and constitute almost 95% of the
mixture. The high percentage of aggregates in asphalt pavements has increased the demand
for aggregates in road construction applications. The aggregate materials are often used
for the lower pavement layers, such as the base or subbase layer. In 2015, 2660 million
tons of aggregates were produced in Europe from quarries, with the UK contributing
110 million tons per year. In addition, France produces approximately 250 million tons per
year [99,100]. Malaysia produced 118 million tons of aggregates in 2011 and 160 million tons
in 2015 [99,100]. In the United States, aggregate production increased from 1.34 billion tons
in 2015 to 1.53 billion tons in 2019. About 72% of the aggregates were used as construction
aggregate, primarily for road construction [101].

There are two main phases in asphalt pavement construction and the production and
construction of asphalt mixture. The first phase consists of aggregate stacking, heating
the aggregates and asphalt binder, and mixing. The second phase is transporting, paving,
and compacting the asphalt mixture. The energy consumption during asphalt mixture
production is considerably higher than in the transportation and construction phase [102].
The production stage involves heating the aggregates and asphalt and mixing the asphalt
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mixture. The aggregate heating process for HMA contributes to 67% or more of the
total carbon emission, while the asphalt heating and mixing processes contribute only
14% and 12%, respectively [89,103]. According to Stotko [104], about 60% of the energy
consumption at the asphalt plant is for drying the aggregates. Peng, Tong, Cao, Li and Xu
stated that 76.41% of the total carbon emission is during aggregate heating, while asphalt
heating emits 15.67% of the carbon [103]. The moisture content of the aggregate is one
of the factors determining the amount of energy consumed during the aggregates drying
process [5,76,105,106].

Moreover, the specific heat capacity of the aggregate materials is a critical determiner
of the fuel needs and CO2 emissions of WMA and HMA. The same type of aggregate
extracted from different sources may have different specific heat capacities even if their
specific gravities are similar [107]. Jamshidi et al. [108] investigated the effects of the thermal
properties (specific heat capacity) of asphalt binders and aggregate materials on energy
consumption and environmental footprints of HMA and WMA. The results showed that
using low-specific heat capacity aggregates is more energy-efficient and environmentally
friendly. The difference in energy requirements varies with the moisture content [104]; a
1% increase in moisture content results in a 3.5% higher energy consumption to dry the
aggregates [106]. Another study has shown that energy consumption increased by 1% for
every 0.7 L moisture content [109] and that one of the ways to reduce energy consumption
is by reducing the mixing temperature [110]. The energy demand is about 2.62 kWh
for a 10 ◦C increase in the mixture temperature and 8.21 kWh for every 1% increase in
moisture content [105]. The fuel for heating or drying the aggregates is one of the sources of
emissions, where the energy consumption and CO2 differ with the type of fuel, as shown in
Table 4. It can be seen that using natural gas to heat the aggregate results in the lowest CO2
emission compared to different fuel types reported in Table 4, however, natural gas showed
to be the highest heating energy required. On the other hand, using fuel oil (N◦1/2) as a
heating energy source showed to be the lowest among all fuel resources, with a reduction of
9.45% compared to required natural gas energy. However, using fuel oil (N◦1/2) results in
about 480% CO2 emission higher than the emission due to using natural gas. Furthermore,
it was reported that the use of natural gas instead of heavy oil to heat the aggregates reduces
carbon emissions by 27.72% and the cost by 18.63% [89]. According to Stotko [104], using
WMA could reduce fuel oil consumption by about 8400 GJ and prevent CO2 emission by
620 tons annually based on an asphalt plant in South Africa.

Table 4. Energy and CO2 emission by different fuel types.

