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Abstract: The research presented in this paper aims to investigate the performance of several
newly synthesized ionic liquids during 210Pb/210Bi detection in water on a liquid scintillation
spectrometer Quantulus 1220 via Cherenkov counting. These experiments have been triggered
by the recent reports that certain ionic liquids can act as wavelength shifters, thus significantly
increasing the detection efficiency of Cherenkov radiation. The benefit of ionic liquid’s addition
to the analysed samples is reflected in the detection limit’s decrement during 210Pb quantifica-
tion, which is pertinent considering naturally low levels of 210Pb in aqueous samples. Firstly, it
was discovered that ionic liquid, 1-butyl-3-methylimidazolium salicylate, is more efficient than
the previously explored 2-hydroxypropylammonium salicylate. Consequently, the impact of a
few other ionic liquids on Cherenkov counting efficiency with the same cation group (1-butyl-
3-methylimidazolium benzoate, 1-butyl-3-methylimidazolium 3-hydroxybenzoate and 1-butyl-3-
methylimidazolium 4-hydroxybenzoate) was also explored to test their potential influence. Molecular
simulations have been carried out to reveal which structures of ionic liquids assure wavelength-
shifting behavior. The obtained results confirmed that, among the investigated ones, only ionic
liquids with the salicylate anion exhibited a wavelength shifting effect.

Keywords: ionic liquids; 210Pb/210Bi detection; Cherenkov counting; Quantulus 1220

1. Introduction

The occurrence of 210Pb (T1/2 = 2.26 y) in aquatic environments originates from 238U
decay series, and its determination continues to evoke interest in various scientific studies.
At first, its presence in waters poses a significant radiological risk. Consequently, its
determination is included in the international legislations for the radiological assessment
of drinking water, recommending its maximum acceptable concentration of 0.1 Bq l−1 [1].
Additionally, 210Pb and 210Po distribution in the marine environment has been extensively
used to determine the removal rates of particles from the ocean and particle fluxes during
transport along the coast [2,3], as well as the particulate organic carbon (POC) export in the
upper ocean [4].

Determination of 210Pb content in waters is not a trivial task since its environmental
concentrations are very low. At the same time, its decay scheme assumes weak gamma
transitions and the emissions of low-energetic beta particles [5]. Its direct detection and
quantification are possible by gamma spectrometry. Still, it is time-consuming, and it yields
relatively high detection limits, with a large sample volume required for the analysis and
the high self-absorption of soft gamma-rays in the sample and the detector [5,6].
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There are also two possibilities of indirect 210Pb measurement by detecting its pro-
genies 210Po and 210Bi, if they are in radioactive equilibrium with 210Pb. Determination
of 210Po via alpha spectrometry can be performed after two spontaneous depositions of
210Po on a silver foil with sufficiently low detection limits, but it demands an in-growth
period of several months for 210Po/210Pb equilibrium to take place, introducing long delays
in between sampling separation and counting [7]. 210Bi separation from 210Pb is usually
followed by its activity determination via Liquid Scintillation Counting (LSC). It provides
faster analysis (the required storage periods are shorter since 210Bi/210Pb equilibrium is
reached within 40 days), and the acceptable detection limits (several times higher than
alpha spectrometry, but still two orders of magnitude lower than the ones for gamma
spectrometry). The drawbacks of LSC methods are the need to correct chemical and/or
colour quench effects that occur in the samples and cause erroneous results, and, in the
case of simultaneous alpha/beta detection, the precise determination of 210Pb counting
efficiency is challenging because the alpha/beta spectra subsequent separation is not 100%
efficient [7].

One other possibility is to measure 210Pb on an LS counter if it is in equilibrium with its
progeny 210Bi through the Cherenkov counting method. Namely, high-energy beta emitter
210Bi (T1/2 = 5.012(5) d, Eβmax = 1162.2(8) keV) emits electrons that have enough energy
to produce Cherenkov radiation in water [8]. Cherenkov counting advantage lies in easy
sample preparation since 210Bi separation from 210Pb is not necessary (the electrons emitted
from 210Pb are not able to generate Cherenkov radiation) but has the drawback of lower
counting efficiencies than standard LSC methods, typically from 10% [9] up to 20% [10].
Unlike LSC, the generated Cherenkov spectrum is unaffected by the chemical quenching
since no scintillation cocktail is added to the sample [11] and has a lower background count
rate which provides acceptable detection limits [10].

