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Abstract: Environmental exposures to a myriad of chemicals are associated with adverse health
effects in humans, while good nutrition is associated with improved health. Single chemical in vivo
and in vitro studies demonstrate causal links between the chemicals and outcomes, but such studies
do not represent human exposure to environmental mixtures. One way of summarizing the effect
of the joint action of chemical mixtures is through an empirically weighted index using weighted
quantile sum (WQS) regression. My Nutrition Index (MNI) is a metric of overall dietary nutrition
based on guideline values, including for pregnant women. Our objective is to demonstrate the
use of an index as a metric for more causally linking human exposure to health outcomes using
observational data. We use both a WQS index of 26 endocrine-disrupting chemicals (EDCs) and MNI
using data from the SELMA pregnancy cohort to conduct causal inference using g-computation with
counterfactuals for assumed either reduced prenatal EDC exposures or improved prenatal nutrition.
Reducing the EDC exposure using the WQS index as a metric or improving dietary nutrition using
MNI as a metric, the counterfactuals in a causal inference with one SD change indicate significant
improvement in cognitive function. Evaluation of such a strategy may support decision makers for
risk management of EDCs and individual choices for improving dietary nutrition.

Keywords: WQS regression; endocrine disruptors; nutritional status; g-computation

1. Introduction

Evaluating the potential impact of environmental and dietary exposures on human
health is challenged by using observational data. Estimation of effects from observational
studies using regression methods is based on covariate-adjusted models, which may have
bias due to confounders, collinearity among exposures, effect modification, and are gener-
ally considered to be association models rather than causal models [1]. Robins’ generalized
methods (g methods) allow investigators to use observational data to estimate parameters
that would be obtained in a perfectly randomized controlled trial [2–4]. Under certain
assumptions, these estimates can be interpreted towards causality. g-computation is one
way of estimating marginal quantities (i.e., not conditional on other covariates) of exposures
using causal inference with the advantage of efficiency (i.e., small standard error) and stable
estimates [5,6]. In short, g-computation is conducted using an initial flexible model of Y
on exposures and covariates and constructing counterfactuals with predictions from the
initial regression coefficients. Estimates and confidence intervals on marginal effects of
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exposure on Y are determined from Monte Carlo simulation and a bootstrap ensemble step.
A g-computation analysis allows us to ask, “What would be the improvement in a human
health outcome (Y) if environmental risk factors are reduced and exposure to beneficial
(protective) factors are improved?”. This will be examined, with focus on reducing prenatal
exposure to mixtures of environmental chemicals and improving dietary nutrition, along
with the resulting improvement in children´s cognitive outcomes.

Recognizing that human exposure includes multiple environmental chemicals and
dietary nutrition is based on dozens of nutrients, we propose the use of indices as metrics of
exposure to use in g-computation. We use biomonitoring data and an empirically weighted
index of multiple chemicals related to an important health outcome as a metric of a mixture
effect (i.e., the joint action) of environmental exposures. We use a subject-specific nutrition
index, My Nutrition Index (MNI; [7–9]), based on published recommended nutritional
guidelines as a metric of overall dietary nutrition that incorporates dozens of macro-
and micro-nutrients.

Our objective is to combine the estimation of a mixture effect of environmental chemi-
cals of concern and the effect due to good nutrition as measured by MNI, with the construc-
tion of counterfactuals in g-computation, for a step towards causal inference. Using such a
step, researchers can visualize “what if” exposure of the selected chemicals were reduced to
a specific level as measured by the mixture index, and what the benefit would be in terms
of the selected health-based outcome. On the other hand, researchers may ask what the
benefit would be in terms of the selected health-based outcome with improved nutrition.
We demonstrate the approach by extending the work of Tanner et al. [10], linking prenatal
exposure to a mixture of chemicals to seven-year IQ by incorporating sex-specific weights,
as they demonstrated a different effect for boys and girls. Using a WQS sex-stratified
interaction model results in a single index with sex-specific weights and slope parameters.
We also further adjust the model for nutrition using MNI. Finally, we conjecture how to use
the resulting counterfactual to address issues around what would it take to reduce exposure
to the specified level and what would be the score of MNI to improve the health outcome.

