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Abstract: A marathon was recently run in less than 2 h by a man who ran the three fastest marathons
ever recorded in a span of three years—Eliud Kipchoge—in the Tokyo Olympic games. Here, we
demonstrate that the best marathons were run according to a pace distribution that is statistically not
constant and with negative asymmetry. The concept of mirror race enables us to show that the sign
of asymmetry is not due to sampling fluctuations. We show that marathon performance depends
on pacing oscillations between extreme values, and that even the best marathons ever run differ and
can be improved upon. The utilization of extreme values and oscillations allows for recovery and
optimization of the complementary aerobic and anaerobic metabolisms. Our findings suggest new
ways to approach the pacing for optimizing endurance performance.

Keywords: extreme values; symmetry breaking; pacing strategy; optimization

1. Introduction

For centuries, the limits of physiology and athletic records have fascinated scientists.
In 2019, the sub-two-hour marathon barrier was broken with a time of 1:59:40.2. In 1925,
Nobel laureate Archibald Vivian (AV) Hill published “The Physiological Basis of Athletic
Records” [1].

Nowadays, one century later, advances in wearable sensor technology have enabled
real-time measurement of physiological data during exercise [2]. Future directions in train-
ing are going to be about encouraging marathon runners. To achieve this, we must provide
ways to improve satisfaction regarding training progress and with the feeling that it has
been optimized. The results show that according to our hypothesis, we are testing the hy-
pothesis that the ideal race, with the world’s best marathon runners, can have several
degrees of optimization. This can be observed in Kipchoge’s last five marathons, since
Kipchoge ran the three fastest marathons at the time across a span of three years, and even
winning Olympic gold medals in the process (2016, 2021).

Hill’s and Kennelly’s approach to running the fastest marathon was based on the con-
stant pace paradigm.

In Hill’s reference to Kennelly’s 1906 paper, he stated that the ideal way to run a race
was not necessarily to win, but to achieve a new athletic record for the distance, and
to do it by running it at a constant speed. Fifty years later, the physicist Joseph Keller
modelled the predominating view that a runner should maintain a constant pace to achieve
the shortest time in his paper: “A Theory of Competitive Running“ [3]. To determine
the optimal race strategy, he used simple physics and mathematics to correlate the phys-
iological attributes of runners with world track records. He derived the optimal speed
variation t 7→ v(t) by formulating and solving a problem in the optimal control theory. For
distances greater than 291 m, his theory predicted a maximum acceleration for 1 or 2 s,
then constant speed throughout the race, until the final 1 or 2 s, and finally, a slight slowing
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down. At the time, his results confirmed the recognized view that a runner should maintain
a constant speed to achieve the shortest time (Keller, 1973). Importantly, Keller admits his
theory omitted several important variables, such as the up-and-down motion of the limbs,
internal and external resistance, the depletion of fuel, and the accumulation and removal
of waste products. These ideas were perhaps valid in 1925, when the fastest marathon time
was only 2 h 29 min (by Albert Michelson, an average speed of 16.99 km/h, Port Chester,
NY, USA).

In the same way, Arthur Kennelly desired to measure all points of a race. Delv-
ing deeper into Kennelly’s paper: “It is to be noted that all these speeds are average
speeds over the courses. There is no evidence among the records to show what the speed
was at different points in the course. So far, as concerns anything appearing in the data,
the speed of a runner, for example, which averages 7.17 ms per s over a 1 km course, might
be 10 m per s in the first part and 5 in the last part, or vice versa. Evidence is lacking
to show what the facts are, and they are of great importance to the science of athletics.
The speed of a world’s record type of trained runner might be determined at any or all
points of a course, either by securing a light recording chronograph on the back of his belt,
with a thread paid out as he ran, or by pacing the runner with a light motor-car carrying
an automatic speed“ [4], p. 328. Nowadays, thanks to microchip technology, it is possible
to measure every point during a marathon.

Physiologic processes are inherently never constant. French physiologist Claude
Bernard wrote, in his classic book [5], that: “The use of averages in physiology and
medicine most often gives only a false precision to the results by destroying the biological
character of the phenomena“.

In the same way, the observed paces in a marathon are far from constant at an average
speed. The best marathons are run with an asymmetric distribution of paces [6].

Nowadays, it is possible to test the hypothesis that the best marathon performance
is run with a variable pace and to challenge the paradigm of a constant pace. Statistically,
a race is run with an oscillating pace between extreme values that are inter-played by
optimizing fuel, recovery, and avoiding VO2 and heart rate drift. Using mathematical
statistics, we aim to show that an asymmetric distribution is optimal for marathon running,
to delve deeper into the pace distribution, and to find the exact outline of the optimal
pacing signature by analysing the official best world marathon performances by Dennis
Kimoto (Berlin 2014) and Eliud Kipchoge (Monza 2017, Berlin 2018, 2019, Vienna 2019,
and the Tokyo Olympics Games, 2021). Furthermore, previous marathon studies reported,
also run in actual conditions, that physiological oscillations were the subjacent of real pace
variations, even when the marathon pace is planned to be constant [6].

