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Abstract: Ecological restoration plays an important role in enhancing carbon sequestration ability
in karst areas, and soil organic matter is one of the main carbon reservoirs in karst key zones. The
serious soil erosion in karst areas leads to the loss of soil organic matter (SOM). However, the
distribution characteristics of SOM and its response mechanism to soil erosion in the process of
rocky desertification control have rarely been reported. In this study, soil samples of five restoration
types (abandoned land, AL; grassland, GL; peanut cultivated land, PCL; Zanthoxylum bungeanum
land, ZBL; forest, FS) were collected in typical karst rocky desertification drainage, south China.
By measuring soil organic carbon (SOC), dissolved organic carbon (DOC), and δ13Csoc values and
combining with spectral tools, the distribution and isotopic composition of soil shallow organic
carbon in definitized karst drainage was definitized and the response of DOM spectral characteristics
to soil erosion was explored. The results showed that three kinds of fluorescence components were
detected by fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC), C1
and C2 were humus-like, and C2 was protein-like. Abandoned could be a more suitable control
measure for enhancing SOC quality in the karst regions of south China. The variation trend of SOC
content, δ13Csoc values, spectral indexes, and the distribution of fluorescence components from the
midstream to downstream of the drainage indicated the soil redistribution. This study provides basic
scientific data for karst rocky desertification control and for enhancing the soil carbon sequestration
ability of karst.

Keywords: soil organic carbon; vegetation restoration; soil erosion; dissolved organic matter; stable
carbon isotope; karst

1. Introduction

Soil organic carbon pool is the largest carbon pool in terrestrial ecosystems and an
important part of the global carbon cycle [1,2]. Improving soil carbon sequestration ability is
an important aspect of achieving carbon peak and carbon neutrality in China [3]. Dissolved
organic matter (DOM) is widely found in soil [4], and is the most active and bioavailable
component in soil organic matter (SOM), with strong reactivity and migration ability [5].
DOM can combine with soil particles and coexist with minerals, thus becoming part of the
organic carbon pool [6]. DOM plays an important role in the biogeochemical cycle of carbon
and other elements by influencing the adsorption, dynamic displacement, residence time,
and microbial availability of soil organic matter, and it is the core of the study of carbon
sequestration and nutrient availability in soil [1,7]. DOM characteristics are closely related
to biogeochemical processes involved in periodic changes of soil [8,9], and soil erosion is
an important factor leading to spatial changes of DOM [10]. The process of soil erosion
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generally includes four stages: separation, decomposition, migration, and deposition [1].
These stages will not only lead to changes in the spatial distribution of soil organic matter
content, but will also lead to changes in the properties of soil organic matter [7,10].

UV–visible absorption spectrum and fluorescence spectrum are widely used optical
tools to obtain the source, composition, and activity of organic matter in soil or water
environment [10,11]. Stable carbon isotope can be used as a marker to indicate the source,
transformation, and release of soil organic carbon [12,13]. Studies by Yang et al. [14]
showed that fluorescence EEM-PARAFAC was effective in discriminating DOM sources.
He et al. [15] compared the spectral characteristics of alkaline extractable organic matter
in pore water and river sediments to understand the distribution behavior of sediment
organic matter between dissolved phase and granular phase. Che et al. [16] studied the
turnover of organic carbon in frozen soil by using stable carbon isotope technology. Spectral
analysis and stable carbon isotope technology can effectively distinguish the distribution
and migration process of carbon elements.

Carbon sinks in karst regions around the world account for more than one-third of
the global “missing sinks” [17,18]. According to zoning calculation, carbon sinks in karst
regions in China amount to 36,991 million tons [19], making it significant for improving
ecological carbon sink capacity [20]. The soil habitat in karst areas is fragile and susceptible
to erosion. Karst areas in China are mainly distributed in Yunnan, Guangxi, and Guizhou
provinces. Since the ninth Five-Year Plan, focusing on the problems of karst ecological
restoration and rocky desertification control, systematic theoretical studies have been
carried out on karst ecological restoration and rocky desertification control in karst areas in
south China, and a series of comprehensive biological and engineering measures have been
taken to solve the problems of rocky desertification and soil erosion [21]. Previous studies
on karst ecological restoration mostly focused on the development of economic vegetation
restoration models [22,23], soil physical and chemical properties of different vegetation
types used for restoration [24], and soil fertility [25,26]. Although some studies have proved
that vegetation restoration significantly improved SOC in karst rocky desertification areas
in south China, and that restoration of abandoned land has advantages in karst areas [24],
the study of soil carbon turnover in karst regions still needs to be advanced. This study
focused on the different vegetation restoration soils in typical karst rocky desertification
drainage; specifically, this study definitized the distribution and isotopic composition of
soil organic carbon in abandoned land (AL), grassland (GL), peanut cultivated land (PCL),
Zanthoxylum bungeanum land (ZBL), and forest (FS), and explored the effects of vegetation
restoration and soil erosion on the distribution of soil organic matter. We hypothesize that
(1) the effect of abandoned land on SOC conservation is better than that of restoration land
with other vegetation and (2) there is an obvious redistribution of soil organic carbon from
upstream to downstream.