2. Methods
2.1. Study Population and Cognitive Assessment

Detailed recruitment and sample collection procedures have been previously described
for the Swedish Environmental Longitudinal Mother and Child, Asthma and Allergy
(SELMA) pregnancy cohort [10,11]. Participants provided written consent and the study
was reviewed and approved by the Ethical Review Board (Uppsala, Sweden) (Dnr 2007/062
and Dnr 2017/177). Trained psychologists evaluated the cognitive function of children
at 7 years of age using the Wechsler Intelligence Scale for Children, 4th edition, full scale
IQ [10,12,13]. The current analysis includes 678 mother–child pairs with complete data on all
exposures (EDC prenatal mixture of 26 chemicals), prenatal food frequency questionnaires,
outcome (7-year IQ) and confounding variables (child sex; maternal nutrition index, energy,
age at birth, pre-pregnancy weight, education level, Ravens IQ, and smoking status).

2.2. Collection of Prenatal Blood and Urine Samples

First-morning void urine and non-fasting blood samples were collected from mothers
during their first prenatal visit (median 10-week gestation). Detailed analytical methods
for all exposures are provided elsewhere [10]. Samples were stored at −20 ◦C (urine) and
−70 ◦C (serum) at the Laboratory of Occupational and Environmental Medicine at Lund
University, Lund, Sweden. The urine samples were analyzed by liquid chromatography
tandem mass spectrometry (LC-MS/MS) to quantify 24 urinary analytes. Urinary ana-
lyte concentrations were adjusted for urine dilution by creatinine (i.e., adjusted analyte
level = [analyte]/[creatinine]). Eight PFAS were quantified in serum using LC-MS/MS.
Plasma was analyzed for 22 persistent organic pollutants (chlorinated or brominated) at
the National Institute for Health and Welfare, Finland. Overall, 54 analytes were measured
in urine, serum, and plasma. Following Tanner et al. [10], we summed analytes for DEHP
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and DINP using molar sums. DDT and its metabolite were also summed, as were 10 PCB
congeners. We generally limited the analysis to compounds detectable in at least 75% of
samples (Table A1), with the exception of summed variables.

2.3. My Nutrition Index (MNI) and Covariates

Data for maternal characteristics were collected at study entry for education, age,
weight, and IQ using the shortened Ravens Standard Progressive Matrices [14–16]. Self-
administered food frequency questionnaires were assessed in mid-pregnancy and linked to
daily intake of nutrients, including energy levels [7]. The My Nutrition Index (MNI) was
calculated using the nutrient data from food frequency questionnaires during pregnancy [7].
Children were characterized by sex, birthweight, and prematurity (<37 weeks’ gestation at
birth). Although prematurity and birthweight may impact child IQ, we did not adjust for
these variables since they may be mediators. We selected covariates for inclusion in the
regression models using a directed acyclic graph (DAG; Figure A1).

2.4. Statistical Analysis

WQS regression consists of two steps: (i) estimation of a weighted index of standard-
ized (i.e., quantiles) concentrations using a nonlinear model in an ensemble step where
the final index is averaged across results from bootstrap samples of observations [17]
or random subsets of components [18,19]; followed by (ii) a test for significance of the
regression coefficient associated with the weighted index. The two steps are generally
conducted in random splits of the data (e.g., 40% for weight estimation and 60% for hypoth-
esis testing) and may be conducted in multiple random splits to address generalizability
of the results [10,20]. The strength of the ensemble step is an increase in the number of
correctly identified agents of concern compared to the use of a single nonlinear model in the
estimation of the index [17]. This is analogous to forgoing parsimony for model prediction
with correlated components. An example is some shrinkage methods are notorious for
selecting one from a set of correlated components arbitrarily [21]. Similarly, using WQS
regression in a single bootstrap sample may weight fewer components with nonnegligible
weights compared to the final index averaged across all bootstrap samples. We used the
gWQS R package version 3.0.4 for analysis [22].

We recently incorporated the capability of estimating the WQS index in the presence of
interaction with either a continuous variable (e.g., BMI) or a categorical variable (e.g., sex) in
the gWQS R package. The generalized linear model is parameterized to include a regression
coefficient for the weighted index as a linear term and in the interaction term. For example,
these terms may be β0 + β1WQS + β2x + β12xWQS, when x is an indicator for a binary
variable (e.g., sex). When x = 0, these terms would be β0 + β1WQS, and when x = 1, they
would be (β0 + β2) + (β1 + β12)WQS. Therefore, β2 is the change in the intercept due to
the binary variable, β12 is the change in the slope of WQS due to the variable, and β1 + β12
is the slope for the category when x = 1. This parameterization is for a WQS stratified
interaction model.