Fuel
Heating Energy for Aggregate [110] CO2 Emission

Value Unit Value Unit

Diesel 42,791,000 J/kg 2.6390 kg/L

Heating oil 42,612,000 J/kg - -

Fuel oil (N◦1/2) 42,686,000 J/kg 3.2160 kg/t

Natural gas 47,141,000 J/kg 0.1836 kg/kWh

Propane gas 46,296,000 J/kg - -

Electricity 3,600,000 J/kWh 0.5410 kg/kWh

4. Life Cycle Assessment

The aspects affecting the several phases of the pavement life cycle at various levels
for achieving scientific, reasonable calculations of energy consumption and carbon dioxide
emissions over the pavement life cycle development aims to balance environmental, eco-
nomic, social, and political goals to save the earth for future generations [111–114]. Thus, an
environmentally friendly grading system is necessary to measure the environmental effect
of asphalt pavements. Häkkinen and Mäkelä [115] introduced the life cycle assessment
(LCA) of asphalt pavements in the mid-1990s. Figure 4 shows the main stages of LCA:
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(a) extraction and processing of raw material, (b) transportation, (c) construction, (d) utili-
sation, (e) maintenance and repair, and (f) final disposal at the end of life [13,27,116–125].
Each year, the production of asphaltic mixture consumes a massive amount of energy and
emits CO2. Besides, the challenge to achieve reductions in asphalt pavement production
should focus on the industrial stages of content materials and the producing process of
asphalt mixtures. While this is the case, the raw materials also contain minerals, and the
use of such materials for industrial production may be regulated by the environmental
threshold values [126]. Asphalt pavements have significant environmental burdens, in-
cluding WMA and HMA production with various variables (e.g., aggregate and binder)
that release emissions during their life cycle starting from the plant, construction site, and
long-term exposure to climatic conditions [2].
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Researchers have conducted experimental studies on the LCA of WMA [2,7,8,12,13,16,
27,127–132]. Figure 5 shows the result of the LCA analysis of the environmental impact
assessment of WMA [7,8]. The figure shows a 24%, 18%, 10%, and 3% reduction in the
environmental impacts of air pollutants, fossil fuel depletion, smog formation, and global
warming, indicating that, overall, WMA has 15% less environmental impact than HMA [2].

Cheng, Chen, Yan and Zheng [127] performed an LCA on WMA and HMA and found
that using WMA could reduce photochemical ozone formation (POF) and fuel utilisation by
65–75% and 20–25%, respectively. The cradle-to-grave analysis performed by Blankendaal
et al. [133] showed that using WMA instead of HMA mixtures reduced energy consumption
by 33%, leading to fewer emissions. Wu and Qian [131] used the life cycle assessment to
compare WMA that was prepared with chemical agents with HMA. They observed that
the environmental impact of the chemical agent based-WMA mixture is less severe than
the conventional HMA mixture due to the lower manufacturing temperature required for
WMA production.

Tatari, Nazzal and Kucukvar [129] used a hybrid LCA model to compare the environ-
mental benefits of the mixtures prepared with different types of warm mix additives. The
result exposed that Sasobit and Evotherm-modified asphalt mixtures emit minor pollutants
and considered warm mix additives using Evotherm and Sasobit to reduce production
temperatures. Hence, the researchers found that Rediset improves safety and sustainability
and protects environmental health [134]. Ma, Sha, Lin, Huang and Wang [12] compared the
life cycle assessment for WMA and HMA pavements and found that the WMA pavements
emit less CO2 during their life cycle and thus are more environmentally friendly. The
extraction of raw materials used in the construction of WMA and HMA pavements has a
significant impact on the environment. Vidal, Moliner, Martínez and Rubio [13] evaluated
the environmental impacts of reclaimed asphalt pavement with zeolite-based WMA and
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HMA. The result showed that zeolite-based WMA pavements have similar impacts as
HMA pavements with the same reclaimed asphalt pavement (RAP) content during the
entire life cycle.
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Figure 5. Reduction in different LCA categories.

5. Energy Consumption and Economic Benefits

Modern civilisation must address several critical issues to achieve sustainable devel-
opment. There is an urgent need to reduce energy consumption to reduce climate change; it
is also essential to reduce raw materials’ utilisation to reduce waste [135]. The considerable
amount of energy used by the asphalt pavement industry has an adverse impact on the
environment. The materials, plants, and machinery used at asphalt pavement construction
sites have an adverse impact on the environment through the generated wastes, discharged
water, and emissions. Gillespie [136] used regression analysis to predict the amount of
energy required to produce asphalt mixtures. The result showed that the process consumed
approximately 9 L/ton of fuel and 8 kW/ton of electricity and emitted 28.8 kg/t CO2.