2. Materials and Methods
2.1. Study Area

The karst area centered on Guizhou Plateau in south China is the largest and most
concentrated karst ecologically fragile area in the world, covering an area of more than
55 × 104 km2 [22]. It is also the most typical karst development, the most complex, and the
most abundant in landscape types. Rock desertification is the most serious ecological and
environmental problem facing this region [22]. We selected the representative Chaeryan
drainage as the research area in the Guizhou plateau mountainous area, which represents
the overall structure of the karst environment in South China (Figure 1). The local climate is
a south subtropical, dry, hot valley climate with an average annual precipitation of 1100 mm
and an average annual temperature of 18.4 ◦C [27]. The drainage has an elevation range of
607–890 m, presenting a terrain pattern of high in the south and low in the northeast. Heavy
rain is frequent in the wet season, and two discontinuous main ephemeral streams and one
confluence point are formed in the drainage due to rainfall events, while the flow is cut off
in the calm and dry seasons. The soil distribution in the region is highly heterogeneous and
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barren, mainly yellow soil and yellow lime soil with an average thickness of 25 ± 10 cm and
a rock outcrop ratio of 90%, and the soil is seriously eroded [27,28]. The vegetation is mainly
broadleaved forest, and coniferous and broadleaved mixed forest and shrub. The original
vegetation is seriously damaged, and now it is mainly secondary vegetation. The main
land use types are agricultural farmland, abandoned land, forestland, etc. For ecological
restoration of rocky desertification and regional economic development, Zanthoxyhum
planispinum var. Dingtanensis is planted in a large number in the drainage area.
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Figure 1. The location and sample point distribution of the drainage.

2.2. Sample Collection and Preparation
2.2.1. Sample Collection

According to the terrain distribution characteristics of the drainage, a total of 14
sampling points were set up in the upper reaches (A1), middle reaches (A2), and lower
reaches (A3) of the drainage during the wet season in August 2020. The sample points
were classified by ground potential difference (site) and vegetation cover type. The basic
information of the sample points is shown in Table 1. The types of vegetation restoration
included abandoned land (AL), grassland (GL), peanut cultivated land (PCL), Zanthoxylum
bungeanum land (ZBL), and forest (FS). Two soil layers of 0–15 cm and 15–30 cm were
collected, and three parallel samples were collected.

Table 1. Basic information of sampling points.

Site Vegetation
Restoration Type Rock Outcrop Ratio Slope Vegetation

Coverage

A1 GL 0% 3◦ 95%
A1 GL 5% 2◦ 95%
A1 FS 50% 5◦ 80%
A1 PCL 0% 5◦ 99%
A1 ZBL 50% 5◦ 50%
A2 AL 20% 3◦ 70%
A2 ZBL 50% 5◦ 50%
A2 PCL 15% 2◦ 30%
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Table 1. Cont.

Site Vegetation
Restoration Type Rock Outcrop Ratio Slope Vegetation

Coverage

A2 GL 5% 2◦ 95%
A2 ZBL 10% 2◦ 40%
A2 ZBL 40% 2◦ 38%
A3 ZBL 40% 2◦ 38%
A3 GL 5% 2◦ 95%
A3 FS 55% 5◦ 75%

A1: upper reaches; A2: middle reaches; A3: lower reaches; AL: abandoned land; GL: grassland; PCL: peanut
cultivated land; ZBL: Zanthoxylum bungeanum land; FS: forest.

2.2.2. Laboratory Analysis

Carbon stable isotope determination: Soil samples (5 g) were weighed with a 60-mesh
sieve, soaked in 1 mol/L hydrochloric acid solution for 24 h to remove the carbonates in the
soil, washed with deionized water to neutral, dried at 60 ◦C, and then ground. Samples of
2–5 mg were weighed with a 1/10,000 balance (WXTS3DU, Mettler Toledo, Zurich, Switzer-
land) and wrapped in tin cups. The δ13Csoc of the samples was determined by elemental
analysis–stable isotope ratio mass spectrometry (EA IsoLink & Delta V Advantage, Thermo
Fisher, Waltham, MA, USA). Test accuracy was ≤0.1‰

Preparation of DOM solution: The air-dried soil sample was ground through a 60-mesh
screen. A certain amount of screened and air-dried soil was weighed, and ultra-pure water
was added at the soil–water ratio of 1:5. After shaking and centrifugation, the supernatant
was filtered through 0.22 µm polyethersulfone drainage membrane to obtain soil DOM
solution. The DOC content of all samples was diluted to less than 10 mg/L. A TOC analyzer
(multi N/C 3100, Analytik jena, Jena, Germany) was used to determine DOC, ensuring that
the UV–visible absorbance at 254 nm was less than 0.3, so as to reduce the internal filtration
effect of subsequent fluorescence scanning [29].

