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Abstract: Ecosystem service values (ESVs) are crucial to ecological conservation and restoration,
urban and rural planning, and sustainable development of land. Therefore, it is important to study
ESVs and their driving factors in the Dongting Lake Eco-Economic Zone (Dongting Lake). This paper
quantifies the changes in ESVs in the Dongting Lake using land use data from 2000, 2005, 2010 and
2018. The eXtreme Gradient Boosting (XGBoost) model is used to study the effects of individual
driving factors and the synergistic effects of these driving factors on ESVs. Our analysis suggests
that: (1) From 2000 to 2018, the largest dynamic degree values in the Dongting Lake are in unused
land types, followed by construction lands and wetlands. The ESVs of the Dongting Lake show an
increasing trend, with those of forestlands being the highest, accounting for approximately 44.65%
of the total value. Among the ESVs functions, water containment, waste treatment, soil formation
and protection, biodiversity conservation and climate regulation contribute the most to ESVs, with a
combined contribution of 76.64% to 76.99%; (2) The integrated intensity of anthropogenic disturbance
shows a U-shaped spatial distribution, decreasing from U1 to U3. The driving factors in descending
order of importance are the human impact index, total primary productivity (GPP), slope, elevation,
population, temperature, gross domestic product, precipitation and PM2.5; (3) When the GPP is low
(GPP < 900), the SHAP (SHapley Additive exPlanation) value of the high human impact index is
greater than zero, indicating that an increase in GPP increases the ESVs in the Dongting Lake. This
study can provide technical support and a theoretical basis for ecological environmental protection
and ecosystem management in the Dongting Lake.

Keywords: ESVs; driving factors; Dongting Lake; XGBoost model; land use; GPP; SHAP

1. Introduction

Land cover change is the main factor affecting terrestrial ecosystems, reflecting ecologi-
cal, natural resource and land management developments due to natural and anthropogenic
activities [1,2], and is key to understanding the interactions between anthropogenic factors
and global changes [3]. Land use type changes can alter energy balances and biogeochem-
ical cycles, further affecting the climate and ecosystem environments [4–6]. Ecosystem
services (ESs) change along with global change [7,8], and ecosystem service values (ESVs)
are assessments of the contributions of ecosystem service processes that consider the sus-
tainability and rational allocation of ecological structure and function [9,10]. ESs refer to
the direct and indirect contributions of ecosystems to human well-being and subsistence.
Ecosystem valuation is an approach to assigning monetary values to an ecosystem and its
key ecosystem goods and services, generally referred to as ESVs [11]. With the depletion
of ecological resources and increasing human activities, ESVs assessments are a trend in
the field of ecosystem research [12,13]. In the sustainable development of the ecological
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environment in China, the importance of ESVs assessment has been recognized in the
long-term, stable development of the ecological environment and ecological restoration.

ESVs serve as a foundation for ecosystem conservation and planning, environmental
policy decisions and land management [14–18]. ESVs is a quantitative assessment of the
potential service capacity of ecosystems and a comprehensive evaluation of the interaction
between the environment and human development, which usually provides a theoretical
and practical basis in relevant decision-making and is a core indicator of whether a region
can achieve sustainable development. With the in-depth understanding of ESVs, evalua-
tion of ESVs has become an indispensable part of ecosystem investigations [19,20]. ESVs
assessment methods include equivalence factors, productivity and biomass methods [21,22].
The coefficient method using land use/cover data is the most widely used ESVs assessment
method [23–25]. Currently, the assessment of regional ecological service effects caused by land
use changes from a value quantification perspective is widely used in ecology [26,27]. ESVs
have been applied in different ecosystem types, such as watersheds [28–30], cities [22,31–33],
mountains [34,35], ecologically fragile areas [36,37] and wetlands [38,39].

Most of the above studies have estimated regional ESVs and analyzed their dynamics;
however, the analysis of the driving factors of ESVs contributes to the understanding of
an ecosystem’s environmental protection and formation mechanisms [40]. Understanding
the changes in ESVs and their driving factors is the basis for regulating a positive response
of ecosystems to the driving factors [41]. There are also many studies on the driving
factors of ESVs [42], and the main factor is land use change, which is mainly influenced by
anthropogenic factors [43,44]. Ecosystem driving factors mainly include land use, natural
and socioeconomic factors [45]. There are also studies that point to indirect driving factors
of ESVs, such as economic [46], topography [47,48], urbanization [49,50], climate [51–53],
population [54] and social development [55,56] factors. The change in ESVs is caused
by the interaction of multiple driving factors. In this complex process, it is necessary to
comprehensively analyze the synergy between different driving factors to understand the
synergistic effect of driving factors on changes in ESVs [45,57]. Therefore, a comprehensive
analysis of the synergistic impact of driving factors on ESVs provides a reference for
understanding and controlling trade-offs between ESVs and their driving factors.

