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Abstract: The ecological environment and water resources of the Han River Basin (HRB) are incredibly
susceptible to global warming. Naturally, the analysis of future runoff in HRB is believed to offer a
theoretical basis for water resources management and ecological protection in HRB. The purpose of
this study is to investigate and forecast the effects of climate change and land use change on runoff
in the HRB. This study uses CMIP6 data to simulate three future climate change scenarios (SSP126,
SSP245 and SSP585) for changes in precipitation and temperature, a CA-Markov model to simulate
future land use change scenarios, and the Budyko framework to predict future runoff changes. The
results show that: (1) Between 1974 and 2014, annual runoff (R) and annual precipitation (P) in the
HRB decline not so significantly with a rate of 1.3673 mm/a and 1.2709 mm/a, while maximum
temperature (Tmax) and minimum temperature (Tmin) and potential evapotranspiration (E0) show
a non-significantly increasing trend with 0.0296 ◦C/a, 0.0204 ◦C/a and 1.3313 mm/a, respectively.
Precipitation is considered as main contributor to the decline in Han River runoff, accounting for
54.1%. (2) In the HRB, overall precipitation and temperature are estimated to rise in the coming years,
with all other hydrological variables. The comparison of precipitation rise under each scenario is as
follows: SSP126 scenario > SSP585 scenario > SSP245 scenario. The comparison of the temperature
increase under each scenario is as follows: SSP585 scenario > SSP245 scenario > SSP126 scenario.
(3) In the HRB, farmland and grassland land will continue to decline in the future. The amount of
forest acreage is projected to decline but not so significantly. (4) The future runoff of the HRB shows
an increasing trend, and the future runoff varies in different scenarios and periods. Under the land
use scenarios of maintaining LUCC1992–2014 and LUCC2040 and LUCC2060, the R change rates in
2015–2040 are 8.27–25.47% and −8.04–19.35%, respectively, and the R in 2040–2060 are 2.09–13.66%
and 19.35–31.52%. At the same time, it is very likely to overestimate the future runoff of the HRB
without considering the changes in the land use data of the underlying surface in the future.

Keywords: Han River Basin; Budyko framework; runoff change; land use; cover change

1. Introduction

In recent years, global warming has swept through most parts of the world [1]. In
some regions, climate change and human activities have induced substantial changes in
land use/cover (LUCC), precipitation, and temperature, resulting in significant changes in
watershed runoff over the years [2–5]. These changes may probably cause a wide range of
natural, environmental, and economical destruction [6]. The spatial and temporal variability
in runoff is an essential component of the hydrological cycle [7,8]. Therefore, it is crucial for
regional water resources management and planning to analyze the response of watershed
hydrology to LUCC changes caused by climate change and human activities, and to assess
the impacts of climate change and land use on runoff and water cycle changes [9–11]. In
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the context of a changing climatic environment, watershed ecohydrology research and
watershed soil and water resources management are facing new challenges [12]. The
challenge of predicting and responding to the effects of future climate change and human
activities on water resources quantity and ecology in Han River Basin (HRB) of China is
particularly prominent [13].

Climate change and LUCC change have essential impacts on precipitation and runoff
processes [14,15]. In recent years, a great deal of research has been carried out in China
on runoff prediction and attribution analysis in changeable environments [16,17]. There
are many quantitative calculations about the contribution of runoff change, such as us-
ing the Budyko framework to calculate the elastic coefficient of each driving factor and
quantitatively evaluate the contribution rate of climate change and human activities to
runoff change [18]. In these studies, precipitation and potential evapotranspiration are the
dominant factors influencing runoff, regardless of other factors affected by many water-
shed characteristics [19,20], such as vegetation and anthropogenic impacts, which have
significant regional differences in their effects on runoff variability [21,22]. The current
widely used method for predicting the runoff response to climate change is the hydrologi-
cal model method [23–25], which mainly uses the global climate models (GCMs) model
data input into the hydrological model for hydrological simulation [26,27]. Hydrological
models can be essentially divided into Newtonian models and Darwinian models. The
Darwinian model treats the hydrological system as a whole by identifying spatial and tem-
poral correlations [28]. The Budyko hydrothermal coupling model is one of the Darwinian
models. Usually, Budyko assumes that there is a coupled equilibrium relationship between
water and energy in the watershed (called the hydrothermal equilibrium relationship) [29].
Therefore, the future runoff can be predicted through the Budyko water balance equation.
In addition, its calculation is simple, the data input is small, and its physical meaning is
clear. It is equivalent to other hydrological models under certain conditions. It has been
widely used to analyze the impact of climate change on runoff for a long time and has been
verified in many river basins. It has been widely used for the impact of climate change
on runoff [30,31]. Therefore, the future runoff can be predicted through the Budyko water
balance equation.

The Han River, China, is the source area of the South-North Water Diversion Project [32],
and future changes in water resources in the HRB will directly affect the efficiency of the
development and utilization of the South-North Water Diversion Project [33]. The Han
River’s middle and lower reaches, on the other hand, are hearty grain and cotton production
centers in China [34]. Affected by global warming, the trend in annual extreme precipitation
at the Han River stations has shown variable performance over the last 50 years [35], but
the average annual runoff in the HRB shows a declining trend [36]. Form some experts’
perspective, changes in land use in the HRB have a higher impact on runoff throughout
the year than during flood season [37]. There have been some previous studies for runoff
prediction in the HRB, however, the results are inconsistent due to discrepancies in study
indicators, global climate model selection, and other factors. Changes in runoff are actually
the result of multiple factors [38]. In previous studies on Budyko, an empirical link between
the parameter n and vegetation attributes was created using the Budyko framework [18].
The Budyko parameter n, to a great extent, is influenced by many environmental factors
besides vegetation traits (e.g., soil, geology, topography, etc.) [39]. Given these factors, we
established an empirical relationship between the Budyko parameter and subsurface land
use change, based on which future hydrological changes were predicted.