The lower energy consumption in WMA production is a significant economic benefit
in pavement construction. According to Kristjánsdóttir et al. [137], WMA is especially
beneficial in areas where fuel prices are high. The lower production temperature in WMA
production is directly proportional to the reduced energy consumption [23,138]. Based on
the varying temperature reduction ranges, a comparison of WMA and HMA revealed that
the warm technology could reduce energy consumption by 20% to 75% [2,18,24–34]. This
very wide range in the reduction of energy consumption could be attributed to the different
WMA technologies adopted by different studies and the combination of WMA with other
technologies, such as RAP technology. Furthermore, the reduction in energy consumption is
also dependent on the fuel type and energy source [9]. The energy consumption in asphalt
production varies depending on the country and region [136]. Hence, compared to HMA,
the reduced energy consumption associated with WMA production resulted in 12–14% fuel
savings and an average energy cost savings of $1.61 per ton of mixture in Louisiana state,
USA [2]. One benefit of using RAP is the minimal maintenance and rehabilitation costs and
environmental impact [139]. Moreover, it is possible to significantly reduce the amount
of asphalt binder used in pavement construction. For example, using 100% RAP in HMA
can reduce the construction cost by 79.7% compared to the mixture without RAP [95]. In
WMA, adding 15% RAP reduces all endpoint consequences by 13–14%, including climate
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change, fossil depletion, and total cumulative energy consumption [13]. Moreover, using
30% RAP and 0.3% natural zeolite has a considerable cost-saving benefit, which reduces
cost by about 25% compared to HMA [41]. According to Almeida-Costa and Benta [76],
depending on the type of asphalt mixtures, the energy consumption for producing HMA
and WMA differs by 8.6–18.4%. Oner and Sengoz [37] analysed the cost-benefit of HMA
and WMA without and with varying percentages of RAP (10, 20, and 30% of the total mix
weight) when using different warm additives. The result showed that using 30% RAP with
organic additive is the most economical in terms of the final cost in Turkish lira (TL) for all
distances from the plant to the construction site, as shown in Figure 6 [37].
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Figure 6. Cost analysis for HMA and WMA with RAP.

The production stage of WMA at 120 ◦C brought 24,831 gigajoules of energy savings
for 140,000 tonnes every year due to adding Ca(OH)2-incorporated zeolite [90]. Romier
et al. [140] investigated the drying and heating processes in the production of HMA and
WMA; the heat balance of HMA is 175 MJ, and 83MJ for WMA, which is a 50% reduction
in the heating energy per tonne of WMA. Oliveira, Silva, Fonseca, Kim, Hwang, Pyun
and Lee [14] examined the fuel consumption for producing WMA and HMA mixtures to
determine plant efficiency. The production of HMA consumes 9.3 L/ton of fuel, and WMA
production consumes 6.3 L/ton, which is 32% less fuel consumption than HMA.

According to Jain and Singh [77], the fuel consumption in HMA production is
(6.2–7.2) kg/ton and (5–6) kg/ton for WMA. Hettiarachchi et al. [141] have shown that
reducing the production temperature of the asphalt mixture by 20 ◦C reduced the energy
consumption by 25%. Likewise, Prowell, Hurley and Frank [29] stated that it is possible
to reduce the fuel consumption in WMA production by 30–35%. They estimated that
lowering the production temperature by 6 ◦C could reduce fuel usage by 3%. Moreover,
theoretical estimates show that lowering the temperature by 28 ◦C results in an 11% savings
on petroleum fuel [142]. According to Hassan [8], compared to HMA, WMA uses 18%
less fossil fuel. However, the cost of warm mix additives increases the cost of producing
WMA. [143] stated that WMA could increase the cost of asphalt mixtures between $2 to $4
per tonne of the mix. In terms of cost analysis, HMA and WMA were initially compared
based on including organic, chemical, and foaming WMA additives in terms of materi-
als, mix heating and transportation costs. The results showed that organic and foaming
could reduce costs slightly when compared to HMA. Meanwhile, chemical additives may
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slightly raise the cost when compared to HMA. Moreover, the same study concluded that
adding RAP could significantly decrease the cost of WMA production in comparison with
HMA [141]. Additionally, the financial advantages from energy savings could outweigh
the expenses of WMA additives and machine installation [21,144]. In their analysis of
seven plants, Bueche and Dumont [106] found that the average energy consumption for
HMA production is 356 MJ/t and 226 MJ/t for WMA. The lower temperature in WMA
production may also result in additional cost savings since the asphalt plant undergoes less
wear and tear [2].