Recent reports had demonstrated that the excessive Cherenkov radiation signals
from 210Bi were detected when ionic liquid (IL) 2-hydroxypropylammonium salicylate,
[HPA][Sal], was added to small amounts into the counting vial because this IL acted as the
wavelength shifter [12]. Namely, 1.4 g of [HPA][Sal] increased the efficiency for Cherenkov
counting during 210Pb/210Bi detection from ~15% to ~60%. Similar research was reported
in [13], confirming that one other IL, 1-butyl-3-methylimidazolium 8-hydroxypyrene-1,3,6-
trisulfonate, also manifests wavelength-shifting properties, causing the increase of detection
efficiency for 18F and 32P via Cherenkov counting for 124% and 14%, respectively. Another
IL, 3-methylpiridinium salicylate, had been reported to exhibit both scintillating and
wavelength shifting effects, with a significant influence on 210Pb Cherenkov spectra, 210Pb
and 226Ra gross alpha/beta spectra, and even 3H spectra generation [14].

The use of ionic liquids as scintillators is desirable due to their unique properties.
Ionic liquids are considered as non-volatile solvents [15], which have good thermal and
chemical stability [16]. Ionic liquids can be easily recycled and reused in an analytical
process without losing efficiency. Combining many cations and anions makes it possible to
tune their physical and chemical properties and obtain ionic liquids as an optimal reagent
for an industrial or laboratory process [17].

This paper explores several newly synthesized ILs’ impacts on 210Pb/210Bi Cherenkov
counting, offering explanations based on their chemical structure. To better understand
the mechanism of wavelength-shifting, the influence of the change of cation and an-
ion structure for five different ionic liquids was investigated. For cations were used
2-hydroxypropylammonium and 1-butyl-3-methylimidazolium, and for an anion salicylate,
benzoate, 3-hydroxybenzoate and 4-hydroxybenzoate were used. A well-studied [Bmim]+

ion was chosen as the cation to compare whether the presence of an aromatic cation and
additional π-π interactions between the cation and hydroxybenzoate affect the scintillating
effect. The results were compared with systems containing an aliphatic [HPA]+ cation.

Regarding the change in the anionic structure, a fine structural variation of the position
of the hydroxyl group of the corresponding hydroxy benzoates was investigated. The
variation of the positions of -ortho, -meta and -para in the series of hydroxy benzoates in
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previous works has shown a significant effect on different physicochemical properties
such as the micellization of surface-active substances as well as on the toxicity of ionic
liquids [18,19]. The research conducted in this paper provides deeper insights and answers
to the question of which IL structures assure wavelength-shifting behaviour.

2. Materials and Methods
2.1. Instrumentation and Materials

The detection system used for all measurements was Liquid Scintillation Spectrometer
Quantulus 1220TM, convenient for the precise low-level radioactivity measurements that
are often necessary for environmental radioanalysis. Quantulus 1220 is equipped with the
passive shield made from lead, asymmetrically distributed around the detector assembly
that absorbs cosmic radiation. The addition of the copper head of the piston absorbs X-rays
generated in the lead by cosmic radiation interactions. In addition to this, the detector
possess an active shield that further reduces cosmic and environmental gamma radiation.
This asymmetric guard counter contains the liquid scintillation filling surrounded with
two extra photomultipliers operating in the summed coincidence. This active guard shield
operates in anticoincidence with the sample detector and its two photomultipliers that
surround the measurement chamber with the vial [20]. Cherenkov spectra were acquired
and analysed by WinQ and EASYView software.

To provide the lowest background counting rate and the highest detection efficiency,
low diffusion polyethylene vials (Super PE vial Cat.No. 6008117) were selected since 40K
that is present in glass vials induces higher background, whilst the vial’s maximum capacity
of 20 mL was kept. The comparison of performance of plastic, glass and low 40K glass
vials during Cherenkov counting for 90Sr detection was done in our previous work [21].
The experiments were carried out with the calibration samples prepared with the standard
radioactive source produced by the Czech Metrology Institute, Inspectorate for Ionizing
Radiation, an aqueous 210Pb solution with a certified activity A(210Pb) = 29.55 Bq ml−1 and
combined standard uncertainty 1.0% on a reference date 1 Ocotber 2013.