Therefore, the overall objectives of this study are: (1) analysis of historical hydrological
variables in the HRB from 1974–2014, attribution analysis of runoff changes in the HRB
using the Budyko framework, and exploration of the causes of runoff changes; (2) a future
scenario of the HRB was constructed to establish a semi-empirical relationship between the
Budyko parameter n and LUCC, and the Cellular Automata-Markov (CA-Markov) model
was used to simulate the land use data in 2040 and 2060 under the current conditions and to
calculate the parameter n under the future land use scenario; (3) three shared socioeconomic



Int. J. Environ. Res. Public Health 2022, 19, 2393 3 of 22

pathway (SSP) scenarios (SSP126, SSP245, and SSP585) based on global climate models and
the Budyko water balance method were used to predict future runoff. The overview of
this paper is as follows: The materials and methods section introduces the Budyko theory,
the bias correction method, and the CA-Markov model, and the results section presents
the analysis of historical hydro-meteorological elements and attribution analysis, climate
and land use change scenario setting, and future runoff prediction of the HRB. Then, the
discussion and conclusion are presented in Sections 4 and 5.

2. Materials and Methods
2.1. Study Area

The basin is located within 106◦15′~114◦3′ E and 30◦10′~34◦20′ N with an area of
about 159,000 km2. The Han River, as the largest tributary of the Yangtze River, has a
total length of 1577 km [26]. The basin’s average yearly temperature is 12–16 ◦C, average
yearly precipitation ranges from 600 to 1100 mm, decreasing from southeast to southwest
to northwest, while average annual runoff depth in HRB ranges from 100 to 600 mm. The
Han River has a subtropical monsoon climate and abundant water resources. The HRB’s
geography is high in the west and low in the east, high in the north and low in the south.
The Qinling Mountains to the north and the Daba Mountains to the south define the rugged
upper reaches; the Fuyu Mountains to the north, the Wudang Mountains to the south, and
the Nanyang Basin to the center lead to the flat middle reaches [40]. The lower reaches of
the Han River are the Jianghan Plain with its flat terrain. The basin’s runoff is irregularly
distributed throughout the year, with the majority concentrated from May and October, and
there will be substantial inter-annual volatility, making it vulnerable to droughts and floods.
Figure 1 depicts a schematic representation of the river system and a digital elevation
model (DEM) of the HRB.
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Figure 1. The geographical position of the HRB and meteorological grid points.

2.2. Variables and Data Sources

(1) Huangzhuang hydrological station is the primary control station for the lower
sections of the Han River, its geographical location is shown in Figure 1. The Huangzhuang
station runoff data utilized in this study were sourced from the Yangtze River Water
Resources Commission’s Hydrological Bureau (http://www.cjh.com.cn/, accessed on 2
March 2021).

http://www.cjh.com.cn/
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(2) Precipitation and temperature data were obtained from the China Meteorological
Science Data Sharing Service (CMSDSS). The 0.5◦ × 0.5◦ grid point dataset of daily surface
precipitation values in China and the 0.5◦ × 0.5◦ grid point dataset of daily surface temper-
ature values in China (http://data.cma.cn/, accessed on 4 January 2021) (1961–2020) were
used in this study.

(3) LUCC data were obtained from the Environmental Science Data Centre of the
Chinese Academy of Sciences land use remote sensing monitoring data with a resolution of
1 km in years 1980, 1990, 1995, 2000, 2005, 2010, and 2015 (http://www.resdc.cn/, accessed
on 5 March 2021). Combined with the actual situation of the study area from 1980–2015,
farmland, forestland, grassland, water, built, and unused land were identified as the six land
uses in the research region. The DEM data were obtained at a resolution of 1 km from the
Chinese Academy of Sciences’ Environmental Science Data Centre (http://www.resdc.cn/,
accessed on 5 March 2021), and the slope data were generated by processing the DEM with
the ArcGIS10.8 toolbox Slope. Referring to the study of Yuan et al. [41], the relevant data
were preprocessed in ArcGIS 10.8 software, converted to the same projection and unified at
a resolution of 1 km.

(4) The grid data of the mean daily precipitation outputted from 5 global climate mod-
els (CanESM5, MRI-ESM2-0, IPSL-CM6A-LR, NESM3, KACE-1-0-G) of CMIP6(Coupled
Model Intercomparison Project Phase (6) were used in this paper (https://esgf-node.llnl.
gov/search/cmip6/, accessed on 30 May 2021). We have selected these five models to be
able to simulate precipitation performance well [42], and provide complete daily climate
data (including precipitation, maximum temperature, minimum temperature, etc.) for the
future from 2015–2060. Climate models is shown in Table 1. Among the multiple scenar-
ios provided by CMIP6, this study selected the historical (1961–2011) and three shared
socioeconomic pathway scenarios (2015–2060): SSP126, SSP245, and SSP585, representing
low, medium, and high emission forcing scenarios, respectively. Due to the low spatial
resolution of the five selected climate models and the differences between the models, the
spatial resolution of all models was standardized to 0.5◦ × 0.5◦ using inverse distance
weight interpolation, and the interpolated model data were corrected for bias on each grid,
the time scale chosen for bias correction in this study is 1961–2011.

Table 1. Basic information on the five global climate models in CMIP6.

Model Research Institutions Country Resolution (Lon × Lat)

CanESM5 Canadian Environment Agency (CCCma) Canada 2.8125◦ × 2.8125◦

MRI-ESM2-0 Meteorological Research Institute, Japan Meteorological
Agency (MRI) Japan 1.875◦ × 1.875◦

IPSL-CM6A-LR Pierre-Simon Laplace Institute (IPSL) France 2.5◦ × 1.259◦

NESM3 Nanjing University of Information Technology (NUIST) China 1.875◦ × 1.875◦

KACE-1-0-G Institute of Meteorology, Korea Meteorological
Administration (NIMS-KMA) Korea 1.875◦ × 1.25◦

For ease of reading, the following hydrologic variables are selected in this paper, as
you see in Table 2. At the same time, according to the research content, it is divided into
two periods, and the specific division is as follows. This study takes 1974–2014 as the
historical period to evaluate the historical hydrological variables. The historical period is
divided into two sub-periods, 1974–1991 as the base period, and 1992–2014 as the change
period, see Section 3.1.1. This study takes 2015–2060 as the future period to evaluate the
future hydrological variables. The future period is divided into two sub-periods: the near-
term (2015–2040) and the long-term (2040–2060). The historical period of climate model
bias correction is 1961–2011, and the future period is 2015–2060.

http://data.cma.cn/
http://www.resdc.cn/
http://www.resdc.cn/
https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/


Int. J. Environ. Res. Public Health 2022, 19, 2393 5 of 22

Table 2. Hydrological variables and definitions.