The Berlin marathons were official competitions and are official world records.
While Monza 2017 and Vienna 2019 were exhibition marathons accomplished with ro-
tating pacers, an electric pace vehicle, a laser beam projecting the ideal position on the road
and ideal conditions. At Vienna, Kipchoge ran at a consistent average pace of 2:50 min per
km (4:33.5 min per mile) and was 11 s ahead of schedule halfway through the marathon. He
even accelerated in the final kilometre. Given that the best marathon performances, includ-
ing the Olympics, were run by a single man (Eliud Kipchoge), this shows the possibility
of adding a new dimension of running performance beyond the chronometer and propos-
ing a qualitative way of optimizing the physiological capacity for running a marathon
at 21 km/h. Our approach represents a powerful possibility for the marathon runner
to validate the optimal aspects of his/her performance. However, before exploring the pos-
sibilities of providing feedback to a marathon runner, we must test the consistency of such
a model in Eliud Kipchoge, who is purported to have a robust “performance template“.
They have shown this to be primarily related to the increased confidence that the distance
in question can be completed without unreasonable levels of exertion or injury [7]. This
can apply to real-world conditions with the aid of mathematical modelling and wearable
technology, as also already proposed in the journal Nature by the physicist Emig Thorsten,
see the Ref. [2].
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2. Materials and Methods

Our data consists of six marathon races: Berlin 2014, Monza 2017, Berlin 2018, Berlin
2019, Vienna 2019, and Tokyo 2021. They were performed by Dennis Kimetto, D.K. (Berlin
2014), Eliud Kipchoge, E.K. (Monza 2017, Berlin 2018, Vienna 2019 and Tokyo 2021), and
Kenenise Bekele, K.B. (Berlin 2019).

For a given marathon, our data were collected from http://run.hwinter.de, accessed on 1
September 2021).

The original dataset includes marathons that provide timing data for 1km race seg-
ments (plus the final 41–42,195 km segment); the requirement for 1 km segments is based
on the need to track changes in pacing during different stages of the marathon. The ac-
curacy of the data is, then, higher than those collected by strava from the individual GPS
measurement which depend on GPS models (between 0.47 and 1.65%, see the Ref. [8]).
Thus, we will assume our data consist of a sequence, denoted by (p) = (pi)1≤i≤42, where
pi is the pace, that is, the duration measured in s, taken to cover the ith km, all values
being integers.

Following standard notations from the field of probability and statistics, if this se-
quence is arranged in order of magnitude and rewritten as

p(1) ≤ · · · ≤ p(42), (1)

then p(i), for 1 ≤ i ≤ 42, it is called the ith order statistic (see §11.4 in the Ref. [9], or §1.1 in
the Ref. [10]).

We call average pace the real number p computed from the sequence by the two
equivalent relations

p =
1

42

42

∑
i=1

pi,
42

∑
i=1

(pi − p) = 0. (2)

It is important to note that this value may differ slightly from what can be called
the official average pace obtained by dividing the official total time by the distance 42.195 km.
In our data, this only occurs for Vienna 2019. The resulting difference may, as usual, come
from the phenomenon of rounding error, with the result that a total of rounded numbers is
not equal to the rounded version of the original total. Furthermore, in our case, a rather
precise value of the sum of the paces (minus the time taken to run the last 195 m) is known
as the total time. The difference may also, in the case of a marathon, be accounted for,
at least partially, by a very fast or slow pace during the last 195 m, that are not included
in our measurements.

Since our aim is to provide computational methods for big data that have more avail-
able, we will therefore describe the stages of a statistical study starting after the sequence
(pi)1≤i≤42 has been produced.

The standard deviation σ = σ(p) of the pace sequence is defined to be

σ2 =
1

42

42

∑
i=1

(pi − p)2. (3)

A coefficient of variation used extensively is Karl Pearson’s dimensionless coefficient
of variation given by

V = 100
σ

p
, (4)

and is one of the the standards for quantifying the relative pace variation.
In our study, a fundamental role will be played by the skewness coefficient

γ1 =
∑42

i=1(pi − p)3/42
{∑42

i=1(pi − p)2/42}3/2
, (5)

see formula (3.89) in the Ref. [9].

http://run.hwinter.de
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Computations from our data are summarized in Table 1.

Table 1. Mean p, standard deviation σ, coefficient of variation V and skewness γ1 for the six marathons.

Race Total Time p σ V γ1

Tokyo 2021 (E. K.) 2 h 08 min 38 s 182.4 s 7.2 4% − 0.31
Berlin 2014 (D.K) 2 h 2 min 57 s 174.8 4.1 2% − 0.47
Berlin 2019 (K.B) 2 h 01 min 41 s 173.0 3.0 2% − 0.55
Berlin 2018 (E.K) 2 h 01 min 39 s 173.1 3.0 2% − 0.82
Vienna 2019 (E.K) 1 h 59 min 40 s 169.7 1.9 1% − 2.32

Monza 2017 (E.K) 2 h 00 min 25 s 171.2 1.8 1% +0.56

The races are not listed chronologically, but according to the performance and the sign
of γ1.