6. Greenhouse Gas (GHG) Emission

The carbon footprint measurement covers two main processes. Off-site activities
are the production and transportation of materials, for example, coarse aggregate and
fine aggregate, fillers, and asphalt binders. Onsite activities are the plant operation for
producing asphalt mixtures and laying the sub-base, base, and surface courses [12,103,145].

Intergovernmental Panel on Climate Change [146] reported that the major greenhouse
gases are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons
(HFCs), perfluorocarbons (PHCs), and sulfur hexafluoride (SF6) CO2, CH4, and N2O have
a substantial impact on human activities and considerable greenhouse effects [12,147,148].
According to the global warming potential (GWP) proposed by the Intergovernmental
Panel on Climate Change [146], as shown in Table 5, the different greenhouse gases can be
converted into their CO2 equivalent emission, the GWP of CO2, shown in Table 6.

Table 5. Carbon emission factor (EF), (mg/MJ).

Gas
Type of Energy

Coal Fuel Oil Diesel/Petrol Asphalt Natural Gas

CO2 94,600 77,400 74,100 80,700 56,100
CH4 1 3 3 3 1
N2O 1.5 0.6 0.6 0.6 0.1

Table 6. Global warming potential.

Greenhouse Gas CO2 CH4 N2O

CO2 equivalent 1 21 310

The carbon account of asphalt pavement is the sum of all relevant emission sources.
The total sum of the asphalt pavement carbon footprint is expressed in Equation (1)
as follows.

n

∑
i=1

(CO2e)i =
n

∑
i=1

(ADix EFix Gwpi) (1)

where CO2e is the carbon equivalent emission from a single procedure in asphalt pave-
ment, AD is the activity data, EF is the carbon emission factor, and GWP is the global
warming potential.

At present, researchers of innovative asphalt material technology focus on green as-
phalt mixtures because the carbon energy consumption of these materials is several times
lower than for asphalt production. In the future, asphalt pavements must be considered a
part of a symbiotic framework between buildings and nature. However, flexible pavement
has primary constituent materials: asphalt and coarse aggregate. Hence, asphalt production
has a long process of petroleum distillation residue and has an emission factor of 11.91 kg
CO2/gal [145]. Figure 7 shows the total greenhouse gas (GHG) emissions in asphalt pave-
ment construction [12]. The critical phases are the raw materials production and asphalt
mixing phases, which contribute 97.19% of the total GHG emissions, of which 43.18% is
from raw materials production and 54.01% from asphalt mixing. The transportation of raw
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materials and asphalt mixture contributes 1.35% of the total GHG emissions, while the lay-
ing and compacting phases generate only 0.86% and 0.61% of the total GHG emissions [12].
It is essential to minimise the carbon footprint of asphalt materials to meet the global target
of reducing GHG emissions. The Climate Change Act (2008) targets reducing 80% of GHG
emissions by 2050 based on the 1990 baseline [90,149]. In 2020, the primary reasons for
the 5.8% record-breaking increase in global CO2 emissions to an absolute maximum of
33.0 billion tons were the continued growth in developing nations and economic recovery
in the industrialised countries [150]. Therefore, novel technologies in asphalt pavement,
such as WMA, could play a role in reducing GHG emissions.
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Figure 7. CO2 emission in asphalt pavement construction.

The low production temperature of WMA contributes directly to reducing GHG
emissions. Several studies have shown that WMA pavements emitted less GHG than
HMA [12–22,144,151,152]. Table 7 shows the percentage of reduction in GHG emissions
when using warm mix technology compared to conventional HMA technology. Compared
to various WMA additives used, as shown in Table 7, it can be seen that the Evotherm
resulted in the highest CO2 reduction of 17 to 60%, followed by the foaming technology of
58.5% reduction. On the other hand, double barrel green exhibited the lowest reduction
of 10.9%, followed by synthetic zeolites with a 15.5% reduction. These indicate the out-
performing of Evotherm additive in the CO2 reduction compared to most of the other WMA
additives and processes reported. In terms of CO reduction, it is clear that the foaming
technique, Sasobit, Evotherm and Aspha-min, showed the highest reductions of 91.9, 63.2
and 63 and 62%, respectively. Similar to CO2 reduction, double barrel green showed
the lowest reduction of 10.4% in CO. Similar to CO reduction, the foaming technique
exhibited the highest reduction of SO2 at 99.9%, followed by Sasobit and Aspha-min of
83.3% reduction for each. However, in the case of SO2 reduction, synthetic zeolites led
to the lowest reduction among all reported additives and techniques. Evotherm and
double barrel green revealed the highest and lowest NOx reduction among all WMA
additives and techniques reported in Table 7, with 72.6% and 8.3%, respectively. Based
on the aforementioned discussion, it can be stated that Evotherm and foaming techniques
outperformed the other WMA techniques in terms of emission reduction, including CO2,
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CO, SO2 and NOx. In contrast, Aspha-min and Sasobit resulted in a significant reduction
in VOC.