In 1994, Dongting Lake was identified as a national nature reserve by the State Council
and was listed as an extremely important biodiversity reserve in China. The Dongting
Lake undertakes important functions, such as maintaining a regional ecological balance,
guaranteeing water and ecological security in the Yangtze River Basin, and safeguarding
national food security. Research on the supply–demand balance of various ecological
services plays an important role in coordinating regional interest relations, promoting
urban-rural and regional coordination and common prosperity, ecological restoration and
overall social development. The State Council officially approved the Dongting Lake
plan in April 2014. Therefore, studying the changes in ESVs and the synergistic effects
of their drivers in the Dongting Lake can support the ecological control and sustainable
development of the Dongting Lake.

Previous studies were more based on linear methods to study the driving factors of
ESVs, and only studied the impact of a single driving factor on ESVs. However, there
are nonlinear and complex synergistic relationships between ESVs and driving factor.
Therefore, the significance of this study is mainly to use the XGBoost model (nonlinear
method) to quantify the importance of a single driving factor on ESVs, and to study the
effect of synergistic effects of different driving factor on ESVs. The main research purposes
of this paper are to (1) analyze the land use changes in the Dongting Lake in 2000, 2005,
2010 and 2018; (2) study the system composition of ESVs of the Dongting Lake; (3) analyze
the spatial distribution and change trend of ESVs of the Dongting Lake in 2000, 2005, 2010
and 2018; and (4) quantify the importance of individual driving factors and the impact of
synergies between drivers on the ESVs.
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2. Data and Methods
2.1. Data

In this study, remote sensing data for the years 2000, 2005, 2010 and 2018 were se-
lected, in which land use data, population (POP), gross domestic product (GDP), elevation
(DEM) and slope (Slope) data were obtained from https://www.resdc.cn/ (accessed on 19
February 2022) The spatial resolution of the land use data was 1 km and included 19 land
use types (Figure 1). In this study, 19 land use types were reclassified into seven categories,
including cultivated land (CL), forestland (WO), grassland (GL), water area (WA), con-
struction land (CO), unused land (UL) and wetland (WL). In this paper, unused land is
defined as sandy land, Gobi, saline–alkali land, swampy land, bare land, bare rock texture
and other unused land, including alpine desert, tundra, etc. Spatialization of the POP and
GDP data was achieved based on a multifactor weight assignment method and multiple
factors closely related to population with a resolution of 1 km. The elevation and slope
data were based on the latest SRTM V4.1 (National Aeronautics and Space Administration,
Washington, DC, USA) data that were resampled to produce a 1 km resolution dataset.
The spatial resolution of the gross primary productivity (GPP) of the vegetation was 0.05◦

(http://www.geodata.cn/) (accessed on 27 December 2021) [58]. Precipitation (Pre) and
temperature (Temp) data were datasets obtained by Peng, et al. [59] based on a bilinear
interpolation method with a spatial resolution of 0.5’. PM2.5 (PM) data were obtained from
https://sites.wustl.edu/acag/ (accessed on 19 February 2022) with a spatial resolution
of 0.01◦. The driving factors used in this paper are all averaged in counties, and then
calculated and analyzed.
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2.2. Study Area

The Dongting Lake includes four prefecture-level cities and one district in Hunan
Province and Hubei Province. The Dongting Lake is located at 27◦98′–30◦23′ N, 110◦20′–
114◦14′ E (north latitude). The area of the whole district is 60,500 km2, with a total popu-
lation of 22 million residents. The main topography of the Dongting Lake includes vast
alluvial plains, lakes and water networks, and the surrounding mountains and hills have
a complex topography that also includes a large area of wetlands. Dongting Lake is an
important base for commercial food, aquaculture and farming in China. The annual mean
temperature range of the Dongting Lake is 16.4–17.0 ◦C, the frost-free period is 260–280 d,
and the annual mean precipitation range is 1200–1550 mm. The geographic location and
spatiotemporal distribution of land use types of the Dongting Lake in 2018 are shown in
Figure 1.