It might seem, in view of the small values of V that the two performances, Vienna 2019
and Monza 2017, approached the uniform pace strategy. We will see, in fact, that these two
performances and neither the other four marathon were run uniformly. This is discussed
in the next paragraph.

3. Results
3.1. The Pace Is Not Uniform

As in everyday language, uniformity of the pace will mean for us that the race is run
at an approximately constant pace. Mathematically, the sequence (p) is, in this case, a con-
stant, or a sample of measurements drawn from a distribution highly concentrated around
the average pace, for example, a normal distribution with mean p and very small variance.

Non-uniformity of the pace can be measured by the range of the observed pace
distribution, that is, the difference between the greatest and smallest values observed,
given by

r1 = p(42) − p(1). (6)

Non-uniformity of the pace may also be measured by the difference between the fastest
and the slowest 10 km,

r10 =
10

∑
i=1
{p(43−i) − p(i)},

or by the difference between the fastest and the slowest half-marathon

r21 =
21

∑
i=1
{p(43−i) − p(i)} = (p(22) + p(23) + · · · p(42))− (p(1) + p(2) + · · ·+ p(21)).

Note that the well-known negative split is given by formula

r′21 =
21

∑
i=1
{p43−i − pi} = (p22 + p23 + · · · p42)− (p1 + p2 + · · ·+ p21),

so that the sum is calculated from paces ordered chronologically, whereas our sums in r21
are performed after reordering the paces. Our ranges are known in the field of mathematical
statistics as linear rank statistics.

The ratios
V1 =

r1

p
, V10 =

r10

10p
, V21 =

r10

21p
(7)

are the corresponding variation coefficients for 1, 10, and 21 km. The values are given
in Table 2.
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Table 2. Absolute and relative ranges computed from order statistics.

Race min = p(1) max = p(42) r1 r10 r21 V1 V10 V21

Tokyo 2021 167 194 27 189 254 15% 10% 7%
Berlin 2014 165 181 16 106 137 9% 6% 4%
Berlin 2019 165 179 14 76 98 8% 4% 3%
Berlin 2018 164 178 14 73 124 8% 4% 3%
Vienna 2019 161 172 11 43 43 6% 2% 1%
Monza 2017 168 176 8 43 58 5% 3% 2%

In view of this table, it is apparent that none of the six races manifests a range at-
tributable to random fluctuations about an average target speed. In other words, none
was run at an approximately constant pace, in spite of the fact that two of them, Monza
2017 and Vienna 2019 were planned to be run at a constant pace. The smallest ranges are
achieved (as expected at Monza) at races designed to be run at a constant pace. As a matter
of fact, 8 s, even for a non-elite runner, is a significant time-difference for a single kilometre,
as well as 43 s for 10 km.

The most spectacular variation occurred for Tokyo 2021’s r21, with more than 4 min
between the fastest and the slowest half-marathon in the same race.

3.2. The Pace Is Not Symmetric

Once the spread of the pace has been shown to be significant, it is legitimate to raise
the issue of its shape, in particular, its symmetry or lack of symmetry.

A first insight into the general shape of our distribution is provided by a diagrammatic
representation of the data, see the bar charts of grouped data in Figures 1–5.

5–6 7–8 9–10 11–12 13–14 15–16 17–18 19–20 21–22
>

(p− 160) sec
•

•2 •2 •2

•6

•8

•7

•6

•7

•2

Figure 1. Berlin 2014. Frequency of paces. For instance 8 km were run at the pace 173 or 174 s.
Slow (resp. fast) km in green (resp. red). The black bullet on the p axis marks the average pace.
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4–5 6–7 8–9 10–11 12–13 14–15 16–17 18–19 20–21
>

(p− 160) sec
•

•1 •1

•3

•7

•

•6

•3

9=3+6

•7

•5

•7

Figure 2. Berlin 2019. Slow (resp. medium, fast) km in green (resp. blue, red). The 12–13 class is
decomposed into two subclasses, 3 fast and and 6 medium km.

A striking feature shared by the six races is that they belong to the class of moderately
asymmetric bell-curves (see the Ref. [11], Section 4.20 and Figure 4.7 pp. 83–87): the class
frequencies present one maximum, and fall rapidly on one side of the maximum when
compared to the other.

Note that for asymmetric distributions with negative skewness, the median value is
usually greater than the mean, which means in our case that the runner will run more
than half of the race with a pace above the average pace value, making the race more
comfortable. We discussed this aspect in the Ref. [6].

Statistically, we can assess that our sequences of paces do not behave as random
samples from populations (in the sense used in mathematical statistics, see Section 1.1 and
Chapter 9 in the Ref. [9]) with symmetric, for example, normal, distributions. In this case,
γ1 would be close to zero, up to sampling fluctuations. Large positive or negative values
of γ1 indicate a departure from normality, or symmetry.
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3–4 5–6 7–8 9–10 11–12 13–14 15–16 17–18 19–20 21–22
>

(p− 160) sec
•

•1 •1 •1

•3

•10

•12=6+6

•6 •6

•10

•4

Figure 3. Berlin 2018. Slow (resp. medium, fast) km in green (resp. blue, red). The 12–13 class is
decomposed into two subclasses, 6 medium and 6 slow km.