After the counting, RC [s−1] and R0 [s−1] were obtained as the count rates of calibration
(reference standard) and background samples, respectively. Since the reference activity
of the calibration sample was A [Bq], the detection efficiency was evaluated from the
expression:

ε =
RC − R0

A
. (1)

2.2. IL Synthesis

Chemical structures of all investigated ILs are presented in Table 1. The provenance
and purity of used compounds are given in Table A1 in Appendix A and were used as
received without further purification. NMR spectra of all synthesized ILs are provided in
Figures A1–A5 in Appendix A.

2.2.1. Synthesis of 1-Butyl-3-Methylimidazolium-Based Ionic Liquids

The preparation of 1-butyl-3-methylimidazolium benzoate, [Bmim][Ben], was accom-
plished by mixing the equimolar amounts of 1-butyl-3-methylimidazolium chloride and
sodium benzoate. Both compounds were dissolved in acetone and stirred in a round-bottom
flask for 5 h. The resulting white precipitate (sodium chloride) was removed by filtering
under vacuum, and the clear, pale yellow liquid was obtained. The remaining solvent was
removed using a rotary evaporator. After achieving a constant mass of [Bmim][Ben], the
obtained product was additionally dried under the vacuum. A similar procedure was used
for all the other ionic liquids synthesized in this work. Only different starting compounds
were used to obtain different ionic liquids. Therefore, instead of sodium benzoate, sodium
salicylate, sodium 3-hydroxybenzoate and sodium 4-hydroxybenzoate were used to obtain
[Bmim][Sal], [Bmim][3HB] and [Bmim][4HB], respectively. The residual chloride in the
samples was tested using a spot-test by AgNO3.
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Table 1. Chemical structures of synthesized ionic liquids.

Ionic Liquid Chemical Structure

1-butyl-3-methylimidazolium
3-hydroxybenzoate [Bmim][3HB]
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droxybenzoate were used to obtain [Bmim][Sal], [Bmim][3HB] and [Bmim][4HB], respec-

tively. The residual chloride in the samples was tested using a spot-test by AgNO3. 

2.2.2. Synthesis of Ionic Liquid 2-Hydroxypropylammonium Salicylate

Ionic liquid 2-hydroxypropylammonium salicylate, [HPA][Sal], was prepared in the
described way. An equimolar amount of salicylic acid was dissolved in methanol, added
dropwise to a 1-amino-2-propanol water solution and cooled in an ice bath. After adding
the salicylic acid, the reaction mixture was stirred at room temperature for 2 h. The obtained
ionic liquid was dried under vacuum for the next 3 h to remove any traces of methanol and
water. The obtained liquid product was stored in a vacuum desiccator over P2O5 for the
next 48 h.

2.3. Molecular Simulations

Theoretical predicting and describing of the scintillating effect of the examined ionic liq-
uids by the DFT calculations were applied using Jaguar 9.0 software as a part of Schrödinger
Materials Science Suite 2015-4. The B3LYP exchange-correlation functional with empirical
correction for dispersion (B3LYP–D3) was used with a 6–31 + G(d,p) basis set. Simula-
tions were performed using Generalized Valence Bond Perfect-Pairing (GVB-PP). This
pseudospectral method, extended to electron correlation methods, can predict accurate
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excitation energies, rotational barriers and bond energies. The Continuum solvation model
was used, in particular the Generalized Born model. To ensure the validity of the obtained
structures, geometrical optimizations were followed by harmonic frequency analysis, where
structures without imaginary wavenumbers were considered for further investigation. The
intermolecular non–covalent interactions (NCI) have been examined using the method
described in the literature [22].

HOMO and LUMO orbital energies were calculated using monitored surfaces (molecu-
lar orbitals, density, potential) and the potential charge of the atomic electrostatics. HOMO
energy suggests the region of the molecules which can donate an electron, while LUMO en-
ergy signifies the capacity of the molecule to accept the electrons. The difference in HOMO
and LUMO energy, also known as HOMO–LUMO gap energy, indicates the electronic
excitation energy necessary to compute the stability of the compounds and can describe
the scintillating potential of a substance.