The WQS stratified interaction model was used to estimate an empirical weighted
index for the overall mixture effect of the 26 prenatal EDCs on 7-year IQ, adjusted by
covariates [10]. To improve generalizability of the results, we evaluated 100 repeated
holdout datasets where each training set (randomly selected 40% of the sample) was
used to estimate a weighted index and each holdout dataset was used to estimate the
association between the weighted index and outcome. As a sex-specific effect was noted
by Tanner et al. [10], we used a WQS stratified interaction model which allowed for sex-
specific weights (i.e., using 52 weights for the 26 chemicals scored into quantiles, 26 for
boys and 26 for girls) and estimated in the presence of a potential interaction between the
weighted index and sex. This parameterization not only allowed for sex-specific weights,
but also sex-specific regression coefficients [23,24].
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2.5. G-Computation

As is true for ordinary regression assumptions, we assume the WQS regression model
is correctly specified with no unmeasured confounding, and that exposures predate the
response. Further, there are primarily three assumptions, called identifiability conditions, for
g-computation to estimate unbiased exposure effects [25]: (i) under consistency, well defined
true exposures correspond to the measured exposures in the data; (ii) for (conditional)
exchangeability, the probability of every exposure depends only on the covariates; and
(iii) the positivity assumption assumes there is a nonzero probability that exposure could
occur in all subgroups. In our data, exposures are measured using validated biomonitoring
data from urine and serum samples. Exchangeability is addressed using covariates in the
model that are linked to exposures. Based on temporality of the measurements and outcome,
the exposures do not depend on IQ values. For the positivity assumption, exposure of
the EDC mixtures is for all SELMA pregnant women, with detection rates to individual
chemicals generally near 100% (Table A1).

Using the constructed WQSsc index (i.e., the WQS index centered and scaled), we
conducted g-computation resulting in estimation of the mixture effect under counterfac-
tuals such as exposure is at the mean WQS (i.e., WQSsc = 0) versus WQSsc values of −1
(i.e., one standard deviation below the mean exposure as measured by the WQS index).
The comparison is the marginal direct mixture effect using the WQS index as a measure
of change in the mixture effect of EDC exposures related to 7-year IQ. We used the gcomp
function in the Risk Communicator R package on CRAN.

For further consideration, we conducted a similar g-computation analysis using My
Nutrition Index. The counterfactual considered the direct effect of typical prenatal nutrition
on 7-year IQ (i.e., as measured at the mean of MNI) compared to improved prenatal
nutrition one standard deviation above the mean, i.e., improved nutrition as measured
by MNI.

Finally, we compared different strategies for reducing exposure to the EDC mixtures
using the WQS index as the weighted metric, where those most associated with a decline
in IQ are more highly weighted. First, we decomposed the components of the WQS index
into two categories: Persistent (i.e., PFAS: PFOA, PFAS, PFNA, PFDA, PFUnDA, PFHxS;
and Persistent Chlorinated: HCB, Nonachlor, DDT and DDE, and the sum of PCBs) and
Non-persistent (i.e., Phenols: triclosan, BPA, BPF, BFS; plasticizers: MEP, MBP, MBzP, DEHP,
DINP, MHiDP, MCiNP, MOiNCH, DPHP; and other short-lived: TCP, PBA, 2OHPH). The
weighted sum of each category (that together summed to 100%) was calculated per subject
and displayed graphically. We used the counterfactual of reducing exposure where the
WQS index is one standard deviation below the mean of the index. We considered two
hypothetical scenarios: (1) What percent of the non-persistent chemicals would have to be
reduced to achieve the goal of reducing exposure to one SD below the mean; (2) would
completely eliminating the plasticizers be enough to achieve the goal? We calculated the
revised value of the index under both scenarios for every subject and calculated a histogram
of the WQS index with a reference line at the target value.

3. Results

Summary statistics for characterizing the mother–child pairs are provided in Table 1
Both urinary and serum matrices were used to measure 26 chemicals (41 analytes) in first-
trimester maternal biological samples including from phenols, plasticizers (phthalate and
non-phthalate), short-lived chemicals (organic flame retardant, OP pesticide, pyrethroid
pesticide, a PAH), PFASs, and persistent chlorinated chemicals (including DDT/DDE and
PCBs). Most were detected in 100% of the prenatal samples (Table A1).
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Table 1. Summary statistics of population characteristics using the SELMA pregnancy cohort (N = 678).
(*) The WQS index is derived from a WQS sex-stratified interaction model of 26 EDCs associated with
child IQ at 7 years of age, adjusted by covariates.