Figure 3. Berlin 2018. Slow (resp. medium, fast) km in green (resp. blue, red). The 12–13 class is
decomposed into two subclasses, 6 medium and 6 slow km.

Int. J. Environ. Res. Public Health 2022, 1, 0 8 of 20

>
(p− 160) sec

•
1–2 3–4 5–6 7–8 9–10 11–12

•1

•9

•24

•8

Figure 4. Vienna 2019.Figure 4. Vienna 2019.
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8–9 10–11 12–13 14–15 16–17
• >

(p− 160) sec

•5

•20

•11

•5

•
1

>
(p− 160) sec3–7 8–12 13–17 18–22 23–27 28–32 33–37

•1

•4

•6

•9
•10

•11

•1
•

Figure 5. Monza 2017 and Tokyo 2021. Number of slow (resp. fast) km in green (resp. red). The black
bullet on the p axis marks the average pace.

To this end, we make use of Zar’s statistic denoted by z (see pp. 115–116 in the Ref. [12],
or Equations I.23 p. 21, (4.2)–(4.8) pp. 227–228 in [13], restated in Equations (8)–(14), to be
applied with n = 42).
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Formulas leading to Zar’s statistic are as follows.

A = γ1

√
(n + 1)(n + 3)

6(n− 2)
, (8)

B =
3(n2 + 27n− 70)(n + 1)(n + 3)
(n− 2)(n + 5)(n + 7)(n + 9)

, (9)

C =
√

2(B− 1)− 1, (10)

D =
√

C, (11)

E =
1

ln
√

D
, (12)

F = A

√
C− 1

2
, (13)

z = E ln(F +
√

F2 + 1). (14)

In the case of a normal distribution for (p), then z, computed from our γ1, would
approximately follow the distribution of a standard random normal variable, denoted
by N (0, 1).

For the six races, z takes values fairly, or even significantly different from zero. A posi-
tive skewness of the pace is associated with the failed performance of Monza 2017.

A negative skewness of the space is associated with the successful performances.
Furthermore, when the skewness is negative, we observe the final times are better

resulting in a higher (in absolute value) skewness (see Table 3).

Table 3. Zar’s statistic z. The p-value of z is P(N (0, 1) > z) if z > 0, or P(N (0, 1) < z) if z < 0.

Race γ1 z p-Value of z

Tokyo 2021 −0.31 −0.92 18%
Berlin 2014 −0.47 −1.36 9%
Berlin 2019 −0.55 −1.50 7%
Berlin 2018 −0.82 −2.25 1%
Vienna 2019 −2.32 −4.79 < 10−6%
Monza 2017 0.56 2.07 2%

The skewness may also be measured in the way the range r1 splits into a left range
p− p(1) (difference between the average pace and the fastest kilometre’s pace) and a right
range p(42) − p (difference between average pace and the slowest kilometre’s pace). The dif-
ference between these two ranges, say ∆2R, defined by

∆2R = (p(42) − p)− (p− p(1)) = p(42) + p(1) − 2p, (15)

can be seen as a measure of skewness.
Table 4 confirms that negative asymmetry is associated with a successful performance.

Table 4. Skewness measured by coefficient ∆2R.

Race p(42) − p(1) p − p(1) p(42) − p ∆2R

Tokyo 2021 27 15.4 11.6 −3.8
Berlin 2014 16 9.8 6.2 −3.6
Berlin 2018 14 9.1 4.9 −4.2
Vienna 2019 11 8.7 2.3 −5.4
Monza 2017 8 3.3 4.7 1.2
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3.3. The Sign of Asymmetry Is Not Due to Random Sampling Fluctuations

Even though most distributions from the real world manifest asymmetry, we can show
that the negative asymmetry observed on the six registered races cannot be explained by
mathematical randomness, as shown by the following thought experiment (in the sense
of Einstein’s Gedankenexperiment).

If it were the case, the observation of a race would be as frequent as that of what we
call the associated mirror-race, say p∗, defined by one of the two equivalent equalities

p∗i = 2p− pi,
p∗i + pi

2
= p (1 ≤ i ≤ 42). (16)

For example for Berlin 2018, where the average pace was p ≈ 173 sec, a kilometre run
in 175 sec would be replaced in the mirror race by a kilometre run in 171 sec. The average
of these two values is p = 173.

From the equalities

p∗i − p = −(pi − p) (1 ≤ i ≤ 42)

and in view of Equations (2)–(5) we infer that a race and its mirror image have the same
average pace (in other words they correspond to the same performance measured by the fi-
nal time), and opposite asymmetries, as measured by γ1. In the 2018 Berlin marathon, 16,
6, and 20 km were run at a pace smaller, equal to, or greater than the average p. In other
words, 16 km were ran fast, 6 km were medium, and 20 km were slow. In the mirror-race,
16 km would be slow, 6 km would remain medium, and 20 km would be fast. Firstly,
it is clear that the actual race is more comfortable to run than the mirror race. Secondly,
physiologically, whereas 20 slow km gives the possibility to recover energy for 16 fast km,
it is not certain that 16 slow km would enable the runner to run 20 fast km, as shall be
discussed below.