Abbreviation Definition Units

Tmax Maximum temperature ◦C
Tmin Minimum temperature ◦C

E0 Potential evapotranspiration mm
P Precipitation mm
R Runoff depth mm

2.3. Methods

The critical steps in the Budyko-based runoff evolution and prediction in the HRB
are as follows: (1) collection of hydro-meteorological data, DEM data, LUCC data, and
CMIP6 data. (2) Future climate change scenarios prediction by using statistical downscal-
ing and multi-model ensembles to forecast future climate change sequences. (3) LUCC
change prediction by using a CA-Markov model to determine the Budyko parameter n in
connection to land use under future change scenarios. (4) Prediction of annual runoff in the
HRB from 2015 to 2060 under several future change scenarios based on Budyko framework.
The specific procedure is shown in Figure 2.
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2.3.1. Quantitative Identification of Runoff Changes Based on Budyko’s Hypothesis

(1) Budyko hypotheses-based water balance method.
Budyko’s theory, based on the hydrothermal equilibrium equation, is commonly

utilized in ample watershed water and energy balance investigations [43]. Many scholars
have introduced subsurface parameters to characterize the influence on the state of coupled
hydrothermal equilibrium in watersheds [39]. The Choudhury–Yang equation is used
in this paper and its application is relatively broad [8,44], of which Choudhury–Yang is
the hydro-energy equation that contains watershed characteristics (including vegetation
changes) and their differences in the equilibrium analytic equation [45]. It can be expressed
in the following formula:

E =
PE0

(Pn + E0
n)1/n (1)
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where E is the average annual actual evapotranspiration, n is the subsurface parameter
related to the land use type; P is the precipitation, and E0 is the potential evapotranspiration,
which can be calculated according to the Hargreaves formula recommended by FAO56 [46].

Combining the water balance equation:

R = P− E (2)

A water balance equation such as the following formula can be used to compute the
average annual runoff of the basin R:

R = P− PE0

(Pn + E0
n)1/n (3)

where the parameter n can be obtained from the R, P, and E0 for a given period by
Equation (3).

(2) Runoff elasticity based on the Budyko’s hypothesis.
Runoff elasticity, defined by Schaake et al. [47] as the degree of change in runoff per unit

change in climate factors, was originally presented in 1990. The precipitation elasticity of
runoff is expressed as εP = dR/R

dP/P , and similarly, we define the potential evapotranspiration
elasticity of runoff as εE0 = dR/R

dE0/E0
, and the landscape elasticity of runoff as εn = dR/R

dn/n . The
elasticity coefficients for each variable are calculated as follows:

εP =
1−

[
(E0/P)n

1+(E0/P)n

]1/n+1

1−
[

(E0/P)n

1+(E0/P)n

]1/n (4)

εE0 =
1

1 + (E0/P)n
1

1−
[

1+(E0/P)n

(E0/P)n

]1/n (5)

εn = A−B

[1+(P/E0)
n]

1/n−1

A = Pn ln(P)+E0
n ln E0

Pn+E0
n

B = ln(Pn+E0
n)

n

(6)

(3) Runoff attribution based on the Budyko’s hypothesis.
In this study, the annual runoff series at Huangzhuang Station (Figure 1) in the HRB

was analyzed using the non-parametric Mann–Kendall test and the Pettitt mutation test.
The study cycle is divided into two sub-periods based on the mutation points. Changes in
runoff computed as a result of changes in precipitation, potential evapotranspiration, and
LUCC are stated as:

∆RP = εP
R
P

∆P (7)

∆RE0 = εE0

R
E0

∆E0 (8)

∆Rl = εn
R
n

∆n (9)

where: ∆P = P2 − P1, ∆E0 = E0,1 − E0,2, ∆n = n2 − n1. The relative contribution of each
factor to runoff is calculated as follows.

ηP = ∆RP/∆R× 100%
ηE0 = ∆RE0 /∆R× 100%

ηl = ∆Rl/∆R× 100%
(10)

where ηP, ηE0 and ηl represent the contributions of precipitation, potential evapotranspira-
tion, and landscape change, respectively.
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2.3.2. Climate Change Future Scenario Setting

(1) Bias correction.
GCMs output data are often prone to high systematic biases and may not be directly

used in basin-scale hydrological simulations [48]. Hence, after inverse distance weight
interpolation, the CMIP6 daily data were corrected using two bias correction methods:
the local intensity scaling (LOCI) method and the quantile mapping (QM) method. Of
which the LOCI can successfully correct precipitation data: the precipitation day frequency
and precipitation intensity. The threshold of simulated precipitation occurrence is set at
0.1 mm in this paper to determine that the threshold of simulated precipitation occurrence,
so that the frequency of simulated precipitation occurrence in the historical base period is
consistent with the measured series. The threshold is used in future periods to correct the
frequency of precipitation occurrence in future periods. The QM is a frequency distribution-
based method that considers observed and simulated precipitations to be consistent in
frequency distribution [49] and uses empirical cumulative distribution functions (ecdfs)
to correct precipitation and temperature in future periods, as well as the frequency of
precipitation and temperature occurrences [50]. In this paper, two methods, LOCI and
QM, were used to correct the frequency and magnitude of occurrence of daily precipitation
series in turn, and the QM was used to correct the temperature.

(2) Taylor diagram.
In order to comprehensively evaluate the simulation effects of climate models before

and after bias correction, this paper selects the Taylor diagram to evaluate the simulation
effects of the five models’ annual average precipitation, maximum temperature and mini-
mum temperature. The Taylor diagram can intuitively judge the simulation ability of the
five models to the measured precipitation, maximum temperature and minimum tempera-
ture. Taylor diagrams are essentially an ingenious combination of the model’s correlation
coefficient (R), centralized root-mean-square error (RMSE), and standard deviation σ (SD)
onto a polar graph. The cosine relationship between the three indicators is based on [51]:

R =

1
N

N
∑

n=1

(
fn − f

)
(rn − r)

σf σr
(11)

RMSE =

 1
N

N

∑
n=1

[(
fn − f

)
− (rn − r)

]2
1/2

(12)

σf =
1
N

N

∑
n=1

(
fn − f

)2
(13)

σr =
1
N

N

∑
n=1

(rn − r)2 (14)

where f, r represent the measured and simulated values, respectively, f and r represent the
measured and simulated mean values, respectively. σf and σr represent the measured and
simulated standard deviation, respectively.