Mean SD

Exposure WQS index associated with 7-year IQ
(sex-stratified, decile-scaled) * 2.24 0.50

Maternal characteristics

Graduated college n (%) 467 (69)
My Nutrition Index (MNI) 66.8 14.0

Energy (kcals) 1895 545
Age at birth (years) 31.3 4.6

Weight in 1st trimester of pregnancy (kg) 68.8 13.5
IQ (Raven) 114.8 14.9

Parity 1.8 0.86
Smoked in 1st trimester pregnancy n (%) 74 (11)

Creatinine (mmol/L) 10.4 4.7

Child characteristics
Female n (%) 346 (51)

Premature birth n (%) 25 (3.7)
Full Scale WISC IQ at 7 years 99.9 12.7

We used a sex-stratified interaction WQS regression model which allowed for sex-
specific weights and beta coefficients. The interaction between WQS and sex was border-
line significant (Table 2; with 95% confidence interval based on the 100 holdout datasets:
(−1.28, 5.13), with only 9% negative estimates). In such a parameterization, the beta
associated with WQS is the slope for the reference group (boys), and the slope for the com-
parison group (girls) is the sum of the betas associated with the WQS and the interaction
term. The weighted index was negative (estimated: −2.13) and significant for boys with
95% confidence interval (−4.27, −0.36) (Table 2). This indicates that as prenatal exposure to
the 26 chemicals increases, as measured by the WQS index, there is a decline in seven-year
IQ in boys. However, the slope for girls was diminished and not significant (estimated:
−2.13 + 1.98 = −0.15; with 95% CI: (−2.32, 1.93)). Interpreting these beta coefficients in
terms of unit changes in the WQS index (i.e., a decile-change in the WQS index) is compli-
cated due to the infinite ways such a change could be achieved with changes in exposures
to 26 chemicals; we subsequently address two scenarios in the framework of g-computation.
In terms of the relationship with covariates in the same model (Table 2), there was a signifi-
cant positive association between seven-year IQ and maternal IQ, maternal education, and
the MNI; there was a significant negative association for maternal pre-pregnancy weight.

Table 2. Parameter estimates (mean, standard error, 2.5 percentile, 97.5 percentile) from WQS sex-
stratified interaction regression across 100 holdout datasets. The slope associated with WQS is for
males; the interaction between WQS and sex is the difference in slopes between boys and girls.

Parameter Estimate Std. Error 2.5% 97.5%

(Intercept) 88.700 4.530 80.700 96.700
WQS −2.130 1.110 −4.270 −0.359

Female −0.622 3.190 −5.740 5.630
MNI 0.073 0.027 0.018 0.118

Energy 0.000 0.001 −0.001 0.001
Mom Age (at birth) −0.158 0.089 −0.324 0.004

Mom Weight −0.098 0.029 −0.156 −0.040
Mom Educ 4.790 0.862 3.090 6.470

Mom IQ 0.158 0.026 0.104 0.205
Smoker −2.100 1.320 −4.420 0.536

WQS:Female 1.980 1.640 −1.280 5.130
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The distribution of estimated weights across the repeated training sets (Figure 1)
identified chemicals of concern from each of the chemical groups. The chemicals with
highest weights in boys were BPF, TCP, MBzP, PFOA, triclosan, MOiNCH, MEP, MCINP,
PFHxS, PBA, BPA, and PFOS. In girls, the weights were generally lower, but DPHP, MEP,
BPF, BPS, PFHxS, PFUnDA, MBzP, MOiNCH, OHPH, TCP, and the PCB sum had mean
weights above the guideline cutoff of 1/52 = 0.019 (where 52 is the total number of weights,
26 for boys and 26 for girls).
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and 7-year IQ, using 100 repeated holdout validation datasets, for (A) boys; (B) girls; and (C) a
divergent plot comparing the mean estimated sex-specific weights. Notes (A,B) Bars correspond
to the right axis and indicate the percent of times a chemical exceeded the concern threshold in
100 repeated holdouts. Data points, boxplots, and diamonds correspond to the left axis. Data points
indicate weights for each of the 100 holdouts. Box plots show 25th, 50th, and 75th percentiles, and
whiskers show 10th and 90th percentiles of weights for the 100 holdouts. Closed diamonds show
mean weights for the 100 holdouts; (C) The dotted lines represent the threshold guideline from the
equi-weighted index (i.e., 1/(2c)), where c is the number of components.

We then used g-computation for marginal estimation of a causal link between the
mixture effect from prenatal exposures as measured by the sex-stratified WQS index and
7-year IQ. Conditioning on the average weights used in the WQS index in the stratified
interaction repeated holdout model, the mean IQ at seven years calculated at the average
index was 98 (bootstrap 95% CI: 97, 100) for boys and was 102 (95% CI: 100, 103) for girls.
In comparison, we constructed a counterfactual that prenatal exposure to the mixture as
measured by the WQS index was decreased and fixed at one SD below the mean. In this
counterfactual, the estimated IQ at seven years was 101 (95% CI: 99, 103) for boys and was
103 (95% CI: 101, 105) for girls. Thus, the marginal direct effect of the mixture had a mean
difference in IQ of 2.2 (95% CI: 0.97, 3.4) for boys and 1.4 (95% CI: −0.13, 3.0) for girls. Such
a change in the mean IQ with reduced exposure to the mixture of these EDCs could be
evaluated as part of a health impact assessment; that is, is the counterfactual a meaningful
goal for new regulatory management?