Remarkably, Berlin 2019 manifests a similar split of 15, 6, and 21 km (fast, medium,
and slow km). Hence, the mirror race would also be much more difficult to perform in
this case.

For Tokyo 2021, Berlin 2014, and Monza 2017, the average pace is distinct enough from an in-
teger value, so that each kilometre can be labelled as fast/difficult (red) or slow/easy (green), see
Figures 1 and 5. For Tokyo 2021 and Berlin 2014, there were more easy kilometres than difficult
kilometres, so that running the mirror race would again be unreasonable. For Monza 2017,
the situation is the opposite, and there were more difficult than easy km. Therefore, the mirror
race, with positive skewness, would have been easier to run.

For Vienna 2019, a cursory look at the bar chart suggests that the distribution can be
seen as the mixture (see Section 1.2.14 in the Ref. [14]) of two independent distributions.
The first one, represented by the right component of the graph, is rather symmetric and
concentrated around the mean value p ≈ 170 s. The second one is reduced to that of one
value p(1) = p42 = 161 sec, a very fast pace during the last kilometre. The negative
asymmetry is mainly due to this last kilometre, that is, the fact that the runner had
an excessive amount of energy at the end of the race. The mirror race would consist
of the superposition of the same symmetric distribution centred about the average pace,
and of a very high value corresponding to a very slow kilometre, which is unrealistic.

4. Discussion

The future of marathon training will focus on the qualitative aspects, versus only
focusing on the quantitative data. This is certainly a step in the right direction, as it
was Kipchoge’s confidence that allowed him to break the sub-2 h marathon barrier. Ad-
vances in wearable sensor technology have enabled real-time measurement of physiological
data during exercise [2]. Future directions in training are going to be about encouraging
the marathon runner. To achieve this, we must provide ways of improving satisfaction
regarding training progress and with the feeling that it has been optimized. We are testing
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the hypothesis that the ideal race, with the world’s best marathon runners, can have several
degrees of optimization. This can be observed in Kipchoge’s last five marathons, including
the exhibition marathons, where the paradigm of a perfect constant pace was applied. In
the official marathons (Berlin), the pace was not constant and run with other competitors;
these races are considered as the best performances ever ran.

The best races are run with a negative asymmetry of pace distribution. This means that
more time is spent running below Vmarathon and that the pace is variable, never constant.
Our recent publication about the asymmetric characteristics of marathon pace in elite
marathon runners were not random, but well-founded on mathematically demonstrated
principles. Estimating the optimal marathon pace should be done as a consequence of op-
timal physiological homeostasis. Our results showed how to obtain a true individual
distribution shape, for instance, concave or bathtub, by using the negative asymmetry
of pace distribution. We reported an optimal value for the negative asymmetry, showing
how this asymmetric distribution results from an oscillating pattern and the interaction
between extreme values.

4.1. The Pace Is Variable, Not Uniform

Publications showing that pace is non-uniform are in agreement with prior studies
of short-distance competitions. Indeed, variability in pacing has been studied in short- and
middle-distance running (e.g., 3000 m to 10 km) (see the Refs. [15–20]).

These studies have focused on the influence of variability of pacing on metabolic and
performance parameters. However, the Ref. [21], reported that elite marathon runners had
few changes in pace, suggesting low speed variability. More recently, the sub-2 h marathon
attempts in Monza (2017) and Vienna (2019) were based on the belief that constant speed is
the best way of running. These ideas were derived from the notion that an optimal pace is
non-variable, according to the seminal model of the Ref. [3].

Recreational marathon runners adopt the same paradigm of constant speed by running
with a pace-group leader as provided by the marathon organizers. This blindly reinforces
the idealistic paradigm of constant speed, distorting the practice of running. However, con-
sidering the physiological limitations (glycogen availability) means that runners must choose
the ideal pace, allowing them to achieve the optimal performance without famously “hitting
the wall“ or slowing down from extreme fatigue 10 km or less before the finish line (see the
Ref. [22]).

We must underline that negative pacing can help runners to achieve better results
(both recreational and professional). However, a great majority of runners just want
to complete a marathon or enjoy running, without focusing too much on optimizing their
pacing. Therefore, for them, even pacing is easier to follow and control. Indeed, for both
elite and recreational runners, planning variable pacing is not practical. The pacing is
mainly controlled by CNS and it is highly automated. Therefore, any change in pacing
can be hard to achieve, resulting from runners either slowing down or speeding up too
much, particularly if they are less experienced runners. Please elaborate some more, and
possibly add this as a limitation of this study. In addition, speeding up and slowing down
requires additional muscle force to be exerted, thus spending extra energy even if it allows
for elevation of the average pace. We still have to check the difference in energy spent by
continuous energy cost measurements between variable and even pace race, at least in a
real half-marathon race.