2.3.3. Future Land Use Scenario Setting Based on the CA-Markov Model

The ideas behind Markov forecasting come from the work of the mathematician
Markov on stochastic processes. The Markov prediction principle is now widely used in
studies of the evolution of land patterns. In the study of land cover evolution, a given
period’s land use category can correspond to the possible conditions in a Markov process
that is only related to the previous period’s land use category [52,53].

The steps in this article that use CA-Markov are as follows:
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(1) Firstly, the measured LUCC 2005 and LUCC 2010 of the HRB were cropped respec-
tively, and the transfer probability matrix and transfer area matrix were obtained based on
the Markov module in the IDRISI 17.0 software.

(2) The suitability atlas for different LUCC types is obtained by inputting data infor-
mation, such as elevation, slope, and the fixed ecological red line to constrain and limit
the transformation of different LUCC types, taking into account factors, such as the actual
topographical and geomorphological conditions of the watershed and the development of
urban areas.

(3) Based on the measured LUCC 2010, the modified transfer probability and area
matrices, and the suitability atlas for each LUCC type transfer, 5× 5 CA filter (a rectangular
space within 5 km × 5 km around a cell has a significant effect on the change in the state of
the cell) was used for 5 cycles to simulate the LUCC 2015 for the HRB. The CA-Markov
model simulates that land use in 2040–2060 will maintain the trend in 2010–2015 and finally
get the LUCC 2040–2060 for the HRB.

Typically used in studies on the accuracy of LUCC change simulation and the eval-
uation of the accuracy of remote sensing image interpretation, the Kappa coefficient can
check the consistency of the simulated image results with the observed image data as a
whole. The Markov model can extrapolate time series while the CA model can forecast
the spatiotemporal dynamic evolution of complex systems, comprehensive utilization of
both models may extrapolate the spatial changes of landscape patterns scientifically and
reasonably. In this paper, the Kappa coefficient is utilized to assess the precision of land
pattern evolution predictions. The calculation formula is as follows [54,55].

Kappa =
(P0 − Pc)

(Pp − Pc)
(15)

where P0 is the proportion of correct simulations, Pc is the proportion of correct predictions
in the case of random model, Pp is the proportion of correct predictions in the ideal
case. Kappa < 0.4 indicates a low degree of similarity between the two images, when
0.4 ≤ Kappa ≤ 0.75, the two images are generally similar, and when Kappa > 0.75, the
two images have a significant consistency, indicating a good simulation effect.

Among them, the parameter n, according to the Budyko equation, is mostly related to
subsurface circumstances such as land use. An attempt was made to establish the empirical
relationship between land use type and model parameter n in the HRB, so as to reveal
the quantitative relationship between land use and model parameters and to identify the
influence of land use change on runoff. Because forestland, grassland, and farmland occupy
more than 95% of the total area of the HRB, this study exclusively considers these three
land use types for the empirical equation of the model parameter n.

nt = β1x1 + β2x2 + β3x3 (16)

where nt is the parameter in the Budyko equation at time t; βi and is the regression
parameter of each land use type; xi is the percentage of land use types (i = 1,..., m). Based
on P, R and E0, the Budyko parameters n (six 5-year periods) were inversed against the
HRB during the period 1980–2014, and the βi was fitted by multiple linear regression.

3. Results
3.1. Historical Hydrometeorological Analysis and Attribution Analysis
3.1.1. Assessment of Climatic and Hydrological Variables during 1974–2014

To better understand the runoff processes during the historical period 1974–2014, linear
regression and MK trend tests were used to analyze the trend of hydrometeorological series,
as shown in Table 3. Figure 3 shows the linear fitting curves, annual mean lines, and 5-year
sliding averages of hydrometeorological variables in the HRB during 1974–2014. From the
linear fit curve analysis, it can be seen that temperature and potential evapotranspiration
show a non-significant upward trend, which is generally consistent with the results of
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the MK trend test, increasing at the rates of 0.0296 ◦C/a, 0.0204 ◦C/a and 1.3313 mm/a,
respectively. While P and R show a downward trend, which is generally consistent with
the results of the MK trend test, decreasing at the rates of 1.3673 mm/a and 1.2709 mm/a.
The maximum values of average annual P and R from 1974 to 2014 occurred in 1983, at
1255.8 mm and 593.6 mm, respectively. The fluctuations of E0 were roughly the same as
those of temperature. From 1974 to 2014, the average annual P was 906.97 mm, the average
annual E0 was 1061.47 mm, and the average annual R was 290.47 mm. The potential
evapotranspiration is higher than the precipitation in the HRB during the historical period.

Table 3. Results of hydrometeorological trend analysis.

Series Linear Fitting Z (MK) Trend

P −1.3673 −0.9174 down
E0 1.3313 1.2489 up

Tmax 0.0296 0.0303 up
Tmin 0.0204 0.0213 up

R −1.2709 −1.5036 down
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The MK test and Pettitt’s mutation test were used to determine the mutation years of
the HRB runoff, as shown in Figure 4, to better attribute the HRB runoff. The intersection
of the MK test UF and UB curves between the two critical levels α = 0.05 was first used to
determine the year of mutation, and then, the Pettitt test was used to further verify the
reasonableness and significance of the MK test for the year of mutation. The UF curve
of the average runoff series of the HRB from 1974 to 2014 shows irregular fluctuations,
with a decreasing trend from 1984 to 2002, though they are within the confidence interval
of the significance level α = 0.05 (−1.96). This indicates a decreasing trend in the HRB
runoff in these years, but the decrease is not significant. The UF and UB curves in the
confidence interval intersected between two significance level lines in 1979, 1991, 2003,
2007, and 2008, preliminarily identifying the year of mutation, while the Ut, N curve after
Pettitt test identified the year of mutation of runoff in the HRB as 1991. Based on the abrupt
change test, the study period 1974–2014 can be divided into two segments: the base period
1974–1991 and the change period 1992–2014, both of which provide a foundation for the
subsequent attribution analysis.
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3.1.2. Analysis of Runoff Elastic Coefficient

According to the analysis in Section 3.1.1, it can be determined that the year of
a sudden change of runoff in the HRB is 1991, which is consistent with the results of
Peng Tao et al. [34]. Based on the results of the mutation analysis, the historical period was
divided into the base period (1974–1991) and change period (1991–2014). Based on the
average potential evapotranspiration, average runoff depth, and average precipitation of
the two periods at Huangzhuang station, the corresponding Budyko parameter n of each
period was calculated using Equation (3). Combining Equations (4)–(6) to calculate the
elasticity coefficients εP, εE0 and εn corresponding to the two periods, we obtained the
results as shown in Table 4.