Suppose we set a “policy” to reduce the WQS index to one SD below its mean
which is equivalent to the stratified interaction WQS index having a value less than 1.74
(Figure 2A), to reduce the adverse impact of the EDCs on important developmental markers
(e.g., seven-year IQ). Recall, the WQS index is a stratified weighted index based on deciles
from the population. To reduce the index using the pre-specified quantile designations with
fixed weights would require the concentrations of many of the components be reduced.
Of course, some of the components are environmentally persistent (i.e., the PFAS and per-
sistent chlorinated, Figure 1) and cannot be readily reduced. In the SELMA cohort, roughly
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26% of the WQS index for individuals is due to persistent compounds (Figure 2B). To reduce
the WQS index below the target value without a change in the persistent chemicals, the
remaining chemicals would have to be reduced to a point where their part of the index was
30% of the observed value (Figure 2C), where 99% of the subjects would have an adjusted
WQS value below the suggested target of 1.74 (i.e., one SD below the mean). In comparison,
we considered the scenario where the plasticizers were eliminated. The distribution of the
adjusted WQS Index (Figure 2D), consisting only of the persistent chemicals, the phenols,
and the other short-lived chemicals, is not an adequate adjustment as only 75% of the
subjects fall below the suggested target. However, eliminating both the plasticizers and
the other short-lived chemicals (Figure 2E) or the plasticizers and the phenols (Figure 2F)
results in more than 95% of the subjects with values below the suggested target. These
hypothetical scenarios demonstrate how the metric of prenatal exposure to 26 EDCs related
to seven-year IQ, in a causal framework, can be used to suggest reduction strategies in
environmental chemicals leading to potential improvements in public health.
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line at selected target value (i.e., one SD below the WQS mean), (B) percentage of the WQS index
per subject due to persistent chemicals (i.e., PFAS and persistent chlorinated), phenols, plasticizers,
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In comparison, improving dietary nutrition is based on human behavior and choices,
not necessarily regulatory policy changes. The MNI provides a metric for individuals to
use to improve their dietary nutrition. We used g-computation for marginal estimation
of a causal link between prenatal nutrition as measured by MNI and seven-year IQ. The
mean IQ at seven years calculated at the average MNI (i.e., mean = 66.8; Table 1) was
99.9% (bootstrap 95% CI: 99, 101). In comparison, we constructed a counterfactual that
prenatal nutrition improved one SD, to an MNI value of 80.8. The mean IQ increased to
101 (bootstrap 95% CI: 100, 102) which is a marginal direct effect of 1.2 points in IQ with
95% CI (0.3, 2.1). Although these results are on average nutrient intake and for a population,
dietary choices are made by individuals based on food preferences and access. Use of a
metric that measures how nutritious daily dietary choices are may provide a strategy for
individuals to improve their nutrition.

4. Discussion

Our focus is on the use of counterfactuals to compare “what is” to “what if” using
indices of adverse effects of EDCs and the beneficial effect of good nutrition during preg-
nancy on neurodevelopment (i.e., seven-year IQ). The “what is” condition is what is typical
as measured at the average; here, the “what if” condition is based on a standard deviation
change in the corresponding metric in the direction of improved childhood seven-year
IQ. We extended the work of Tanner et al. (2020) to include a stratified interaction WQS
index as the metric of the mixture effect from 26 EDC prenatal exposures. In this model,
the sex-stratified interaction was borderline significant, indicating the negative association
was stronger in boys than girls, while allowing for sex-specific weights in the index. We
adjusted the model for nutrition using the MNI as a metric of overall nutrition which was
significantly related to improved IQ. Qualitatively, the prenatal exposure to EDCs, particu-
larly related to changes in seven-year IQ described here (adjusted for prenatal nutrition), are
similar to those compounds determined to be of concern by Tanner et al. [10]. Only MCINP
differ between Tanner et al., 2020 and the current study. We used the stratified interaction
WQS index in a causal framework using g-computation to address counterfactuals for
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exposure reduction to a mixture of 26 EDCs and the MNI as a metric for prenatal nutrition
in a counterfactual linked to seven-year IQ.