Table 7. The reduction in gas emissions, %.

Reference Additive or
Process

Type of Emission

CO2 CO SO2 NOX VOC Dust

Hamzah and Golchin [17] Rediset 31.7 - - - - -

Ma, Zhang, Zhao and Wu [16] Evotherm 60 - 75.2 72.6 - -

Vidal, Moliner, Martínez and
Rubio [13] Synthetic zeolites 15.8 18.4 9.67 16.5 - -

Davidson [15] Evotherm 46 63 41 58 - -

Oliveira, Silva, Fonseca, Kim,
Hwang, Pyun and Lee [14] LEADCAP 32 18 24 33 - -

Middleton and Forfylow [18] Double barrel
green 10.9 10.4 −14.3 8.3 - -

Vaitkus, Čygas, Laurinavičius
and Perveneckas [20,53]

- 30–40 10–30 35 60–70 50 20–25

Davidson and Pedlow [152] Evotherm 17.35 19.51 −17.24 20 - -

Larsen, Moen, Robertus and
Koenders [143] WAM-foam 31.4 28.5 - 61.5 - -

Rubio, Moreno,
Martínez-Echevarría, Martínez

and Vázquez [19]
Foaming 58.5 91.9 99.9 66.7 - -

d’Angelo, Harm, Bartoszek,
Baumgardner, Corrigan, Cowsert,

Harman, Jamshidi, Jones and
Newcomb [28], Prowell [153]

- 15–40 10–30 20–35 60–70 - 25–55

Sargand, et al. [154] Aspha-min - 62 83.3 30.8 62.8 -

Sargand, Nazzal, Al-Rawashdeh
and Powers [154] Sasobit - 63.2 83.3 21.2 51.3 -

CO2: carbon dioxide, CO: carbon monoxide, SO2: sulphur dioxide, NOx: nitrogen oxides, VOC: volatile or-
ganic compounds.

The main greenhouse gases emitted in road construction are carbon dioxide (CO2),
nitrous oxide (N2O), and methane (CH4). However, these gases do not contribute equally
to polluting the atmosphere since the emission of CO2 is considerably higher than other
gasses [155]. According to Keches and LeBlanc [151], using WMA instead of HMA can pre-
vent the emission of 3,774,000 tonnes of CO2, which is a 43.9% reduction in CO2 emission.

7. Health Hazards for Workers

Asphalt is the non-distillable component of crude oil. This extremely viscous sub-
stance traps small quantities of volatile and semi-volatile chemical molecules [156]. Heating
the asphalt over the softening point and agitating it releases pollutants, thus exposing the
workers to the pollutant [157]. The low gas emissions in WMA technologies improve work-
ing conditions [31,46,47] and reduce the workers’ exposure to respirable fumes and gases
released during the asphalt paving process [24]. Furthermore, replacing the conventional
HMA with WMA has considerable health benefits, provides a healthy work environment,
and reduces exposure to occupational risks [45]. The low mixing temperature ensures
a more comfortable working environment, which could help in worker retention [158].
Several studies have shown that workers exposed to asphalt fume have a higher risk of can-
cer [159–163]. In 2013, the International Agency for Research on Cancer, affiliated with the
World Health Organization, classified occupational exposure to straight-run bitumen and
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its emissions during road paving as “possibly carcinogenic to humans” (Group 2B). [164],
Fuhst et al. [165] conducted inhaling research and exposed Wistar rats to asphalt fume
for 2 years. They concluded that asphalt fume is not tumorigenic to rats when inhaled.
However, they detected asphalt-related irritating effects in the nasal passages and lungs of
the rats.