Table 4. Hydroclimatic characteristics of the HRB.

Data
Period

Long-Term Mean Value Elasticity of Runoff
Annual P

(mm)
Annual E0

(mm)
Annual R

(mm) E0/P n εP εE0 εn

1974–1991 932.95 1039.05 319.99 1.11 1.469 1.882 −0.882 −0.900
1992–2014 887.49 1078.29 265.75 1.21 1.554 1.994 −0.994 −1.026
1974–2014 906.97 1061.47 288.98 1.17 1.515 1.942 −0.943 −0.969
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The HRB has a subtropical monsoon climate that is both mild and humid. In compari-
son to previous studies, the E0 range is 800–1200 mm, the P range is 800–1900 mm, and n
primarily ranges from 1.0 to 2.0 in China’s humid regions [56]. Comparing the two periods
before and after the mutation, P decreased by 4.87% in the change period (1992–2014)
compared to the base period (1974–1991), while potential evapotranspiration and n showed
an increasing trend compared to the base period (1974–1991), increasing by 3.77% and
5.77%, respectively, or resulting in a 16.95% decrease in the runoff. The precipitation elastic
coefficient εP, potential evapotranspiration elastic coefficient εE0 and landscape elastic
coefficient εn in the change period (1992–2014) are 1.944, −0.944 and −1.026, respectively,
indicating that when the P increases by 1%, the runoff will increase by 1.944%, the E0 will
increase by 1%, it will lead to a 0.994% reduction in runoff, and when the Budyko parameter
n increases by 1%, it will lead to a 1.026% reduction in runoff. It can be seen that the change
in runoff at HRB is positively correlated with precipitation and negatively correlated with
potential evapotranspiration and subsurface changes, which reflects the strong influence of
climate on the change in the runoff. The absolute magnitude of the elasticity coefficient
reflects the sensitivity of runoff to the various influencing factors. The effects of climate
change and subsurface on catchment hydrology described above can also be explained by
the Budyko curve. With the rise in drying index E0/P, the precipitation elasticity coefficient
of runoff εP will increase, while the potential evapotranspiration elasticity coefficient of
runoff εE0 will decrease. In comparison with the base period, |εP|

∣∣εE0

∣∣ and |εn| increase
during the change period, demonstrating an increasing susceptibility of runoff to changes
in these three factors. Overall, runoff in the HRB is most susceptible to precipitation and
least susceptible to changes in potential evapotranspiration.

3.1.3. Runoff Attribution Analysis

Table 5 shows the contribution of each influencing factor to the change in runoff in
the HRB. We can learn from Table 5 that the variations of runoff caused by precipitation,
potential evapotranspiration and underlying surface are −29.34 mm, −10.66 mm, and
−16.66 mm, respectively. Both climate change and human activities contribute to the
decrease in the runoff, with precipitation changes accounting for 54.1%, subsurface changes
accounting for 30.7%, and potential evapotranspiration accounting for 19.7% for the change
in runoff. We can conclude that precipitation is the primary cause of decreased runoff in
the HRB.

Table 5. Analysis of runoff attribution in the HRB.

Period Change from Base Period
to Change Period

P/E0/n Induced Runoff
Change (mm)

Contribution to Runoff
Change (%)

Base
Period

Change
Period ∆R ∆P ∆E0 ∆n ∆RP ∆RE0 ∆Rl ηP ηE0 ηl

1974–
1991

1992–
2014 −54.24 −45.46 39.2 0.085 −29.34 −10.66 −16.66 54.1% 19.7% 30.7%

3.2. Climate Change Scenario Setting
3.2.1. Evaluation of Statistical Downscaling and Bias Correction Results

Taylor diagrams of simulated P, Tmax, and Tmin versus observed ones were made
to assess the ability of each CMIP6 model to affect measured data after bias correction.
Figure 5 illustrates that after bias correction, the correlation coefficients for P are in the
range of 0.1–0.6, with MRI-ESM2-0, IPSL-CM6A-LR correlation coefficients more than 0.4,
mean squared deviation ratios at 0.98–1.01, and standard deviation ratios at 0.98–1.01.
The correlation coefficients for Tmax after bias correction ranged from 0.3 to 0.99, with
MRI-ESM2-0, IPSL-CM6A-LR and NESM3 having correlation coefficients greater than 0.95,
ratios of mean squared deviations between 0.2 and 0.4, and ratios of standard deviations
between 0.2 and 4. The correlation coefficients for the Tmin after bias correction ranged from
0.3 to 0.99, with MRI-ESM2-0, IPSL-CM6A-LR and NESM3 having correlation coefficients
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greater than 0.95, ratios of mean squared deviations between 0 and 0.2, and ratios of
standard deviations between 0 and 0.2. By integrating the three indices, we can see that
the order of CMIP6 models, after simulation and after bias correction, is Tmax, Tmin, and
P, from strongest to worst. MRI-ESM2-0, IPSL-CM6A-LR, and NESM3 are the CMIP6
models offering better simulation ability after bias adjustment. Overall, it is found that the
simulation of precipitation and temperature in the HRB by this correction method is better
than the simulation of precipitation in the HRB. Nevertheless, the modeled average annual
precipitation trends and multi-year averages are reasonably consistent with the observed
values. This suggests that the correction method can be applied to future hydrological
simulations of the basin and assess future runoff changes in the HRB.
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mum temperature (Tmax) (c) minimum temperature (Tmin); OBS indicates measured values, A, B,
C, D, E represent the five models CanESM5, MRI-ESM2-0, IPSL-CM6A-LR, NESM3, KACE-1-0-G,
respectively.