Dongting Lake is the second largest freshwater lake in China. The lake area is known
as the “land of fish and rice”. It is an important commercial grain base, aquatic product and
breeding base in China. The Dongting Lake ecosystem can play a role in regulating runoff,
storing floods and preventing droughts, conserving water sources, purifying water quality,
purifying air, regulating climate, protecting organisms and enriching species. According to
the statistics of biodiversity in Dongting Lake wetland ecosystem, there are 170 families,

https://www.resdc.cn/
http://www.geodata.cn/
https://sites.wustl.edu/acag/
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637 genera and 1428 species of plants, 11 orders, 22 families and 119 species of fish, 16 orders,
43 families and 216 species of birds, eight orders, 13 families and 22 species of mammals
and 27 species of amphibians and reptiles [60]. It is also an important habitat for the rare
species of finless porpoise in the Yangtze River, and is listed as one of the 200 important
ecological areas in the world by the World Wildlife Fund. Therefore, the protection and
sustainable utilization of the Dongting Lake ecosystem is of great significance for ensuring
the steady development of the regional economy and society and improving the ecosystem
environment.

2.3. Methods
2.3.1. Land Use Changes

In this paper, a single land use type dynamic degree was used to measure the magni-
tude of land use type changes in the Dongting Lake, which is calculated as follows:

K =
Lb − La

La
× 1

H
× 100% (1)

where K denotes the land type dynamic degree, La and Lb are the areas of a land use type
in 2000 and 2018, respectively, and H denotes the study time period.

2.3.2. Ecosystem Service Values

This study used the equivalence factor method to calculate the ESVs of the Dongting
Lake [61], defining the standard unit of an ESVs equivalence factor as the economic value
of the national average natural grain yield per year for a 1 hm2 farmland. The calculation
formula was:

V = R1 ×V1 + R2 ×V2 + R3 ×V3 (2)

where V represents the ESVs of 1 standard equivalent factor (yuan/hm2) and R1, R2 and
R3 denote the proportion of wheat, corn and rice, respectively, in the total area of the three
crops in 2010. V1, V2 and V3 denote the net profit per unit area (yuan/hm2) of wheat, corn
and rice, respectively, in 2010. The value of V was 1793.88 yuan/hm2 according to the 2011
China Statistical Yearbook, 2011 National Compilation of Agricultural Product Cost–Benefit
Information and Equation (2).

From this, the value of the ecological services of the Dongting Lake was calculated
with the following equations:

VLti = ELti × Eb (3)

where VLti denotes the ESVs coefficient of the i-th land use type, ELti denotes the equivalent
value of the t-th ecosystem service to the i-th land use type, and Eb denotes 1 standard
equivalent ecosystem service value.

ESVs = ∑n
i=n (Bi ×∑k

t=1 VLti) (4)

where ESVs denote ecosystem service values and Bi denotes the area of the i-th land use
type. In this paper, construction land was assigned an ESVs of 0 in reference to previous
studies. Table 1 shows the ESVs for each land use type per unit area of the Dongting Lake.
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Table 1. ESVs per unit area by land use type in the Dongting Lake (Unit: Yuan/hm2).

Primary Type Secondary Type Abbreviation CL WO GL WA UL WL

Provision
Food production FP 1793.88 179.39 538.16 179.39 17.94 538.16

Raw material RM 179.39 4664.08 89.69 17.94 0.00 125.57

Regulation

Gas regulation GR 896.94 6278.58 1435.10 0.00 0.00 3228.98
Climate regulation CR 1596.55 4843.47 1614.49 825.18 0.00 30,675.33

Water supply WS 1076.33 5740.41 1435.10 36,559.25 53.82 27,805.12
Waste treatment WD 2941.96 2349.98 2349.98 32,612.71 17.94 32,612.71

Support
Soil formation and

retention SFR 2619.06 6996.13 3498.06 17.94 35.88 3067.53

Biodiversity protection BD 1273.65 5848.04 1955.33 4466.76 609.92 4484.70

Culture Recreation and culture EC 17.94 2296.16 71.76 7785.43 17.94 9956.03

Total 12,395.70 39,196.25 12,987.68 82,464.60 753.43 112,494.13

2.3.3. Human Impact Index

The human impact index (HAI) represents the impact of human activities on land cover
types and landscape changes, and the interrelationship between ESVs and the intensity
of anthropogenic disturbance in the study area can be analyzed using the HAI, which is
calculated as follows:

HAI = ∑n
i=1

BiPi
TA

(5)

where Bi denotes the area of the i-th land use type, TA is the total land use area of the
Dongting Lake area, and Pi is the intensity coefficient of anthropogenic impact. In reference
to previous studies, this study uses the Delphi method to assign a Pi value of 0.67 for
farmland, 0.13 for forestland, 0.1 for grassland, 0.12 for water, 0.96 for construction land,
0.05 for unused land and 0.15 for wetland land cover types [62].