The non-arbitrary sign of asymmetry, which cannot be accounted for by sampling
fluctuations in speed but by physiology, is explained by the “mirror race“. It is impor-
tant to understand that a runner cannot recover lost time in the first part of a marathon
(as in Monza) using their speed reserve (see the Refs. [23,24]). Recall that speed reserve is
defined as the difference between the velocity at VO2max and the maximal speed during
a sprint or a 1000 m distance (see the Ref. [25]).

Variable pace running focuses the optimization of energy. These concepts were de-
veloped by AV Hill over 100 years ago with his papers on muscular exercise, lactic acid,
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the supply and utilization of oxygen, all helping to establish the concept of “an-aerobic”
energy production during exercise, with oxidative restoration in recovery (see the Ref. [26]);
it is unlikely that he thought humans should run at a constant pace to achieve athletic
records. Ironically, ever since Hill’s time, schools often still teach students to run at a strictly
constant pace, rather than to self-pace according to the rate of perception of exhaustion.
It has been proven that humans are natural runners and capable of accurately self-pacing
our accelerations and speed variations at three levels of intensity (soft, medium, and hard
accelerations) (see the Ref. [27]). Even if control of speed, and thus power output, is
voluntary (see the Ref. [28]), the physiological signals that athletes receive by estimating
their abilities to sustain any instantaneously chosen speed have yet to be to be elucidated.
Computing the critical speed from a personal best has shown, in the same way as for
VO2max, that all the elite marathon runners could run very close to their critical speed
(90–98%) [29,30].

Furthermore, it has been shown that critical speed can be accurately estimated
from a non-exhaustive self-pace run [31]. Even if these two paradigms of exercise (self-
pace or constant-load model) have different limitations (see the Ref. [32]), the self-pace
model has allowed new insights into the optimization of energy transformation (see the
Ref. [33]). Energy transformation during exercise is thought to be variable; this allows
for self-regulation so that feed-forward or anticipatory regulation remains a critical signal
to preserve homeostasis and to avoid cellular catastrophe (see the Ref. [34]). The Ref. [33]
showed that it is possible to consider the time required for task completion, which can
explain why power output (or speed) and skeletal muscle recruitment (and hence VO2)
in self-pace trials are almost immediately reduced in exercise, only to return to near-optimal
values during the “end spurt” (see the Ref. [35]). Examining the pacing signatures of the two
best marathon performances and, given that the same human has achieved these results,
offers us the unique possibility to compare these performances and further understand how
the limits of human physiology were elevated. In addition, we could also apply this novel
research to the over 9 million marathon runners who crossed the finish line in 2019.

4.2. The Pace Is Not Symmetric, and the Sign of Asymmetry Is Explained via a “Mirror Race“,
by Physiology, and Not by Sampling Fluctuations

Independent of the race or the runner, the pace is never symmetric, implying that
the central tendency and deviation do not entirely characterize the pacing signature. A neg-
ative asymmetry of pace distribution signifies a faster race and the higher the absolute value
of the pacing asymmetry is, the better the performance is. Indeed, according to our hy-
pothesis, our results show that for each of these high-level races, we could give the general
shape of the data distribution. Independent of the marathons studied, we always obtained
an asymmetric shape. Interestingly, we showed that the asymmetries for the two exhibi-
tion marathons, were different: negative for Vienna (the first 2-sub-hour marathon race
(1 h 59 min 40 s and γ = −2.50) and positive in Monza (2 h 00 min 25 s and γ = +0.56).
Furthermore, we showed Vienna was comprised of two independent distributions, there-
fore it was really two different races: one was constant for 40 km, and the other, also
constant, but at a much higher speed. Remarkably, in the Vienna attempt, Kipchoge had
a remarkable “end spurt“ in the final kilometer, helping him to break the 2 h barrier, and
thus creating an artificial asymmetry. Similarly in Tokyo, after running a very slow first
half-marathon while attempting to help his compatriot, Kipchoge finished the last 10 km
extremely quickly. The marathon pace (or speed) frequency distribution manifests two
remarkable features: non-uniformity, and skewness of the pace which has the particularity
of being negative. This is a condition of comprehending a good performance, that is,
the shortest time possible without excessive suffering. A U-shaped curve allows the com-
plete distribution of pacing. By now, pacing profiles and tactical behaviors of elite runners
have been shown to be a U-shape from the 1500 to the 10,000 m (Casado et al., 2020). This
U-shape is characterized by a fast start, a slowing down during the middle part of the race,
and a fast finish, characterizing world record performances (see the Ref. [36]).
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Although a parabolic J-shaped pacing profile (in which the “fast-start“ is faster than
the middle part of the race but is slower than the end spurt) is observed in many cham-
pionship races [36], we showed that in the marathon, the best race is in U shape, which
induced a negative speed asymmetric distribution measured by ∆2R. Here, we reported
the shape distribution of the entire marathon, and we have formalized the role of the ex-
treme values and oscillations between them. In these world record performances, we
show that non-uniformity of a sequence of measurement means that they do not arise
from a population highly concentrated around a sample value as a normal distribution
with a very slight variance.