Other studies have focused on the “what if” question with g methods using single
chemical exposure levels. For example, Garcia et al. [26] focused on air pollutant inter-
ventions as measured by NO2 or PM2.5 and childhood asthma incidence. They asked,
“How would the incidence rate of asthma in our participants change if we could mod-
ify their exposure to regional NO2 (or PM2.5)?” Instead of focusing on beta coefficients
relating conditional incidence rate ratios for a one-unit change in air pollution exposure,
they presented a population intervention measure that estimates asthma incidence rates
had exposure been, for example, no higher than 20 ppb NO2. Their motivation, similar
to ours, is to move beyond the report of point estimates to potentially improve the trans-
lation of the study to policymakers. That is, instead of only interpreting the results of
the study in terms of the significance of a beta coefficient, the g methods which use an
index to represent multi-dimensional components (e.g., environmental chemicals for the
WQS index and dozens of nutrients for the MNI) allow researchers and decision makers
to take an additional step using the metric to provide targets for changes. We considered
several scenarios for reducing the WQS index to a target level—i.e., an overall cut to all
non-persistent chemicals and cuts based on chemical classes. Persistent chemicals such as
PFAS (called the “forever chemicals”) should also be considered for reduction strategies;
however, their remediation is often ineffective but is attracting intensive research seeking
effective technologies for their removal from the environment [27,28]. The illustration
indicated that a severe cut is necessary to reduce environmental exposures to the “what if”
target value. A cut of 70% of the non-persistent chemicals would no doubt be difficult to
achieve, and removing all plasticizers alone is not enough to reach the target value. Use
of a weighted index in such counterfactuals may complement current strategies for risk
management which generally focus on single chemicals, even though risk increases when
mixtures are considered. Further, chemical combinations are generally considered based
on convenient groupings (e.g., assuming additivity) and not based on human exposure
patterns or unintentional mixtures [29].

Biomonitoring data has consistently demonstrated that human exposures to environ-
mental chemicals are from multiple chemical classes across the lifespan [30]. Of particular
concern are exposures to vulnerable populations, such as pregnant women, as environmen-
tal exposures during critical periods of human development may increase risk to adverse
health and developmental outcomes (e.g., [31,32]). There remains the challenge of how
best to evaluate the impact of such exposures to mixtures of chemicals that typically have
complex correlation patterns. Braun et al. [33] proposed three broad questions to focus
analysis of complex mixtures in epidemiological studies: (i) What are the potential health
impacts of individual agents? (ii) What is the interaction among agents? (iii) What are the
health effects of cumulative exposures to multiple agents? They outlined different analysis
strategies depending on the research question.

Our focus herein is focusing on the third question regarding cumulative exposures to
multiple agents. It is in line with the concept of a mixture effect from the toxicology literature
where relevant environmental exposures may result in the phenomenon of “something from
nothing” [34]. Environmental chemicals may be at exposures well below an effect level, but
joint action of the components may produce significant effects. For example, consideration
of the joint action may include a wide range of chemical classes that act along an adverse
outcome pathway and are not restricted to chemicals with the same mechanism of action.
Ignoring joint action of mixtures may lead to significant underestimation of risk. Thus, an
important research strategy is constructing a metric for a mixture effect and identifying the
contribution of individual components to the effect using human observational data.

In addition, there is a computational advantage in regression models to reduce mul-
tiple components that are highly correlated to a single metric, thereby reducing concern
of multicollinearity where regression coefficients have inflated variances [35], and the
reversal paradox [36] where regression coefficients have opposite signs due to correlation
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between components. One such strategy for estimating a metric for a mixture effect is WQS
regression (e.g., [17,19,20,37]) which results in an empirically weighted index of quantiles of
the mixture components. Components of concern are identified by non-negligible weights.

Another important multi-dimensional exposure source to human health is dietary
nutrients. Optimal levels of many dietary nutrients (including calories, dietary fat, protein,
carbohydrates, vitamins, and minerals) depend on personal characteristics (for example,
age, height, weight, sex, activity level, medical conditions, behavior, and dietary choices).
Therefore, the perfect diet for one person may be very different for another, meaning
that there is no one-size-fits-all optimal diet. We developed the MNI, which accounts for
these personal characteristics in evaluating the nutritional value of an individual’s dietary
intake based on published guideline values for dozens of macro- and micronutrients and
dietary components. It is a metric of how close each nutrient and dietary component is to
guideline values based on the appropriateness of the response for the characteristics of the
subject (e.g., age, height, weight, sex, activity level, behavior). It assigns higher scores for
nutrient concentrations that fall within the published dietary guidelines’ recommended
concentration range and assigns lower scores if intake for a given nutrient deviates from
this optimal range (i.e., deficient or excess intake). It provides an overall index score ranging
from 0 to 100, with higher scores reflecting a more nutritious diet. Thus, a perfect MNI
score would be obtained if adequate intake of all nutrients is met. Our focus on nutrition
is to address a potential positive public health message about the benefits of a balanced
diet based on an individual’s characteristics and dietary choices. The MNI is comprised of
dozens of nutrients and food components [7,9] and provides a metric for subject-specific
overall nutrition. An area of ongoing inquiry is whether individuals will use a metric such
as MNI to improve their dietary choices.