The bias-corrected approach has a significant correcting effect on the regional distribu-
tion of P, Tmax and Tmin. The multi-model mean can reappear the pattern of decreasing
annual mean precipitation and average annual temperature from southeast to northwest in
the HRB by comparing bias-corrected simulated data with observed data from 1961 to 2011
(Figure 6). The correction for the multi-year mean values in the basin was good, with the
mean P deviation reduced from 30.2% to 0.85%, the mean Tmax deviation reduced from
53.53% to 0.71%, and the mean Tmin deviation reduced from 5.68% to 0.57%. The effect
of model bias correction on total annual precipitation and average annual temperature
grid point bias correction was also compared. Before and after correction, the model P
grid point correlation increased from 0.68 to 0.99, the Tmax grid point correlation increased
from 0.62 to 0.83, and the Tmin grid point correlation increased from 0.75 to 0.99. For the
simulation of the effect of precipitation and temperature extremes in the basin, it can be
seen that the interval correction for P is from 1011.7–1430.1 mm to 677.9–1435.8 mm, the
interval correction for Tmax is from 8.39–8.56 ◦C to 9.75–23.3 ◦C, and the interval correction
for Tmin is from 8.19–8.4 ◦C to 1.56–13.5 ◦C, all of which are more in line with the actual
values observed in the basin. The bias correction is effective with a good correlation in both
space and time, and is anticipated to be applied in subsequent hydrological simulations of
the basin.

3.2.2. Analysis of Future Changes in Hydrological Variables

Figure 7 shows the average annual P, average annual Tmax, and average annual Tmin
variations of the HRB in the future period under the SSP126, SSP245, and SSP585 scenarios.
It can be seen from Figure 7 that the overall P is estimated to increase in the coming
years, with the increase amplitude under SSP126 scenario > SSP585 scenario > SSP245
scenario, and the increase amplitude of P is estimated to enlarge with time. Temperatures
are rising, with Tmax and Tmin increase amplitude under SSP585 scenario>SSP245 scenario
>SSP126 scenario, and the increase amplitude is estimated to enlarge with time. The change
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rates of hydrological variables in the HRB relative to historical period (1974–2014) under
different scenarios are shown in Table 6. Under the SSP126 scenario, P in the future period
(2015–2040) increases by 22.38%, Tmax and Tmin decrease by 2.04% and 3.75% compared
to the historical period (1974–2014). Under the SSP245 scenario, P in the future period
(2015–2040) increases by 4.27%, Tmax and Tmin decrease by 2.25% and 4.89% compared
to the historical period (1974–2014). In the SSP585 scenario, the P in the future period
(2015–2040) increased by 10.64%, Tmax and Tmin decreased by 3.95% and 7.23% compared
to the historical period (1974–2014). However, in the future period (2040–2060), its P
increases by 22.86%, 10.57% and 16.96%, Tmax increases by 2.28%, 2.83% and 5%, and
Tmin increases by 4.37%, 5.97% and 9.03% for SSP 126, SSP 245 and SSP 585 scenarios,
respectively. Compared to the historical period (1974–2014), the increase in average P is
more pronounced under the SSP126 scenario and the SSP245 scenario has the smallest
increase. The SSP585 scenario has the greatest increase in multi-year average temperature,
while the SSP126 scenario has the smallest increase.
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Table 6. Rates of change of hydrological variables in the HRB in future periods under different scenarios.

Period 2015–2040 (%) 2040–2060 (%)
Variables 126 245 585 126 245 585

P 22.38 4.27 10.64 22.86 10.57 16.96
Tmax −2.04 −2.25 −3.95 2.28 2.83 5.00
Tmin −3.75 −4.89 −7.23 4.37 5.97 9.03



Int. J. Environ. Res. Public Health 2022, 19, 2393 14 of 22
Int. J. Environ. Res. Public Health 2022, 19, 2393 15 of 24 
 

 

 

 

 

Figure 7. Hydrological variables predicted for 2015–2060 in the HRB: (a) average annual precipita-
tion (P); (b) average annual maximum temperature (Tmax) (c) average annual minimum tempera-
ture (Tmin). 

Figure 7. Hydrological variables predicted for 2015–2060 in the HRB: (a) average annual precipita-
tion (P); (b) average annual maximum temperature (Tmax) (c) average annual minimum tempera-
ture (Tmin).



Int. J. Environ. Res. Public Health 2022, 19, 2393 15 of 22

3.3. Land Use Change Scenario Setting

Based on LUCC2010 data, the land use transition probability and adaptability atlas
of LUCC2005-LUCC2010 were input into the CA-Markov model to predict LUCC2015,
LUCC2040 and LUCC2060. The future land use simulation in the HRB is shown in Figure 8.
Among them, the actual LUCC2015 (Figure 8a) and the simulated LUCC2015 (Figure 8b)
were evaluated by the IDRISI 17.0 software, and the Kappa coefficient of the simulation
result was 0.96, which confirmed that the model has a good prediction effect and the
prediction results are credible. Based on this, further predictions were made for LUCC2040
(Figure 8c) and LUCC2060 (Figure 8d). According to the analysis of land use types in
different periods of the HRB in Table 7, it can be seen that the changes of farmland,
grassland and forest land between the measured LUCC2015 and simulated LUCC2015
land use types in the study area are not much different, which can accurately describe the
land use situation in the study area and can be used for a follow-up analysis. At the same
time, according to the analysis of the proportion of land use in LUCC2015, LUCC2040 and
LUCC2060, it can be seen that from 2015 to 2040, the built areas in the study area increased
from 3.12% to 7.34%, and the overall change from 2040 to 2060 was not significant. From
2015 to 2040, farmland and grassland will continue to decrease, from 34.95% to 32.78%,
and from 19.48% to 17.54%, respectively. From 2015 to 2060, although there is a decreasing
trend in forest land, the overall change is insignificant. It is worth noting that there is an
increasing trend of unused land, indicating that there may be a trend of land degradation
in the future.
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According to the simulation results of LUCC2040 and LUCC2060 in Table 7 above,
inputting the HRB model parameters, land use data into Equation (16), the multiple linear
regression method was used to obtain an empirical formula as below, applicable to the
study basin.

n = −1.693x1 + 15.602x2 − 21.290x3 (17)

Substituting future land use data into this equation, it can be determined that the n
value is 1.866 for 2015–2040 and the n value is 1.871 for 2040–2060. They are then substituted
into the Budyko framework to predict future runoff. After regression analysis, it was found
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that in the HRB, farmland and grassland had a negative effect on parameter n, while
forestland had a positive impact.