2.3.4. Correlation Analysis

1. XGBoost algorithm

XGBoost is a Boosting algorithm belonging to an ensemble learning model. With the
most efficient performance on supervised learning tasks such as classification, regression,
and ranking, the algorithm has become a tool of choice for machine learning, primarily
due to its excellent prediction performance, highly optimized multi-core processing and
distributed machine implementation, and the ability to handle sparse data. The XGBoost
algorithm is a gradient boosting, gradient lifting method that uses an addition model and a
forward distribution algorithm to gradually approach the optimal result. Moreover, the
XGBoost algorithm simultaneously prevents model overfitting by introducing a regular-
ization term (a measure of tree model complexity) in the objective function [63], which is
calculated as follows:

ĜN
j = ∑N

k=1 φk(xi) = ĜN−1
j + φN(xj) (6)

where ĜN−1
j is the generated tree, φN(xj) is the newly created tree model and N is the total

number of tree models. In this study, the ESVs of the study area were used as dependent
variables, and various natural and social factors were used as independent variables. All
variables were input into the XGBoost model, and the model was cleaned, normalized and
trained on the input data to obtain the determined relationship model.

2. SHAP method

Machine learning has great research significance and wide application value for time
series prediction, but its application in real-world tasks is severely limited due to the lack
of interpretability. Interpretability is very important in the ecological field, and research on
constructing interpretable deep learning models for ESVs can provide complete logic for
corresponding decision-making. To explain the extent to which different drivers contribute



Int. J. Environ. Res. Public Health 2022, 19, 3121 6 of 17

to the machine learning prediction results, the SHAP method was applied to the predictions
of XGBoost [64]. The SHAP method belongs to the post-event interpretation framework,
which estimates the contribution of each driving factor through the Shapley value, which is
the core of SHAP. Compared with traditional feature importance methods, SHAP has better
consistency and can calculate the impact of each driver on the prediction results, helping
researchers interpret machine learning predictions. Therefore, it can be used to explain
the contribution of each driver to the prediction, adding transparency and facilitating the
analysis of the degree of response of ESVs to different drivers. The SHAP formula is as
follows:

ϕ̂i =
1
N ∑N

n=1 ( f̂ (yh
+i)− f̂ (yh

−i)) (7)

where f̂ (yh
+i) represents the prediction of y.

Shapley values are the only way to explain feature importance, satisfying the mathe-
matical properties of local accuracy and consistency, while TreeExplainer is an interpreter
specialized in interpreting tree models, activating Shapley values for feature attribution
through tree ensemble and additive methods. TreeSHAP can be used in the gradient
enhancement model [65]. Compared with classical algorithms, TreeSHAP has many opti-
mizations, and can provide rich visualization of each driver compared to classical feature
importance and partial dependency graphs. The formula is as follows:

ϕm,n = ∑
R⊆P{m,n}

|R|!(N − |R| − 2!)
2(N − 1)!

εmn(R) (8)

where m 6= n, εmn(R) = gx(R ∪ {m, n})− gx(R ∪ {m})− gx(R ∪ {n}) + gx(R), N is the
number of features and R represents all feature subsets.

3. Results
3.1. Land Use Changes

Land use in the Dongting Lake from 2000, 2005, 2010 and 2018 was mainly dominated
by croplands and forestlands, and the combined area of both land use types accounted
for more than 79% of the total area, with a very small proportion of the area representing
unused land (Figure 2). During the 2000–2018 period, the area shared by all land use
types showed an increasing trend, except for a decrease in the area shared by cropland and
grassland. Among these land use types, cultivated land and construction land changed the
most, with a reduction in area of 2.54% and an increase in area of 1.46%, respectively.