The Fukui functions are partial derivatives of the electron and spin density concerning
a change in either the electron count or the unpaired spin count. A change in the electron
count can result from a reaction with another molecule or by any external charge transfer
mechanism. A change in the number of the unpaired electron spins would be induced
by electromagnetic radiation to produce an electronically excited state of different spin
multiplicity. Hence, the scintillating potential of a compound can be predicted from Fukui
functions that describe spin density:

f+ =
ρN+δ(r)− ρN(r)

δ
, (2)

f− =
ρN−δ(r)− ρN(r)

δ
, (3)

where N is the number of electrons in the reference state of the molecule, and δ is a fraction
of an electron.

3. Results and Discussion
3.1. IL’s Influence on the Detection Efficiency of Cherenkov Counting

ILs presented in Table 1 were added in the increasing mass to the prepared sets of
210Pb calibration samples. All samples contained the same 210Pb activity concentration
(A = 4.95(7) Bq) spiked to distilled water so that the total sample volume was kept at
20 mL. Before ILs’ addition, all samples were stored for 50 days to assure that the secular
equilibrium between 210Pb and 210Bi was reached, after which they were counted in several
cycles for 100 min. Background samples were used to determine MDA (Minimal Detectable
Activity) that decreased with the measurement time and were prepared with 20 mL of
distilled water transferred into the vial.

Cherenkov radiation detection was carried out through the counting protocol set
up manually on Quantulus 1220, the setup configuration was given in the previous re-
search [21]. The only difference in the counting protocol was coincidence bias selection
which was set to low instead of high since it was determined that the electrons emitted
from 210Bi generated Cherenkov spectrum with better resolution and higher sensitivity on
low coincidence bias [12]. According to the expression (1), the obtained count rates were
used for the detection efficiency evaluation.

It was reported earlier that [HPA][Sal] efficiently increases the detection efficiency
of Cherenkov counting [12]. This is the reason that the first IL that was synthesized was
[Bmim][Sal], which also contained salicylate as an anion like [HPA][Sal]. The obtained
detection efficiency is presented in Figure 1a, together with the previously published results
for [HPA][Sal] addition. In this way, it was possible to compare these two ILs’ effects on
Cherenkov spectra and derive some assumptions on which chemical structure acts more
efficiently. It is clear that when the amount of the added IL exceeds 0.5 g, [Bmim][Sal]
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becomes more efficient than [HPA][Sal], causing a more significant efficiency increment,
Figure 1a.
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Applying [Bmim][Sal] during 210Pb detection in the water samples via the Cherenkov
counting method is a significant discovery since natural 210Pb activity concentrations are
extremely low. Therefore, it necessitates precise and sensitive methods for its quantification.
According to Currie relation [23], if the detection efficiency is higher, it linearly decreases
MDA. Therefore, the increment in the detection efficiency from 16% to >70% in the presence
of small amounts (around 0.9 g) of [Bmim][Sal] can reduce the detection threshold by more
than four times and offers innovative and unmatched improvement in the existing methods.

The explanation in the increment of the count rates with the addition of both ILs will
be elaborated in the following paragraphs.

The threshold for Cherenkov photon production varies with the refractive index of
a transverse medium. If this parameter is higher, the required energy for Cherenkov
radiation generation is lowered, which would cause an excess in the obtained count
rates [24]. However, this explanation could not be maintained since the negligible amounts
(approximately up to 1 g) of ILs added to 20 mL of water could not significantly alter the
sample’s refractive index.

On the other hand, it was noticed that the addition of ILs did not alter the shape or
position of Cherenkov spectra, suggesting that ILs could act as wavelength shifters. A
substantial fraction of the emitted Cherenkov photons have energies in the ultraviolet
region, which are not detectable by the photomultiplier tubes that operate inside an LS
counter [25]. ILs absorb ultraviolet photons and re-emit them at longer wavelengths, thus
inducing the wavelength shifting effect. Consequently, the photomultiplier tubes detect
more light and the counting efficiency increases.