Table 7. Proportion of land use types (%) in the HRB in different periods (%).

Period Farmland Forestland Grassland Water Built Unuse Land

2015 observed 34.95 39.59 19.48 2.82 3.12 0.05
2015 simulated 32.93 39.46 17.53 2.75 7.20 0.13
2040 simulated 32.78 39.46 17.54 2.75 7.34 0.12
2060 simulated 32.76 39.49 17.55 2.75 7.30 0.14

3.4. Future Runoff Forecast

This study uses an ensemble of climate models (multi-model averaging) from five
CMIP6 GCMs combined with the Budyko water balance method to predict future runoff.
We used Equation (17) to calculate the Budyko parameter n in the future period, see
Section 3.3, which represents the land use maintenance LUCC2040 and LUCC2060 land use
scenarios. The Budyko parameter n in 1992–2014 was calculated using Equations (1)–(3),
shown in Table 3, representing the land use maintenance LUCC1992-2014 land use scenario.
Based on Equation (3), the simulation forecast of the future runoff (R) of the HRB from
2015 to 2060 is carried out, as shown in Figure 9. According to Figure 9, it can be seen
that the future R of the HRB will increase under the SSP126, SSP245 and SSP585 scenarios.
The rate of change for future periods (2015–2040, 2040–2060) relative to historical periods
(1974–2014) is shown in Figure 10.
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To predict future runoff based on the Budyko water balance method, the most im-
portant thing is to determine the Budyko parameter n. This study estimates the Budyko
parameter n based on land use scenarios. In Figure 10a, it is assumed that the land use
maintains the LUCC2040 and LUCC2060 land use scenarios. Figure 10b assumes that the
land use maintains the land use in the change period during 2015–2060. That is, the land
use maintains LUCC1992-2014. Based on this, the effect of future runoff forecasting in
the HRB was compared and analyzed. When the land use maintains the LUCC2040 and
LUCC2060 land use scenarios, compared with the historical period (1974–2014), the runoff
in the HRB increased by 8.77% under the SSP126 scenario from 2015 to 2040, and under the
SSP245 scenario, the runoff in the HRB decreased 8.04%, under the SSP585 scenario, the
runoff of the HRB increased by 4.97%, under the SSP126 scenario from 2040 to 2060, the
runoff of the HRB increased by 5.79%, under the SSP245 scenario, the HRB runoff increased
by 2.09%, under the SSP585 scenario. The runoff of the HRB increased by 13.66%.
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When the land use is maintained under the LUCC1992-2014 land use scenario, com-
pared with the historical period (1974–2014), the runoff in the HRB increased by 25.47%
under the SSP126 scenario from 2015 to 2040, and under the SSP245 scenario, the HRB
runoff increased by 25.47%. 8.27%, under the SSP585 scenario, the runoff of the HRB
increased by 21.84%, under the SSP126 scenario from 2040 to 2060, the runoff of the HRB
increased by 23.27%, under the SSP245 scenario, the HRB runoff increased by 19.35%, under
the SSP585 scenario. The runoff of the HRB increased by 31.52%. When the land use is
maintained under the LUCC1992-2014 land use scenario, compared with the historical
period (1974–2014), the runoff in the HRB increased by 25.47% under the SSP126 scenario
from 2015 to 2040, and under the SSP245 scenario, the HRB runoff increased by 25.47%.
8.27%, under the SSP585 scenario, the runoff of the HRB increased by 21.84%, under the
SSP126 scenario from 2040 to 2060, the runoff of the HRB increased by 23.27%, under the
SSP245 scenario, the HRB runoff increased by 19.35%, under the SSP585 scenario. The
runoff of the HRB increased by 31.52%.

Overall, the future R of the HRB will show an increasing trend. Compared with
the historical period, under the SSP126 scenario, the R increased significantly. Under the
SSP585 scenario, the future R increase in the HRB is less. Under the SSP245 scenario,
the future R variation in the HRB ranges from −8.04% to 19.35%. At the same time, by
comparing the future R under the two ways, it can be found that the estimated future runoff
of maintaining LUCC1974-2014 is generally higher than the R calculated by maintaining
LUCC2040 and LUCC2060. Based on the assumptions in this paper, it is very likely to
overestimate the future runoff in the HRB without considering the changes in the land use
data of the underlying surface in the future.

4. Discussion
4.1. The Observed Impacts of Climate Change on Water Resources in the HRB

The current study results show that there is a decreasing trend for the annual runoff
(R) and annual potential evapotranspiration (E0) in the HRB from 1974 to 2015, while
there is an increasing trend for the annual temperature and potential evapotranspiration,
overall consistent with the results of other studies [57]. According to the trend analysis in
Section 3.1.1, the HRB experienced an extremely dry era following the 1990s, followed by a
relatively dry spell in 2014.

Climate change and human activities lead to changes in key elements of the water
cycle, such as precipitation, temperature, and substratum, in the future. The current study
forecasts an increasing trend in overall precipitation and temperature in the future period.
This is generally consistent with the results of other studies [58,59]. It has been shown
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that there is a consistent correlation between annual temperature and runoff, with a global
temperature increase of 1 ◦C resulting in a 4% increase in runoff [60]. In this paper, an
attribution analysis based on the Budyko equation for the historical period of the HRB can
also further corroborate the influence of three factors on the future runoff of the HRB [61].

According to Zhai et al. [62], climate change is the most important risk factor for
the hydrological risk of water supply in the South-North Water Transfer Central Line.
According to Li et al. [63], climate change leads to a 15% reduction in runoff in the upper
Han River. Meanwhile, climate change affects water quality and ecosystems. For example,
increased temperature in climate change can lead to algal blooms in the Han River [64],
while reduced flow can lead to deterioration of water quality in the middle and lower
reaches of the Han River [65]. If this situation continues consistently, it will seriously affect
the water transfer and transmission process in the HRB and have a serious impact on the
South-North Water Transfer Project in China. This study provides some insights into the
development of water resources and water quality management in the South-North Water
Diversion by conducting an attribution analysis of the declining runoff in the HRB.