The changes in single land use dynamic degree and interconversion in the Dongting
Lake in 2000 and 2018 show that the largest value of the dynamic degree in unused land
was due to the expansion of this land use type from 0 km2 to 6 km2 (Figure 3). For
the convenience of calculation, we assumed that the area of the unused land use type
in 2000 was 1 km2 (1 km2 in 2005 and 2010). Construction lands and wetlands had the
second largest values, with dynamic degrees of 3.02 and 1.58, respectively. The dynamic
degree of the other four land use types was relatively small, among which the dynamic
degrees of cultivated land and grassland were negative, which are −0.33 and −0.39,
respectively. The dynamic degree of land use is closely related to the intensity of human
activities, such as the encroachment of cultivated land, the expansion of construction land,
and the implementation of ecological restoration projects such as returning cultivated
land to forestland and grassland, resulting in changes in the dynamic degree of land use
types in different cities in Dongting Lake (Figure 3a). From 2000 to 2018, the area of
construction land, water area, wetland, forest land and unused land increased, mainly from
the conversion of cultivated land, which is also the reason for the decrease of cultivated
land area. The increase in wetland area is mainly due to the conversion of water area, while
the decrease in grassland area is mainly due to the conversion of grassland to forestland.
The area of cultivated land converted to forest land was the largest, followed by the area of
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forest land converted to cultivated land; except for cultivated land, water area and wetland,
other land use types were not converted to unused land use types (Figure 3b).
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3.2. Value of Each Service Type in Different Ecosystems

Structure determines function, and analysis of the value changes at the level of the land
use structure is important for an in-depth study of the causes of changes in regional ESVs.
ESVs for each service function of the different ecosystems in the Dongting Lake in 2000,
2005, 2010 and 2018 are shown in Table 2. Forestlands had the largest ESVs, accounting
for approximately 44.65% of the total value, followed by watersheds (32.13%), croplands
(17.11%) and wetlands (5.52%), and grasslands, wastelands and construction lands had
low percentages. There was an overall increasing trend in ESVs in the Dongting Lake
during 2000–2018. The ESVs of wetland and water body land types increased, reaching
CNY 2.83 billion and CNY 2.81 billion, respectively, followed by forestland, where the
ESVs increased by CNY 0.06 billion. Both cropland and grassland ESVs decreased, with
cropland ESVs decreasing the most (CNY 2.01 billion). In terms of the ESVs growth rate,
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the wetland growth rate was the highest (28.28%), and the grassland growth rate was the
lowest (−7.00%).

Table 2. The ESVs of various service functions of different ecosystems of the Dongting Lake in 2000,
2005, 2010 and 2018 (billion yuan).

LULC Year GR CR WS SFR WD BD FP RM EC

CL

2000 2.467 4.392 2.961 7.204 8.092 3.503 4.934 0.493 0.049
2005 2.431 4.327 2.917 7.098 7.973 3.452 4.861 0.486 0.049
2010 2.418 4.304 2.902 7.060 7.931 3.434 4.836 0.484 0.048
2018 2.322 4.133 2.786 6.779 7.615 3.297 4.643 0.464 0.046

WO

2000 13.930 10.746 12.736 15.522 5.214 12.975 0.398 10.348 5.095
2005 13.916 10.735 12.723 15.506 5.208 12.962 0.398 10.337 5.089
2010 13.907 10.728 12.715 15.496 5.205 12.953 0.397 10.331 5.086
2018 13.940 10.754 12.745 15.534 5.218 12.984 0.398 10.356 5.098

GL

2000 0.131 0.148 0.131 0.320 0.215 0.179 0.049 0.008 0.007
2005 0.130 0.146 0.130 0.317 0.213 0.177 0.049 0.008 0.006
2010 0.125 0.140 0.125 0.304 0.204 0.170 0.047 0.008 0.006
2018 0.122 0.137 0.122 0.297 0.200 0.166 0.046 0.008 0.006

WA

2000 0.000 0.604 26.743 0.013 23.856 3.267 0.131 0.013 5.695
2005 0.000 0.634 28.081 0.014 25.050 3.431 0.138 0.014 5.980
2010 0.000 0.635 28.121 0.014 25.086 3.436 0.138 0.014 5.989
2018 0.000 0.632 27.990 0.014 24.968 3.420 0.137 0.014 5.961

WL

2000 0.288 2.733 2.477 0.273 2.906 0.400 0.048 0.011 0.887
2005 0.279 2.647 2.400 0.265 2.814 0.387 0.046 0.011 0.859
2010 0.299 2.837 2.572 0.284 3.017 0.415 0.050 0.012 0.921
2018 0.369 3.506 3.178 0.351 3.728 0.513 0.062 0.014 1.138