Workers in the road construction sector are also exposed to other health problems.
There is evidence of possible sub-chronic irritative inflammatory effects in the lower air-
ways of the respiratory system for workers exposed to asphalt [166]. Tepper et al. [167]
demonstrated statistically significant throat symptoms among workers exposed to fumes.
The workers often experience health symptoms such as fatigue, reduced appetite, eye
irritation, and laryngeal-pharyngeal irritation [168].

8. Limitations, Recommendations and Future Directions

Even though there are many advantages to using WMA technology in pavement con-
struction, the studies showed that there are limitations. One of these limitations is the limited
durability of WMA, which may not fulfil the requirements for very heavy and extreme
traffic, such as airport pavement. Such limited durability was justified due to the short and
long-term performance of WMA technologies against the mechanical and environmental
conditions of traffic loading and high-temperature weather [28,169,170]. Another limitation
is the propensity of WMA for water damage or stripping due to the low mixing and com-
paction temperatures may reduce the aggregate and binder adhesion [28,169–171]. How to
look for WMA additives alternatives with as much waste materials as possible and based on
biomaterials technologies toward further sustainable and environmentally friendly WMA
technologies is also considered another challenge facing the researchers and the pavement
industry [171]. The introduction of RAP materials into the WMA technology still faces chal-
lenges, such as the oxidised RAP materials that adversely affect the adhesion and cohesion
mechanism of the aggregate-binder interface system [37]. Therefore, a combination of WMA
and RAP technologies in one product that is durable, cost-effective, and environmentally
friendly needs further studies. Furthermore, maximising the possibility of recycling WMA
to-ward 100% recycled materials with mitigating their mechanical and environmental issues
is another challenge that needs to be considered.

In this section, the most important recommendations and future directions to further
develop a sustainable WMA technology in terms of environmentally friendly, safe, and
cost-effective are also summarised. These recommendations may help in providing a
useful reference for other researchers and the pavement industry interested in developing
a sustainable alternative to conventional asphalt technologies.

• The composite of WMA technology with different asphalt technologies such as RAP
and bio-asphalt technologies are strongly recommended to be further studied in
order to mitigate the environmental and CO2 emissions and energy consumption of
conventional technologies.

• Advanced optimisation, modelling, and simulation methods such as machine learning
are also recommended to be applied with respect to studying the environmental
and energy consumption of WMA technology separately and combined with other
relative technologies.

• Investigating the possibility of using waste materials in WMA technologies and
comparing their environmental and economic impacts to the common conventional
WMA additives.

• The long-term environmental impact of different additives that are used as WMA
additives is another research aspect that should be studied.

• Validating the laboratory findings on the environmental and economic benefits of
WMA technology that have been reported in the literature by conducting field studies
over the different regions in various environmental conditions.
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• Standards and specifications that are needed to guide researchers and pavement
industries in using WMA technology in a wide range of developed and developing
countries still need to be established.

9. Conclusions

This paper has presented a comparative overview of the WMA and HMA used to
construct road pavements from environmental and economic perspectives. The higher
demand for road construction in recent decades has also raised the issues of the negative
impacts of road infrastructure on the ecosystem. As a result, there are efforts to reduce these
adverse impacts of road construction. According to the current review of the literature, the
following conclusions can be drawn:

• Generally, asphalt mixture production comprises aggregate heating, asphalt heating,
and asphalt mixing. However, the highest percentage of energy in the asphalt mixture
production and afterwards the carbon emission occurs during aggregate heating;

• The energy consumption and emissions in the production of asphalt mixtures are
related to many factors, such as the type of aggregate and its heat capacity, aggregate
moisture content, type of fuel, fuel consumption, and production temperature;

• Depending on the asphalt mixture, the production temperature of WMA is 10–40 ◦C
lower than the conventional hot mix asphalt (HMA). This reduction in temperature
positively affects several aspects, such as fuel consumption and CO2 emissions;

• Furthermore, in terms of environmental benefits, the use of WMA can reduce the
emission of gases and fumes and global warming. Concerning the LCA of WMA com-
pared to HMA in terms of environmental aspects, it is inclined to be more favourable
for WMA;

• The economic benefit of warm technology is the reduced financial cost because WMA
uses 20–70% less energy;

• The low production temperature also causes less wear and tear to the plant and thus
provides additional cost savings;

• The paving and working conditions, organic additives, and foaming technologies re-
duce asphalt binder viscosity and thus enhance workability and facilitate compaction;