Spectral scanning: UV–visible absorption spectra were scanned using a UV–visible
absorption spectrometer (SPECORD Plus 200, Analytik Jena, Jena, Germany), with ultra-
pure water (CascadaII, I20, Pall, New York, NY, USA) blank. In the range of 200~800 nm,
quartz cuvettes with optical path of 10 mm were scanned at intervals of 1 nm. A fluorescence
spectrometer (RF-5301PC, Shimadzu, Japan) was used for 3D fluorescence spectra. The Ex
scanning range was 220–500 nm, the Em scanning range was 250–600 nm, the Ex interval
was 5 nm, the Em interval was 1 nm, and the scanning speed was 2400 nm/min. Ultra-
pure water (CascadaII, I20, Pall, New York, NY, USA) blank was deducted to remove
scattering [30].

Determination of SOC: Soil samples (5 g) were weighed with a 60-mesh sieve, soaked
in 1 mol·L−1 hydrochloric acid solution for 24 h to remove the carbonates in the soil, washed
with deionized water to neutral, dried at 60 ◦C, and then ground. Samples of 20–50 mg
were weighed with a 1/10,000 balance and wrapped in tin cups. The SOC of the samples
was determined by an elemental analyzer (FlashSmart, Thermo Fisher, Waltham, MA
USA). For specific methods, please refer to Determination of soil organic carbon by combustion
oxidation—non-dispersive infrared method (HJ 695-2014).

2.3. PARAFAC

Parallel factor analysis (PARAFAC) was used to analyze EEMs and identify the number,
type, and intensity of CDOM fluorophore. PARAFAC consensus identified 84 EEMs
(2 layers, 14 samples, and 3 replicates), and DOMFluor toolbox was used to analyze
the matrix group. Component models (2–7) with non-negative constraints were used
in the PARAFAC analysis. Residual analysis, dichotomy analysis, random initialization,
and visual detection were used to determine the number of fluorescent components [31].
During the analysis, four samples were removed as outliers. The relative abundance of each
component was reflected by the maximum fluorescence intensity (Fmax) per unit DOC
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(Fmax/DOC), and the percentage of each PARAFAC component in the total fluorescence
was calculated as the Fmax value of each component divided by the sum of the Fmax of
each component.

2.4. δ13Csoc and Spectral Index

Formula for calculating δ13Csoc isotope ratio of samples:

δ13C =

[(
13C/12C

)
sample

/
(

13C/12C
)

standard

]
× 1000‰ (1)

the reference standard material uses V-PDB (δ13C = 1.124‰) and USGS40 (δ13C = –26.39 ± 0.04‰).
Absorption coefficient calculation formula:

a(λ) = 2.303A(λ)/r (2)

where a(λ) is the absorption coefficient at wavelength λ, and r is the optical path length
(r = 0.01 m). The ratio of absorbance at 250 nm to that at 365 nm is defined as E2:E3, which
is inversely proportional to the average molecular weight of DOM. SUVA 254 is an indicator
of aromaticity, calculated by a(254)/DOC [L·mg /(C·m)], which is positively correlated
with the aromaticity and hydrophobicity of DOM. SUVA 260 represents the content of
hydrophobic components, is a(260)/DOC [L·mg/(C·m)], and is proportional to the content
of hydrophobic fraction [4,5,32–34].

The fluorescence index (FI) is the ratio of fluorescence intensity at 470 nm and 520 nm
when the excitation wavelength is 370 nm and is widely used to distinguish between
exogenous DOM and microbial DOM (FI > 1.9, microbial; FI < 1.4, exogenous). The
humification index (HIX) is the ratio of the integral values of fluorescence intensity between
435–480 nm and 300–345 nm when the excitation wavelength is 254 nm, and indicates the
humus content or degree of humification. HIX increases with the enhancement of humic
characteristics. The biological index (BIX) is the ratio of excitation wave length of 310 nm
and emission wavelength of fluorescence intensity at 380 nm and 430 nm, representing the
relative contribution of authigenes (BIX > 1, autochthonous; BIX < 1, allochthonous) [35–39].