In terms of the functional composition of ESVs, the ESVs of the Dongting Lake showed
an upward trend from 2000 to 2018, and the ESVs increased by CNY 3.62 billion during
this time period. The watershed had the highest value for water conservation and waste
treatment, with the sum of both remaining above CNY 50 billion, reaching its highest
value in 2010 (CNY 53.21 billion). This was followed by soil formation and protection
and gas regulation in forests, both of which remained above CNY 29 billion combined,
reaching a maximum value in 2019 (CNY 29.47 billion). The composition proportion
of various functions changed little. Among these functions, water conservation, waste
treatment, soil formation and protection, biodiversity protection and climate regulation
contributed the most to the ESVs, with a total contribution rate of 76.64~76.99%, followed
by gas regulation, entertainment culture, raw materials and food production. The largest
contribution was from water connotation (23.39~23.86%), and the smallest was from food
production (2.69~2.89%). In addition to gas regulation, soil formation and protection, food
production and raw materials, the ESVs of other functions increased, among which the
increase in water conservation was the most obvious (1.77 billion yuan).

3.3. Spatial Distribution of ESVs

There was little difference in the spatial distribution of ESVs in Dongting Lake counties
(cities and districts) between 2000, 2005, 2010 and 2018 (Figure 4). From 2000 to 2018, the
counties with significantly reduced ESVs included Junshan (CNY 0.67 × 10−3 billion),
Shashi (CNY 0.43 × 10−3 billion), Wangcheng (CNY 0.36 × 10−3 billion), Huanrong
(CNY 0.32 × 10−3 billion) and Ziyang (CNY 0.18 × 10−3 billion). Counties with sig-
nificant increases in ESVs included Honghu (CNY 0.93 × 10−3 billion), Anxiang (CNY
0.62 × 10−3 billion), Jianli (CNY 0.43 × 10−3 billion), Yuanjiang (CNY 0.34 × 10−3 billion),
Xiangyin (CNY 0.26× 10−3 billion), and Miluo (CNY 0.21× 10−3 billion). The ESVs in other
counties (cities and districts) did not change significantly. The high value areas of ESVs in
the Dongting Lake were concentrated in the areas with more water area and forestland land
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use types, that is, areas with less interference from human activities, including Yuanjiang,
Honghu, Yueyang, Anhua and Hanshou counties. The low value areas of ESVs in the
Dongting Lake were mainly concentrated in areas with more arable land area, i.e., areas
with more anthropogenic disturbance, including Jinzhou, Gongan and Jiangling counties.
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3.4. Machine Learning Analysis of Driving Factors
3.4.1. Human Impact Index

With improvements in social productivity, human activities have an important impact
on ecosystem patterns. To quantitatively analyze the impact of anthropogenic disturbance
on the changes in ESVs in the Dongting Lake, we assessed the human impact index in 2000,
2005, 2010 and 2018, using counties as units (Figure 5). The human impact index in the
Dongting Lake showed a U-shaped spatial distribution, decreasing from U1 to U3. In areas
with a high anthropogenic impact intensity (HAI > 0.5), the intensity of the anthropogenic
impact in Shashi increased, the intensity of the anthropogenic impact in Anxiang and
Nanxian decreased, and the other areas were basically unchanged. In areas with a medium
anthropogenic impact intensity (0.35 ≤ HAI ≤ 0.5), the anthropogenic impact intensity
increased in Wangcheng, Junshanh and Yueyanglou, decreased in Honghu, and remained
basically unchanged in other areas. In areas with a low anthropogenic impact intensity
(HAI < 0.35), the intensity of the anthropogenic impact remained basically unchanged.
This study showed that the areas of high disturbance intensity, which were dominated by
cropland and built-up land use types, were located in areas with low ESVs.



Int. J. Environ. Res. Public Health 2022, 19, 3121 10 of 17Int. J. Environ. Res. Public Health 2022, 19, x  10 of 17 
 

 

 
Figure 5. Spatial distribution of the HAI in Dongting Lake counties (cities and districts). 

3.4.2. Driving Factor Analysis 
Figure 6 shows the summary plot of the XGBoost model SHAP and the relative im-

portance of each driving factor in the Dongting Lake in 2000, 2005, 2010 and 2018. In this 
model, the driving factors were the HAI, GPP, Slope, DEM, POP, Temp, GDP, Pre and PM 
in descending order of importance. This indicated that the combined human impact index 
was the most important driver, followed by GPP, and the ESVs of Dongting Lake may 
increase with an increasing GPP. In contrast, PM had essentially no effect on the ecological 
and economic changes in Dongting Lake. 

 
Figure 6. SHAP summary (a) and relative importance of each feature (b) of the XGBoost model of 
the Dongting Lake in 2000, 2005, 2010 and 2018. 