• Moreover, low viscosity availability encourages an increase in reclaimed asphalt
pavement content and, therefore, provides lower application temperatures;

• In addition, the benefits are coupled with the application of RAP into the new asphalt
binder involving WMA additives;

• The other benefits of the paving temperature being closer to the ambient temperature
and heat are less dramatic: longer hauling distance, sooner opening of a traffic lane,
less exposure to fumes, and a healthy work environment, which reduces the risk of
health problems among the workers.
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20. Vaitkus, A.; Čygas, D.; Laurinavičius, A.; Perveneckas, Z. Analysis and evaluation of possibilities for the use of warm mix asphalt
in Lithuania. Balt. J. Road Bridge Eng. 2009, 4, 80–86. [CrossRef]

21. Rubio, M.C.; Martínez, G.; Baena, L.; Moreno, F. Warm mix asphalt: An overview. J. Clean. Prod. 2012, 24, 76–84. [CrossRef]
22. Silva, H.M.R.D.; Oliveira, J.R.M.; Ferreira, C.I.G.; Pereira, P.A.A. Assessment of the performance of warm mix asphalts in road

pavements. Int. J. Pavement Res. Technol. 2010, 3, 119–127.
23. Merusi, F.; Polacco, G.; Filippi, S.; Giuliani, F. Structural transitions and physical networks in wax-modified bitumens. Road Mater.

Pavement Des. 2013, 14, 289–309. [CrossRef]
24. Kristjansdottir, O. Warm Mix Asphalt for Cold Weather Paving; University of Washington: Washington, DC, USA, 2006.
25. Ai, C.; Li, Q.J.; Qiu, Y. Testing and assessing the performance of a new warm mix asphalt with SMC. J. Traffic Transp. Eng. (Engl.

Ed.) 2015, 2, 399–405. [CrossRef]
26. Xiao, F.; Punith, V.S.; Amirkhanian, S.N. Effects of non-foaming WMA additives on asphalt binders at high performance

temperatures. Fuel 2012, 94, 144–155. [CrossRef]

http://doi.org/10.3390/polym13142282
http://www.ncbi.nlm.nih.gov/pubmed/34301044
http://doi.org/10.1061/(ASCE)MT.1943-5533.0001143
http://doi.org/10.1016/j.rser.2017.01.087
http://doi.org/10.1016/j.cscm.2022.e01108
https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions
http://doi.org/10.1016/j.conbuildmat.2020.121781
http://doi.org/10.3390/ijerph13030351
http://doi.org/10.1016/j.resconrec.2013.02.018
http://doi.org/10.1155/2019/9391857
http://doi.org/10.3141/2126-03
http://doi.org/10.1016/j.jclepro.2012.09.036
http://doi.org/10.3846/1822-427X.2009.4.80-86
http://doi.org/10.1016/j.jclepro.2011.11.053
http://doi.org/10.1080/14680629.2013.792292
http://doi.org/10.1016/j.jtte.2015.10.002
http://doi.org/10.1016/j.fuel.2011.09.017


Int. J. Environ. Res. Public Health 2022, 19, 14863 18 of 23

27. Capitão, S.D.; Picado-Santos, L.G.; Martinho, F. Pavement engineering materials: Review on the use of warm-mix asphalt. Constr.
Build. Mater. 2012, 36, 1016–1024. [CrossRef]

28. d’Angelo, J.; Harm, E.; Bartoszek, J.; Baumgardner, G.; Corrigan, M.; Cowsert, J.; Harman, T.; Jamshidi, M.; Jones, W.; Newcomb,
D. Warm-Mix Asphalt: European Practice; Federal Highway Administration, Office of International Programs: Washington, DC,
USA, 2008.

29. Prowell, B.D.; Hurley, G.C.; Frank, B. Warm-Mix Asphalt: Best Practices; National Asphalt Pavement Association: Lanham, MD,
USA, 2011.