4.2. LUCC Change Impacts on Watershed Water Resources

Regarding the effect of LUCC on runoff variability, this is related to the parameter n in
the Choudhury–Yang equation, where LUCC variability changes the vegetation retention,
soil water content, and surface evapotranspiration involving hydrological factors [60].
Therefore, in this study, we assume that the change of parameter n is related to LUCC,
etc. According to the actual LUCC in the HRB, which is mainly forestland, grassland and
farmland, and the area of three land use types accounts for more than 95% of the total area
of the HRB, so in this paper, we assume that the Budyko parameter n is related to three
land use types in LUCC.

In a previous study, it was found that vegetation cover can weaken the water supply
capacity of the South-North Water Transfer to some extent. For example, Zhang et al. [66]
found that vegetation greening may exacerbate the degree of hydrological aridity. The
increase in forest cover can reduce runoff in the HRB by as much as 0.19%, thus affecting
river health to some extent [63]. In addition, the analysis of LUCC effects on water resources
in the HRB may provide some suggestions for crop production in the HRB. Vegetation
cover can, to some extent, weaken the water supply capacity of the South-North Water
Transfer. The greening of vegetation may aggravate the severity of hydrological drought.
For example, cotton crops in the HRB are highly dependent on irrigation water and are
highly affected by the South-North Water Transfer Project [67].

According to the analysis of land use transfer changes in the HRB in Table 8, the
number of transfers of the 3 types of land use, farmland, water and built, was the most
obvious from 1980 to 2015. The net transfer out of farmland is 1876 km2, and the net
transfer in water and built is 1092 km2 and 996 km2, respectively. The transfer of farmland
to water is the highest transfer, 1064 km2, and built is mainly converted from farmland,
937 km2. There is a decreasing trend of forestland and grassland, which is not apparent.

Table 8. Land use area transfer matrix for the HRB 1980–2015 (km2).

Type of Land Use Farmland Forestland Grassland Water Built Unused Land 2015

Farmland 53,191 102 180 98 3 35 53,609
Forestland 136 60,397 169 16 1 60,719
Grassland 148 54 29,648 28 1 29,879

Water 1064 70 25 3057 5 100 4321
Built 937 165 32 29 3610 5 4778

Unuse land 9 1 2 1 64 77
1980 55,485 60,789 30,056 3229 3618 206 153,383
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Overall, land use changes will likely lead to significant changes in evapotranspiration
in the HRB, which in turn will lead to a decrease in HRB runoff. In this study, there is a trend
of decreasing grassland, forested and farmland in the future period, indicating a decrease
in future evapotranspiration, further corroborating the increase in future runoff [60]. As
future climate warming may lead to an increase in future evapotranspiration, it affects the
availability of water resources. Therefore, this study predicts future runoff in the HRB can
provide a basis for future water resources management and can also promote benefits such
as soil and water conservation and ecological restoration.

4.3. Limitations of This Study

Of course, there are also some limitations in the experiment design. This study, for
example, exclusively evaluates the effect of land use change on the subsurface parameter
n, neglecting the impact of other hydrological variables. The currently available studies
assume that the parameter n is related to climate change, vegetation, and many other
factors, such as mean storm depth, precipitation seasonality, soil, vegetation cover [61,68],
etc. In addition to this, there are interactions between various factors, such as the interaction
between CA (farmland area as a percentage of total watershed area) and ASD (average
storm depth). Many models (e.g., multiple stepwise regression, neural networks) [69]
have been proposed to estimate the Budyko parameter n under specific conditions. In
addition, during the land use simulation, all data were processed to a spatial resolution
of 1 km, without considering the scale effect of land use. Further research is needed on
how to maximize the mechanisms of natural and human influences on the geospatial
system [70]. Therefore, in future studies, the impact of climate change and human activities
on runoff should be input into the model to provide a more realistic picture of future
runoff predictions in the HRB. The results expected to provide a basis for managing water
resources in the changing environment of the HRB.

5. Conclusions

The impact of climate change and land use change on the reduction of runoff in the
HRB was first analyzed, followed by an attribution analysis of the HRB based on the
Budyko runoff elasticity coefficient method and a prediction for future runoff in the HRB
based on the Budyko water balance method in combination with CMIP6 global climate
model data. The following conclusions can be derived from the study’s findings:

(1) From 1974 to 2014, annual runoff and annual P in the HRB decreases non-significantly,
with decline rates of 1.3673 mm/a and 1.2709 mm/a, respectively, whereas temperature and
potential evapotranspiration increases non-significantly. Based on the mutation test, the
year of mutation is confirmed to be 1991. According to the attribution analysis, precipitation
is considered as the most critical factor leading to the drop in Han River runoff, with a
contribution rate of 54.1%, followed by the lower bedding surface with a contribution rate
of 30.7%.

(2) The overall simulation effect of temperature in the HRB after bias correction is better
than P. The simulated annual average P trends and multi-year averages are reasonably
consistent with the observed values, indicating a good spatial correlation. For the analysis
of the bias-corrected future hydrological data, the overall P trend in the future period is
increasing, with the increase amplitude under SSP126 scenario > SSP585 scenario > SSP245
scenario, and the precipitation increase amplitude also increases with time. Temperatures
are estimated to rise, with Tmax and Tmin rises in the SSP545 scenario > SSP245 scenario >
SSP126 scenario, and the temperature rise amplitude increases with time.

(3) For the future land use evaluation, there is a continuous trend of decreasing
farmland and grassland in the future. Forestland has a decreasing trend, though the overall
change is not significant. It is worth noting that there is an increasing trend of unused
land, indicating that there may be a trend of land degradation in the future. The n value is
determined to be 1.866 for 2015–2040 and 1.871 for 2041–2060.



Int. J. Environ. Res. Public Health 2022, 19, 2393 20 of 22

(4) The future R of the HRB will show an increasing trend. The future runoff of the
HRB shows an increasing trend, and the future runoff varies in different scenarios and
periods. Under the land use scenarios of maintaining LUCC1992-2014 and LUCC2040 and
LUCC2060, the R change rates in 2015–2040 are 8.27–25.47% and−8.04–19.35%, respectively,
and the R in 2040–2060 are 2.09–13.66% and 19.35–31.52%. At the same time, by comparing
the future R under the two scenarios, it can be found that the estimated future runoff
of maintaining LUCC1992-2014 is generally higher than the R calculated by maintaining
LUCC2040 and LUCC2060. Based on the assumptions in this paper, it is very likely to
overestimate the future runoff in the HRB without considering the changes in the land use
data of the underlying surface in the future.
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