Figure 5. Spatial distribution of the HAI in Dongting Lake counties (cities and districts).

3.4.2. Driving Factor Analysis

Figure 6 shows the summary plot of the XGBoost model SHAP and the relative
importance of each driving factor in the Dongting Lake in 2000, 2005, 2010 and 2018. In
this model, the driving factors were the HAI, GPP, Slope, DEM, POP, Temp, GDP, Pre and
PM in descending order of importance. This indicated that the combined human impact
index was the most important driver, followed by GPP, and the ESVs of Dongting Lake may
increase with an increasing GPP. In contrast, PM had essentially no effect on the ecological
and economic changes in Dongting Lake.

A SHAP dependency plot enables us to examine the relationship between driving
factors and ecological values, and Figure 7 shows the SHAP dependency plot of the HAI
and other driving factors in the Dongting Lake. The SHAP dependency plot allows the
SHAP values of the HAI to be compared with other driving factors and shows the influence
of all driving factors on the ecological value of the Dongting Lake and the synergistic effect
of the HAI with other driving factors. The SHAP value indicates the negative and positive
contribution of driving factors to the model output variable and shows the contribution of
each driving factor to the ecological value of the Dongting Lake. For example, Figure 7e
represents the change in the ESVs as the GPP changes, and the vertical color bar indicates
the synergistic effect of a single GPP value with the HAI. We can examine the effect of the
GPP on the ecological value as the HAI rises from 0.25 to 0.55. The red to blue bars indicate
high to low HAI values, respectively, indicating that an increase in the HAI increases the
volatility of the ESVs. When the GPP is low (GPP < 900), the SHAP value of the high HAI
is greater than zero, indicating that an increase in the GPP of the Dongting Lake increases
the ESVs. Figure 7c represents the effects of the DEM and HAI on ESVs changes, indicating
that when the SHAP value of the DEM is greater than zero, the increased DEM will lead
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to an increase in the ESVs; moreover, high values of the DEM and low values of the HAI
indicate that the ESVs tends to be lower.
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4. Discussion
4.1. Spatial Variation of ESVs

Rational planning for land use change can have positive implications for ecosystem
conservation and sustainable development in the Dongting Lake. This study quantitatively
analyzes the change in ESVs of the Dongting Lake caused by land use changes in 2000,
2005, 2010 and 2018. The overall land use of the Dongting Lake was relatively stable,
indicating a stability in ESVs during this study period. However, the complex, nonlinear
changes in the ESVs, as well as the different evaluation methods, make the ESVs results
somewhat different [40]. Both construction land and forested land area in the Dongting
Lake increased during 2000–2018, which is in line with the trend of China’s forest resource
growth and urbanization development, and is related to the forest protection and expansion
plan implemented in China [66]. Water bodies, forests and wetlands dominated the changes
in ESVs [41,67], while increases in built-up land and unused land areas dominated the
decrease in ESVs [68]. The total coverage area of forests, water bodies and wetlands
accounted for more than 50% of the total area of the Dongting Lake, and these land cover
types were the main components of the ESVs of the Dongting Lake. Water conservation [69]
and waste treatment [70] were the main regulating functions of the Dongting Lake because
the Dongting Lake has large water and wetland coverage areas that are of great significance
to the hydrological functioning of the Dongting Lake.

To protect Dongting Lake’s ecosystem and its endangered rare species, strengthen
environmental planning and biodiversity monitoring in the surrounding area. In the
planning of functional areas, it is necessary to scientifically plan biodiversity conservation
areas, especially to define core protected areas and peripheral protected areas. In areas
with high ESVs in Dongting Lake, strengthen the protection of forest land and waters,
comprehensively implement projects such as cleaning up the core area of protected areas
and ecological restoration, and establish projects such as returning farmland to lakes,
returning farmland to wetlands, wetland ecological restoration and controlling the impact
of human activities on the disturbance of biodiversity in the region. In the areas with low
ESVs in Dongting Lake, establish the project of returning farmland to forest, strengthen the
protection of water sources, reduce the disturbance of human activities to the ecosystem
and improve the habitat volume of the entire ecosystem type. We must adopt different
protection and development models according to local conditions in order to maintain the
structural stability and service functions of the Dongting Lake ecosystem.