Another explanation for the efficiency increment could be that ILs induce a scintillating
effect. This was investigated when spectra of the samples containing only 210Pb standard
and the samples of 210Pb standard + maximal amount of the added ILs were inspected
after their counting on the default gross alpha/beta counting protocol on Quantulus 1220.
Namely, the gross alpha spectrum was not generated in any case. If ILs acted as a scintillator,
210Po alpha spectrum (210Pb’s progeny) should appear to some extent in the samples that
contain ILs.

The conclusion on the two investigated ILs’ behaviour is that their presence does not
influence the sample’s refractive index and cannot affect the Cherenkov threshold. These
two ILs do not exhibit scintillating properties (if they acted like scintillators, there is no
explanation why 210Po alpha spectrum was not generated in their presence). Cherenkov
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emissions from 210Bi generated excessive signals in the spectra with ILs’ addition due to
the spectral wavelength shifting effect.

The fact that [Bmim][Sal] had better performance than [HPA][Sal] during Cherenkov
detection induced a hypothesis that 1-butyl-3-methylimidazolium cation structure is responsi-
ble for its greater efficiency. This possible explanation had to be tested, thus triggering another
research, a synthesis of a few novels ILs with the same cation, 1-butyl-3-methylimidazolium-
benzoate, [Bmim][Ben], 1-butyl-3-methylimidazolium 3-hydroxybenzoate [Bmim][3HB] and
1-butyl-3-methylimidazolium 4-hydroxybenzoate [Bmim][4HB]. The sets of samples were
prepared in the same manner as the previous calibration samples, and were spiked with
the increasing amounts of these ILs. The obtained efficiencies for all four ILs with the same
cation structure are displayed in Figure 1b.

Since no other IL except [Bmim][Sal] caused the detection efficiency increment, it
should be stated that the cation structure itself does not influence the count rate increment.
It is interesting to note that [Bmim][3HB] and [Bmim][4HB] even caused a mild decrement in
detection efficiency. They induce colour quench, to which Cherenkov counting is sensitive
and demands corrections. Namely, Cherenkov pulse height distribution is being shifted
towards lower energy channels in the spectrum. It is generated with lesser intensity in the
coloured samples, decreasing the obtained count rate and the counting efficiency [26].

Reproducibility Investigation

Finally, reproducibility was considered a dispersion of the detection efficiencies ob-
tained in replicates of calibration samples prepared with the same 210Pb activity concen-
tration spiked to counting vials, but with [Bmim][Sal] that was synthesized twice. The
set with IL that was firstly synthesized was denoted as the first experiment, while the
second experiment assumed the addition of IL that was synthesized after the first one.
Approximately the same amount of the increasing mass of [Bmim][Sal] was added to two
sets of calibration samples. The results of measurements are displayed in Figure 2.
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The graph in Figure 2a shows the ratio ε/ε0 for the different mass addition of [Bmim][Sal]
to two sets of samples (the added amounts could not be precisely equal between the sets),
where ε is Cherenkov detection efficiency obtained in the presence of a certain mass of
[Bmim][Sal] and ε0 is Cherenkov detection efficiency in spiked 210Pb samples without the ad-
dition of [Bmim][Sal], ε0 ≈ 16%. All results are mutually consistent within the measurement
uncertainty for the two samples with similar masses of added [Bmim][Sal]. Furthermore, the
correlation function between the obtained detection efficiencies in Figure 2b is rather satis-
fying, y = 1.11(6)x − 0.029(19), with the correlation coefficient close to 1. This value, 1.11(6)
was obtained for the samples that do not contain precisely the same mass of [Bmim][Sal],
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and it would be even closer to 1 if the added mass matched better between the sets of
samples. Therefore, it can be concluded that the method with the addition of ILs during
Cherenkov counting provides results with excellent reproducibility.

3.2. Results of Molecular Simulations

The DFT calculations were performed to examine the scintillating activity of synthe-
sized ionic liquids. To obtain a more realistic simulation of the transition state geometry, all
simulations were performed using the generalized valence bond settings. Figure 3 shows
optimized geometrical structures with the representation of noncovalent interactions.

The charge density around all ionic liquids used in this work is presented in Figure 4.
From Figure 4, it can be seen that the blue regions represent positive charge, along with the
red areas representing negative charge.