The strategy of using an index in g methods as a metric of exposures to multiple envi-
ronmental chemicals assumes a single index in the direction of adverse effects. It may be
the case that some components in a selected mixture have positive associations and others
negative associations with the selected outcome [17]. For example, during some develop-
mental periods, metals may be either nutrients (essential elements) or toxins (e.g., [38]). An
advantage of estimating weights in a nonlinear model in the first step of WQS regression is
that the analyst may constrain the estimation in a single direction, one at a time, thereby
further improving the ill-conditioning in the data due to complex correlations. The analysis
strategy may then incorporate the resulting index with positive association (i.e., a metric
for a positive mixture effect) and an index with negative association (i.e., a metric for a
negative mixture effect) in a final model to elucidate the response surface of the toxins and
nutrients together and improve the interpretability of the data through the two indices.
In the case of prenatal EDCs and cognitive development, the association is only in the
adverse direction.

This approach of using both positive and negative indices in the same model is in
contrast to the approach taken in quantile g-computation where the objective is to measure
the overall effect of the mixture [39]. The measure of the overall effect is based on the sum
of all regression coefficients due to quantiled exposures in the generalized linear model,
which is then also included in a g-computation framework. This is not the same as a
mixture effect where components have joint effects [40].

Prospective cohort studies, such as SELMA, are second only to randomized studies
in producing unbiased resulting inference [1]. However, there are ethical concerns for
randomized exposure of pregnant women to potentially toxic chemicals or poor diets,
so observational data is used to study prenatal human exposures and developmental effects.
Although observational in nature, the prospective cohort study design has an important
advantage over other observational designs in that exposure measurements precede the
development of health/developmental outcomes, allowing the temporal sequence of the
relation to be more firmly established and minimizing the risk of recall bias [1]. The g methods
are then useful under the identifiability conditions for unbiased counterfactual comparisons.
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As with all studies, our study has limitations. Although we controlled for many
important confounders and we claim that the identifiability conditions hold, there may
still be residual confounders due to other variables that we were unable to collect. Under
the assumptions of identifiability, we claim causality; with the potential for residual con-
founders, our strategy is perhaps better framed as a step towards causality. The results are
limited to the exposure patterns of a Swedish pregnancy cohort with a non-diverse racial
profile. Further, the impact of using a weighted index in a causal inference has not yet been
fully explored.

5. Conclusions

In conclusion, we found that in a population-based pregnancy cohort, early prenatal
exposure to a mixture of EDCs is associated with lower levels of cognitive functioning at
age seven. This adverse association is stronger in boys with sex-specific chemical effects.
However, there remains a nutritional positive association as measured by My Nutrition
Index. We used a flexible model to support a causal inference with counterfactuals related
to two indices measured during pregnancy and their impact on seven-year IQ: reduced
exposure to the mixture as measured by the stratified interaction WQS index and to im-
proved prenatal dietary nutrition as measured by MNI. Several hypothetical scenarios were
considered to demonstrate how a metric of exposure could be used to suggest reduction
strategies in environmental chemicals. Further evaluation of such a strategy may support
decision makers for risk management of mixtures of EDCs. In addition, the My Nutrition
Index provides a personalized metric of nutritional value that individuals may use to guide
their dietary choices to improve their dietary habits.
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Appendix A

Table A1. EDCs measured in first-trimester maternal biological samples (ng/mL) (N = 678).