30. Pérez-Martínez, M.; Moreno-Navarro, F.; Martín-Marín, J.; Ríos-Losada, C.; Rubio-Gámez, M.C. Analysis of cleaner technologies
based on waxes and surfactant additives in road construction. J. Clean. Prod. 2014, 65, 374–379. [CrossRef]

31. Kheradmand, B.; Muniandy, R.; Hua, L.T.; Yunus, R.B.; Solouki, A. An overview of the emerging warm mix asphalt technology.
Int. J. Pavement Eng. 2014, 15, 79–94. [CrossRef]

32. Arabani, M.; Roshani, H.; Hamedi, G.H. Estimating moisture sensitivity of warm mix asphalt modified with zycosoil as an
antistrip agent using surface free energy method. J. Mater. Civ. Eng. 2012, 24, 889–897. [CrossRef]

33. Croteau, J.-M.; Tessier, B. Warm Mix Asphalt Paving Technologies: A Road Builder’s Perspective. In Proceedings of the Annual
Conference of the Transportation Association of Canada, Toronto, ON, Canada, 22–24 September 2008.

34. Harder, G.A.; LeGoff, Y.; Loustau, A.; Martineau, Y.; Heritier, B.; Romier, A. Energy and environmental gains of warm and
half-warm asphalt mix: Quantitative approach. In Proceedings of the Transportation Research Board 87th Annual Meeting,
Washington, DC, USA, 13–17 January 2008.

35. Hasan, M.R.M.; You, Z.; Yang, X. A comprehensive review of theory, development, and implementation of warm mix asphalt
using foaming techniques. Constr. Build. Mater. 2017, 152, 115–133. [CrossRef]

36. Ranieri, V.; Kowalski, K.J.; Berloco, N.; Colonna, P.; Perrone, P. Influence of wax additives on the properties of porous asphalts.
Constr. Build. Mater. 2017, 145, 261–271. [CrossRef]

37. Oner, J.; Sengoz, B. Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis. PLoS ONE 2015,
10, e116180. [CrossRef] [PubMed]

38. Goh, S.W.; You, Z.; Van Dam, T.J. Laboratory evaluation and pavement design for warm mix asphalt. In Proceedings of the 2007
Mid-Continent Transportation Research Symposium, Ames, Iowa, 16–17 August 2007; pp. 1–11.

39. Sargand, S.; Figueroa, J.L.; Edwards, W.; Al-Rawashdeh, A.S. Performance Assessment of Warm Mix Asphalt (WMA) Pavements; Ohio
Research Institute for Transportation and the Environment: Columbus, OH, USA, 2009.

40. Al-Rawashdeh, A.S. Performance Assessment of Warm Mix Asphalt (WMA) Pavements. Ph.D. Thesis, Ohio University, Columbus,
OH, USA, 2008.

41. Calabi-Floody, A.T.; Valdés-Vidal, G.A.; Sanchez-Alonso, E.; Mardones-Parra, L.A. Evaluation of Gas Emissions, Energy Con-
sumption and Production Costs of Warm Mix Asphalt (WMA) Involving Natural Zeolite and Reclaimed Asphalt Pavement
(RAP). Sustainability 2020, 12, 6410. [CrossRef]

42. Dinis-Almeida, M.; Afonso, M.L. Warm Mix Recycled Asphalt—A sustainable solution. J. Clean. Prod. 2015, 107, 310–316.
[CrossRef]

43. Rahman, M.A.; Ghabchi, R.; Zaman, M.; Ali, S.A. Rutting and moisture-induced damage potential of foamed warm mix asphalt
(WMA) containing RAP. Innov. Infrastruct. Solut. 2021, 6, 1–11. [CrossRef]

44. Barazi Jomoor, N.; Fakhri, M.; Keymanesh, M.R. Determining the optimum amount of recycled asphalt pavement (RAP) in warm
stone matrix asphalt using dynamic creep test. Constr. Build. Mater. 2019, 228, 116736. [CrossRef]

45. Olsen, R.; Graff, P.; Daae, H.L.; Bryngelsson, I.-L.; Molander, P.; Ellingsen, D.G. Occupational Exposure during Asphalt Paving—
Comparison of Hot and Warm Mix Asphalt in Field Experiments. Ann. Work Expo. Health 2021, 65, 446–457. [CrossRef]

46. Kumar, R.; Saboo, N.; Kumar, P.; Chandra, S. Effect of warm mix additives on creep and recovery response of conventional and
polymer modified asphalt binders. Constr. Build. Mater. 2017, 138, 352–362. [CrossRef]

47. Martin, H.; Kerstin, Z.; Joachim, M. Reduced emissions of warm mix asphalt during construction. Road Mater. Pavement Des. 2019,
20 (Suppl. 2), S568–S577. [CrossRef]
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