Substances with good scintillating properties are substances that can efficiently pro-
duce an excited state. This is usually characteristic of molecules with accessible excited
states at lower energies and non-bonded π electrons that can easily be excited. Computa-
tional descriptors are good for explaining the excitation potential of molecules by predicting
energy for the highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO). The values of HOMO and LUMO energies together with energy
gaps (∆Egap) are presented in Table 2. The energy gaps are calculated with the following
equation:

∆Egap = ELUMO − EHOMO. (4)
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Table 2. HOMO/LUMO energies and energy gaps for [Bmim][3HB], [Bmim][4HB], [HPA][Sal],
[Bmim][Sal], and [Bmim][Ben].

Compound EHOMO [eV] ELUMO [eV] ∆Egap [eV]

[Bmim][3HB] −5.123 −0.520 4.603
[Bmim][4HB] −4.791 −1.179 3.612

[HPA][Sal] −6.002 −1.075 4.927
[Bmim][Sal] −6.024 −0.778 5.245
[Bmim][Ben] −5.292 −0.537 4.755

The rigidity of molecules is significant for wavelength shifters. It is achieved either
by condensing aromatic molecules or connecting them to allow efficient delocalization of
electrons via unhybridized 2pz atomic orbitals [27]. In the ILs’ case, the structural rigidity of
the ion pair can be achieved by increasing the number of non-covalent interactions between
cation and anion. The rigidity of the molecule and the efficiency of electron delocalization
through the system directly affect the values of the HOMO and LUMO orbitals energies.
Our previous research [14] has shown that the energy gap between the HOMO and LUMO
orbitals (energy gap) significantly impacts the scintillating and wave-shifting ability of
compounds and can be an important parameter for evaluating the efficiency of a compound
in an LS counter.

As shown in Table 2, the HOMO-LUMO energy gaps of [Bmim][Sal] ionic liquids
are slightly higher than those of other ionic liquids. This data indicates that [Bmim][Sal]
demands more energy to become excited and emit a photon. The HOMO and LUMO
orbitals were performed and shown in Figures 5 and 6 to understand better and further
illustrate differences in the electron structure of all ionic liquids investigated in this research.
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The Atomic Fukui indices were calculated to distinguish and quantify differences in
HOMO and LUMO orbitals more precisely. From Fukui indices, it can be seen that each
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index includes two subscripts that can take the values N or S, which represent the electron
density and the spin density, respectively. The nature of the partial derivative on which
the index is based is indicated with two indices. The first index indicates the property that
responds to a change in the property indicated by the second index. According to this,
f_NS indicates the change in electron density about an atom when the molecule undergoes
a reaction in which its spin multiplicity changes. It is established as a descriptor of how
easily a molecule can be excited. If the value of an index is higher, the higher is the change
in electron or spin density near the atom of interest. The enumeration of ionic liquids and
analysis of HOMO f_NS and LUMO f_NS indices is presented in Figures 7 and 8.

From Figure 8, it can be seen that [HPA][Sal] ionic liquid has higher and positive
values of HOMO orbitals than those of the other ionic liquids. The most positive f_NS
values indicate the largest changes in the electron density at HOMO orbitals of this ionic
liquid when a reaction occurs where the shape of the spin changes. It is more important to
pay attention to the values of LUMO f_NS orbitals. By comparing ionic liquids with the
same cation and a different anion, it is concluded that [Bmim]+ has better properties as a
cation because the whole ring has positive LUMO f_NS values. This means that the ring of
[Bmim]+ cation can be excited, which is not the case for [HPA]+ cation. If we compare ionic
liquids with the same cation and different anion, it can be seen that [Ben]− anion, which
does not have a hydroxyl group, is inert in terms of the electron density.
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Additionally, from Figure 8, it can be seen that most values of LUMO f_NS for
[Bmim][Ben] are near zero. Additionally, from Figure 8, we can see that the values of
LUMO f_NS are concentrated around the oxygen atom of the carboxyl group (numeration
O19) with a pronounced negative value which indicates that in the case of this ionic liquid
excitation will not be good. Significant changes occur with introducing the hydroxyl group
into the anion structure. In the case of ionic liquid with [Sal]− anion, LUMO f_NS values for
the oxygen atom (O19) are slightly positive. From this obtained data, it can be concluded
that [Bmim][Sal] ionic liquid is the most active scintillator because all LUMO f_NS values
around the cation ring are positive. Results obtained from molecular simulations are in
accordance with the previous experimental results.
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4. Conclusions