4.2. Driving Factor Analysis

Analysis of the relationship between ESVs and their driving factors can provide an
important basis for scientific ESVs research, ecological protection and restoration, urban
and rural planning and sustainable development of land [57,71]. Many studies have
identified anthropogenic influences as the main driving factors of ESVs [41,72,73], and
the results of this study are consistent with these studies. The GPP represents the total
amount of organic matter produced by vegetation and the initial material and energy of
ecosystems [71,74]. Therefore, it is logical that it was the second most important factor
influencing the ESVs. The heterogeneous environment created by slopes in certain areas
affects environmental changes in their ecosystems and thus changes the land cover types.
Slope data are generated from elevation, and the influence of these geographic features
on ESVs is also important [40,45,75]. The effects of temperature and precipitation on ESVs
vary with geographic location [76]. In addition, population density and economic factors
also have important effects on ESVs [40]. This is the reason why eight influential factors
were selected to analyze the driving factors of ESVs in this paper.

ESVs are complex processes in which many influencing factors act synergistically, and
only analyzing the effects of individual driving factors on ESVs cannot reveal the contri-
butions of driver synergies to the ESVs. Therefore, it is important to quantify the effect of
synergistic interactions among driving factors on ESVs [40,77]. For example, Liu, et al. [45]
concluded that the higher the population density in the critical value range, the higher the
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value of ESVs in areas with a high richness of land cover types. Wang, et al. [71] showed that
the interaction between the NPP and soil conservation increased when the slope decreased,
indicating that the synergy of these driving factors can be increased by changing the driving
factors of the ESVs. Pan, et al. [41] showed that the differences in the spatial distribution
of ESVs in the study area were caused by the synergistic effects of anthropogenic factors,
natural conditions, and landscape patterns. This paper quantitatively analyzes the effects
of the HAI in synergy with other driving factors on ESVs and lays the foundation for
exploring the differences in the spatial distribution of ESVs and their complex relationships
with their driving factors.

4.3. Limitations and Future Work

The study of the factors influencing ESVs currently needs further improvement. This
paper analyzes the importance of nine driving factors (HAI, GPP, Slope, DEM, POP, Temp,
GDP, Pre and PM) on ESVs; however, ESVs also respond to other influencing factors such as
oxygen release [57], the normalized difference vegetation index [41] and soil conditions [40].
Therefore, further refinement is still needed to comprehensively consider the effects of
driving factors on ESVs in future studies to fully reflect the values of the ESVs. In addition,
the data used in this paper may have had accuracy uncertainties of their own due to the
limitations and effects of the raw data and other conditions. Therefore, data with a higher
inversion accuracy can be used to improve the analysis results in future studies.

Furthermore, this study only analyzed the effect of the HAI in synergy with other
driving factors on ESVs and did not investigate the effects of other driving factors in
synergy with each other on the ESVs. In future work, the effects on ESVs of the synergies
of these other driving factors with each other will be developed. In addition, although
this study analyzed the impact of driver synergies on ESVs, drivers such as other natural
conditions and policies in the different study areas could not be quantified, and the impacts
of these drivers were not analyzed. In future research, some policies and other natural
conditions can be included as impact factor indicators.

5. Conclusions

In this paper, we studied the impact of land use changes on ESVs in the rapidly-
developing Dongting Lake region in 2000, 2005, 2010 and 2018, and quantified the impacts
of individual driving factors and their synergies on the ESVs using XGBoost models. The
conclusions were as follows:

(1) The largest changes in land use areas of the Dongting Lake from 2000 to 2018 were in
cropland (2.54% decrease) and construction land (plus 1.46%) and the largest values
of dynamic degree were in unused land use types, followed by construction land and
wetlands.

(2) The ESVs of the Dongting Lake showed an increasing trend, and the forestland ESVs
were the highest, accounting for approximately 44.65% of the total value. Among the
ESVs functions, water containment, waste treatment, soil formation and protection,
biodiversity conservation and climate regulation contributed the most to the ESVs,
with a combined contribution of 76.64% to 76.99%.

(3) The integrated intensity of anthropogenic disturbance showed a U-shaped spatial
distribution, decreasing from U1 to U3. The driving factors in descending order of
importance were HAI, GPP, Slope, DEM, POP, Temp, GDP, Pre and PM.

(4) When the GPP was low (GPP < 900), the SHAP value of the high HAI was greater
than zero, indicating that an increase in the GPP of the Dongting Lake increases the
ESVs. When the SHAP value of the DEM was greater than zero, an increase in the
DEM led to an increase in the ESVs. Moreover, the high DEM values and low HAI
values indicated that the ESVs tended to be lower.
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