Matrix Chemical Type Compound (Further Description) Abbreviation LOD/LOQ a % ≥LOD GM GSD WQS f

Urine

Phenols

2,4,4′-trichloro-2′-hydroxydiphenyl ether Triclosan 0.100 92 1.34 9.9 x
bisphenol A BPA 0.050 100 1.52 2.4 x

4,4-bisphenol F (BPA replacement analogue) BPF 0.024 92 0.16 5.3 x
bisphenol S (BPA replacement analogue) BPS 0.009 98 0.07 3.0 x

Plasticizers
(Phthalate &

non-phthalate)

monoethyl phthalate MEP 0.010 100 63.6 3.0 x
monobutyl phthalate MBP 0.100 100 67.6 2.2 x

monobenzyl phthalate MBzP 0.040 100 15.5 3.0 x
mono(2-ethylhexyl) phthalate MEHP 0.100 100 - -

mono(2-ethyl-5-hydroxyhexyl) phthalate MEHHP 0.020 100 - -
mono(2-ethyl-5-oxohexyl) phthalate MEOHP 0.030 100 - -

mono(2-ethyl-5-carboxypentyl) phthalate MECPP 0.020 100 - -
di-(2-ethylhexyl) phthalate (parent compound) DEHP b - - 63.6 2.4 x

mono(hydroxy-iso-nonyl) phthalate MHiNP 0.020 100 - -
mono(oxo-iso-nonyl) phthalate MOiNP 0.010 100 - -

mono(carboxy-iso-octyl) phthalate MCiOP 0.020 100 - -
diisononyl phthalate (parent compound) DINP c - - 42.4 2.6 x

monohydroxyisodecyl phthalate MHiDP 0.031 100 1.24 2.7 x
monocarboxyisononyl phthalate MCiNP 0.031 100 0.68 2.4 x

2-4-methyl-7-oxyooctyl-oxycarbonyl-cyclohexane
carboxylic acid (phthalate replacement) MOiNCH 0.023 99 0.30 4.0 x

diphenylphosphate (organophosphate
flame retardant) DPHP 0.042 100 1.34 2.5 x

Other
Short-Lived

3,5,6-trichloro-2-pyridinol
(organophosphate pesticide) TCP 0.035 100 1.25 2.5 x

3-phenoxybenzoic acid (pyrethroid pesticide) PBA 0.017 99 0.16 2.7 x
2-hydroxyphenanthrene (polycyclic

aromatic hydrocarbon) 2OHPH 0.003 100 0.20 2.3 x

Serum
Perfluoro-alkyl

Substances
(PFAS)

perfluorooctanoic acid PFOA 0.020 100 1.58 1.8 x
perfluorooctane sulfonate PFOS 0.060 100 5.37 1.7 x

perfluorononanoic acid PFNA 0.010 100 0.53 1.7 x
perfluorodecanoic acid PFDA 0.020 100 0.26 1.6 x

perfluoroundecanoic acid PFUnDA 0.020 99 0.22 1.9 x
perfluorohexanesulfonic acid PFHxS 0.030 100 1.32 1.8 x

Plasma Persistent
Chlorinated

hexachlorobenzene HCB 0.005 100 0.05 1.4 x
trans-nonachlor Nonachlor 0.005 78 0.01 2.7 x

dichlorodiphenyltrichloroethane alone DDTa 0.015 99 - -
dichlorodiphenyldichloroethylene DDE 0.040 8 - -

total dichlorodiphenyltrichloroethane DDT d - - 0.18 2.0 x
polychlorinated biphenyl 74 PCB 74 0.005 73 - -
polychlorinated biphenyl 99 PCB 99 0.005 81 - -

polychlorinated biphenyl 118 PCB 118 0.005 99 - -
polychlorinated biphenyl 138 PCB 138 0.005 100 - -
polychlorinated biphenyl 153 PCB 153 0.005 100 - -
polychlorinated biphenyl 156 PCB 156 0.005 90 - -
polychlorinated biphenyl 170 PCB 170 0.005 100 - -
polychlorinated biphenyl 180 PCB 180 0.005 100 - -
polychlorinated biphenyl 183 PCB 183 0.005 76 - -
polychlorinated biphenyl 187 PCB 187 0.005 98 - -

total polychlorinated biphenyls PCB e - - 0.37 1.7 x

Abbreviations: GM, geometric mean; GSD, geometric standard deviation; LOD, limit of detection. Notes:
Values < LOD retained the machine read value for urine and serum compounds, values <LOQ were substi-
tuted with LOQ/2 for plasma compounds. a LOD reported for all urine and serum compounds, LOQ re-
ported for plasma compounds. b Molar sum of metabolites: mono-2-ethylhexyl, mono(2-ethyl-5-hydroxyhexyl),
mono(2-carboxymethylhexyl), mono(2-ethyl-5-oxohexyl), and mono(2-ethyl-5-carboxypentyl) phthalates. c Molar
sum of metabolites: mono(hydroxyisononyl), mono(oxoisononyl), and mono(carboxyisooctyl) phthalates. d Sum
of DDT and its metabolite dichlorodiphenyldichloroethylene. e Sum of PCB congeners 74, 99, 118, 138, 153, 156,
170, 180, 183, 187. f Included in WQS analysis.
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