We also showed how the difference in extreme values distributions allows a characteri-
zation of the optimal marathon as negatively asymmetric in the sense that the fast-km pace
frequency decay occurs more progressively than the slower km pace. Analysing the “big
data“ of marathons reveals that foremost, the individual experience of training and running
a marathon offers personal gratification, whether or not they achieve their target of finish-
ing less than 4 h 21 min 03 s or 4 h 48 min 45 s (the average male and female marathon
performances in 2018, respectively). Endurance running has never reached this level of pop-
ularity, especially among women. Marathon running is truly human by nature (see the
Ref. [37]). In this fundamental article, the authors showed how evolution has not only
shaped the human for long-distance running, but has also conditioned the human brain
to enjoy this type of physical activity through the development of endorphin release and
mood-elevating neuroendocrine mechanisms. When humans run, we are balanced between
a quest for performance and “the minimization of effort“, which is defined as the process
that aims to achieve the most cost-effective behaviour based on our perceptions (see the
Ref. [38]). Energy is the ability to produce physical action and effort is the cortical brain
activity associated with the initiation or maintenance of a behaviour. The brain constructs
our perceptions based not only on the current physical effort, but also on previous similar
experiences, motivation, awareness, and effects (see the Ref. [39]). Therefore, our theory
of a mirror race, that may or may not be possible to run, shows that an optimal marathon
performance must be performed without suffering, and hence with variable pace.

4.3. Some Mathematical Speed Functions as the Bathtub with Negatively Skewed Pace
Distributions

Let us show that the foregoing results are, obtained via calculus, in agreement with
some already identified running strategies, especially faster start and finish that are ob-
served even in the traditional (even-pacing) approach to record-setting results.

Assume that q ∈ (0, 1/2). Typically, q will represent the proportion of distance run fast
during a marathon. For instance the runner runs 42q km fast at pace p1, and 42(1− q) km
slowly at a pace p2 > p1. The bar chart of the pace sequence corresponds to the increasing
function, say φ, defined by

42q = φ(p1) < φ(p2) = 42(1− q) (p1 < p2).

The bar chart of the pace distribution φ, given by Figure 6, is that of a Bernoulli
distribution with skewness coefficient

γ1 =
2q− 1√
q(1− q)

< 0.

Let us generalize this fundamental example. Let s ∈ [0, 42] denote the curvilinear
abcissa, that is, the distance from the start line. The instantaneous pace at s is denoted
by p(s).

The bar charts of the pace sequence considered up to now will be replaced by a contin-
uous curve, the density function p 7→ φ(p), defined as follows. The infinitesimal distance
ds = φ(p)dp represents the distance spent by the runner at the pace ranging from p
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to p + dp. In accordance with the preceding example, we assume that φ is increasing.
The derivative of s 7→ p(s) is p′(s) = dp/ds. The preceding equalities lead to

dp
ds

=
1

φ(p)
, φ(p)dp = ds, Φ(p) = s, (17)

where Φ(p) is such that Φ′(p) = φ(p). We obtain

p(s) = Φ−1(s) (18)

as the pace function. Note that equation p′(s) = φ(p) and the fact that φ is assumed to be
an increasing function of s, which is itself increasing with p, imply that p′ is decreasing,
thus p is concave. Up to a constant factor the speed function is given by v(s) = 1/p(s),
so that

v′′(s) = − p′′

p2 + 2
(p′)2

p3 > 0, (19)

and v is an increasing convex function.
Conversely, every increasing speed function s 7→ v(s) gives rise to a concave decreas-

ing function s 7→ p(s) (invert the roles of v and p in Equation (19)) and to a density function
φ(p) = 1/p′(s)) that is increasing, as the inverse of a decreasing function.

Let us make these formulas explicit in the case

φ(p) = pα, (0 < α < 1) (20)

so that φ is a beta distribution, with negative skewness [14] Chapter. Then up to multi-
plicative factors, Φ(p) = pα+1,

p = Φ(−1)(s) = s
1

α+1 = sβ (0 < β < 1) (21)

Since γ1(p) is invariant under affine transformations, we can set

p(s) = C1 + C2sβ, v0(s) =
1

C1 + C2sβ
(22)

These computations lead to rather unrealistic pace strategies. But keep in mind that our
aim was only to produce some pace distribution with negative skewness.

From the speed function in Equation (22), we can build two speed functions that will
lead to the same density function φ:

v1(s) =

{
v0(s), for 0 < s < T,
v2(s) = v0(s− T), for T < s < 2T

, (23)

and

v2(s) =

{
v(s), for 0 < s < T,
v2(s) = v(2T − s), for T < s < 2T

(24)

The graphs of v1 and v2 are drawn in Figures 7 and 8, the dashed parts being those
which were added. Periodicity and symmetry, used to build v1 and v2 respectively, can be
used an arbitrary number of times.

From a mathematical point of view, a running strategy can be outlined as follows:
First, divide the race into sub-races, called “pace-cells“, and for each of these cells, select
a speed function as v0, v1 or v2. Provided these functions are built from the same elementary
function as v0, the global skewness will be that of v0.