This work explored the performance of several newly synthesized ionic liquids dur-
ing 210Pb/210Bi Cherenkov counting on an LS counter Quantulus 1220, explaining their
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behaviour based on ILs’ structure. Among the few ILs with the same cation structure,
1-butyl-3-methylimidazolium [Bmim]+, the only one that significantly increased the de-
tection efficiency was [Bmim][Sal], which contained salicylate as an anion. Moreover, it
was shown that [Bmim][Sal] had a more significant impact on the efficiency in comparison
with the previously investigated 2-hydroxypropylammonium salicylate, [HPA][Sal]. Other
ILs, the one with benzoate anion, [Bmim][Ben], did not increase the obtained count rates,
while the structures with 3-hydroxybenzoate and 4-hydroxybenzoate anions, [Bmim][3HB]
and [Bmim][4HB], respectively, induced mild colour quench, even reducing the initial
detection efficiency. ILs’ behaviour could be explained via analysis of their HOMO f_NS
and LUMO f_NS values. The presented research confirmed that salicylates act as wave-
length shifters, consequently increasing the detection efficiency of Cherenkov counting.
This finding can be very useful during the detection of naturally low levels of 210Pb in
waters via the Cherenkov counting method, since the increment in detection efficiency in
the presence of small amounts of [Bmim][Sal], about 0.9 g, can reduce detection threshold
more than four times. Moreover, ILs could be applied in quantifying other radionuclides
besides 210Pb/210Bi via Cherenkov counting. Further research on the synthesis of ionic
liquids with a more extensive range of HOMO-LUMO orbitals, i.e., energy gaps, is needed
to identify the potential limit value required for the wavelength shifting effect.
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27. Kuźniak, M.; Szelc, A.M. Wavelength Shifters for Applications in Liquid Argon Detectors. Instruments 2021, 5, 4. [CrossRef]

http://doi.org/10.1016/j.marpolbul.2011.11.031
http://doi.org/10.1016/j.dsr.2005.06.016
http://doi.org/10.1016/j.gca.2012.07.029
http://doi.org/10.1016/j.aca.2005.06.020
http://doi.org/10.1016/j.aca.2005.12.057
http://doi.org/10.1016/j.radmeas.2007.05.053
http://doi.org/10.1016/j.apradiso.2011.01.007
https://www.nrc.gov/docs/ML1105/ML110560301.pdf
http://doi.org/10.1007/BF02040268
http://doi.org/10.1016/j.radphyschem.2019.108474
http://doi.org/10.1016/j.apradiso.2017.07.061
http://doi.org/10.1016/j.apradiso.2021.109697
http://www.ncbi.nlm.nih.gov/pubmed/33780694
http://doi.org/10.1016/j.chroma.2017.09.044
http://www.ncbi.nlm.nih.gov/pubmed/28958758
http://doi.org/10.1071/CH03221
http://doi.org/10.1039/C6RA16182K
http://doi.org/10.1016/j.molliq.2019.112419
http://doi.org/10.1016/j.jenvrad.2017.01.021
http://doi.org/10.1021/ja100936w
http://doi.org/10.1021/ac60259a007
http://doi.org/10.1016/j.apradiso.2018.05.013
http://doi.org/10.1016/S0168-9002(97)85946-3
http://doi.org/10.3390/instruments5010004

	Introduction 
	Materials and Methods 
	Instrumentation and Materials 
	IL Synthesis 
	Synthesis of 1-Butyl-3-Methylimidazolium-Based Ionic Liquids 
	Synthesis of Ionic Liquid 2-Hydroxypropylammonium Salicylate 

	Molecular Simulations 

	Results and Discussion 
	IL’s Influence on the Detection Efficiency of Cherenkov Counting 
	Results of Molecular Simulations 

	Conclusions 
	Appendix A
	References