Figure 7 can be associated with an oscillator as a clock with frictions, receiving regular
impulses, see the Ref. [40], Section III.4.2.
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The theory of oscillators seems well-suited for providing models for oscillating func-
tions. Our analogy is not based on purely mathematical similarities, but is a consequence
of our results. The interplay between extreme (small and large) values that we have un-
veiled, corresponds, for oscillators, to the well-known restoring forces. Indeed, Claude
Bernard already pointed out that all biological systems are oscillators, in the sense that
the value of a variable remaining constant at its mean value is never observed, that is to say
biological systems are oscillators. Our statistical analysis illustrates this fact concerning
the world’s best marathon runners.

4.4. Oscillations between Extremes Values Allow the Interplay between Aerobic and Anaerobic
Metabolisms, Optimizing the Recovery of Energy

We proposed to focus on a time series generated by the oscillating pattern
of the damped clock discussed in the Ref. [40]. Remarkably, when human and other
mammals run, the body’s complex system of muscles, tendons and ligament springs be-
haves like a single linear spring (“leg spring“). A simple spring-mass model, comprising
a single linear leg spring and a mass equivalent to the animal, has been shown to describe
the mechanisms of running remarkably well (see the Ref. [41]). Hence, the stride can be
considered as a damped clock. We have shown that the first sub-2-h attempt (Vienna)
was not optimal. Therefore, by considering the pacing oscillations between extremes val-
ues according to the athlete’s physiology, these world record performances could be run
faster, even the 1 h 50 min marathon as predicted by [42]; but only when the method for
predicting the record is based on physiology. Indeed, currently it is thought that running
a marathon at the fastest speed possible appears to be regulated by the rate of aerobic
metabolism (i.e., marathon oxygen uptake) of a limited amount of carbohydrate energy
(i.e., muscle glycogen and blood glucose) and the pace that can be maintained without
developing hyperthermia.

42(1− q) D = 42km

p2

p1

42(1− q)

42q

km

pacep2p1

•

•

42q

42(1− q)

Figure 6. A race with two paces, negative asymmetry.
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distance s in km

pace

pmax

pmin

distance s in km

vmax

vmin

speed v0(s)

distance s in km

vmax

vmin

speed v1(s)

Figure 7. A concave pace function on an elementary time stretch, a convex speed function v0,
for instance (22) on an elementary time stretch, and a speed function v1 with the same frequencies
and asymmetry as v0.

However, to oscillate between extreme pace values, there is a need to have a high range
of speed incompatible with monotonous training ([43,44]). Indeed, our results confirmed
that the best performance was achieved by an oscillating pattern between extreme paces.

Extreme value theory is used to predict the occurrence of rare events such as ex-
treme floods, large insurance losses, stock market crashes, and human life expectancy.
Indeed, some authors have already applied the extreme value theory to athletic events,
using estimation methods involving moment method and maximum likelihood methods
(MLE). Accurate estimations of future athletic records were accomplished using both meth-
ods. Hence, an interesting question is: under the present knowledge of training, materials



Int. J. Environ. Res. Public Health 2022, 19, 2463 17 of 19

(shoes, suits and equipment), and anti-doping regulations, by how much further could ath-
letes possibly exceed current world records in the near future? We used the extreme value
theory dealing with the issues of extremes without considering them to be independent
because we took into account (as stated by Hill), the “fatigue factor“.

vmax

speed v2(s)

vmin

distance s in km

Figure 8. Bathtub curve function v2 with the same frequencies ans asymmetry as v0.

Running a marathon between extreme values, training must use the so-called “polar-
ized training“ emphasizing low and high intensity, rather than medium intensity (see the
Ref. [43,45]). A recent study based on around 14,000 individuals with more than 1.6 million
exercise sessions containing duration and distance, and with a total distance of 20 million
km showed that the analysis of individual long-term training protocols leads to a wide
spectrum of physiological responses [2]. This study on big data confirms the concept
of “polarized training“, which involves running a wide range of speeds; these techniques
are currently used by elite athletes and have been shown to be the most efficient train-
ing methods, resulting in the greatest improvements in the key variables of endurance
performance in well-trained endurance athletes.

5. Conclusions

We analysed the three best real-world marathon performances ever ran to the hypoth-
esis that Kipchoge optimizes his pacing in relation to his aerobic and anaerobic power
and endurance. The conclusions from this could be a source of inspiration for the over
9 million marathon runners who crossed the finish line in 2018 (Esther Fleming, https:
//www.sidmartinbio.org/how-many-runners-are-there/, (accessed on 1 September 2021).
Using mathematics and physiology, we opened up new perspectives on how optimize
endurance and power in a marathon. The pacing strategy of elite marathon runners is
to start fast and then to recover by running just below their average pace for 2/3 of the
racing distance, generating a negative asymmetry, that is, a median speed below the av-
erage. This “lazy“ race confirms AV Hills’ discoveries about the concept of “an-aerobic“
energy production during exercise, with oxidative restoration in recovery being a factor
determining the variation of speed with distance.

However, our aim was not to replace a coach’s advice, but only to show that the future
of the best performances, as in world records, is perhaps to look to the variable pace shape.
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