2.5. Statistical Analysis

Statistical analysis was performed using IMB SPSS Statistics 22 (IBM Inc., Chicago,
IL, USA). Differences in SOC content, DOC content, and spectral indexes of δ13Csoc values
between site and depth were assessed by one-way ANOVA and least significant difference
(LSD) test at 95% confidence level. p < 0.05 was significant.

3. Results and Analysis

3.1. SOC and δ13Csoc Distribution Characteristics of Different Vegetation Restoration Types
and Sites

In the 0–15 cm soil layer, the average SOC content was FS > ZBL > AL > PCL > GL,
the average DOC content was FS > GL > PCL > ZBL > AL. In the 15–20 cm soil layer, the
average SOC content was FS > ZBL > AL > PCL > GL, the average DOC content was PCL >
FS > GL > AL > ZBL. Those showed that the SOC and DOC values of soil covered by forest
were higher, while the SOC and DOC values of soil abandoned were lower (Figure 2). In
terms of spatial distribution, SOC content showed a distribution characteristic of A1 > A2 >
A3. In the 0–15 cm soil layer, DOC content at site A3 was 24.19% higher than that at site A1
and 52.43% higher than that at site A2 (p < 0.05), and there was no significant difference
in DOC content in the 15–30 cm soil layer (p > 0.05) (Table 2). The SOC content and DOC
content in the 0–15 cm soil layer were higher than those in the 15–30 cm soil layer (Table 2).
In addition, soil δ13Csoc values varied from −24.18‰ to 19.51‰ (Table 2), showing the
distribution characteristics of A2 > A1 > A3, indicating that the vegetation overlying the
soil was mainly C3 plants [40].
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Figure 2. Box plots of soil SOC (a), DOC (b), and δ13Csoc (c) for 5 different vegetation restoration
types. The boxes and the horizontal lines represent the mean and the median, respectively. The
horizontal edge of the box represents 25% and 75% digits, the I shape line represents 10% and 90%
digits, and the discrete points represent outliers. Different letters in the same soil layer indicate
significant differences between land use types at p < 0.05.

Table 2. The range of soil pH, SOC, DOC, and δ13Csoc in the drainage.

Sites Depth (cm) pH SOC (g/kg) DOC (mg/kg) δ13Csoc (‰)

A1 0–15 7.30 ± 0.07 a 31.93 ± 1.73 a 96.95 ± 7.40 ab −21.53 ± 0.28 b
A1 15–30 7.36 ± 0.07 a 27.06 ± 1.19 a 85.79 ± 7.20 ab −21.97 ± 0.36 ab
A2 0–15 7.34 ± 0.07 a 28.27 ± 1.69 a 79.36 ± 4.13 b −21.06 ± 0.23 b
A2 15–30 7.41 ± 0.05 a 25.35 ± 1.37 a 75.88 ± 3.06 a −21.79 ± 0.27 a
A3 0–15 7.46 ± 0.09 a 27.73 ± 3.05 b 125.99 ± 13.29 a −22.44 ± 0.30 b
A3 15–30 7.52 ± 0.09 a 26.09 ± 2.82 b 89.76 ± 7.83 a −22.64 ± 0.29 b

Different letters in the same soil layer indicate significant differences between land use types at p < 0.05. SOC: soil
organic carbon; DOC: dissolved organic carbon.

3.2. Spectral Parameter Characteristic
3.2.1. Characteristics of UV–Visible Absorption Spectrum

Soil SUVA254 values ranged from 0.41 to 1.62 L·mg/(C·m), with an average value of
0.89 ± 0.03 L·mg/(C·m). There was no significant difference in soil SUVA254 values in
different plants. The values of SUVA260 ranged from 0.33 to 1.31 L·mg/(C·m), with an
average value of 0.75 ± 0.03 L·mg/(C·m). The distribution of SUVA260 values was similar
to that of SUVA254 values (Figure 3), compared with other vegetation restoration types,
the difference between the 0–15 cm soil layer and the 15–30 cm soil layer was greater when
covered by forest. E2:E3 values ranged from 3.11 to 9.45 L·mg/(C·m), with an average of
4.88 ± 0.13 L·mg/(C·m). As can be seen from UV–visible absorption indexes, the 0–15 cm
soil layer covered by forest had higher aromaticity, hydrophobicity, and molecular weight
compared with the 15–30 cm soil layer, while the 15–30 cm soil layer had more stable
aromaticity, hydrophobicity, and molecular weight. In addition, the 15–30 cm soil layer had
slightly higher aromaticity and hydrophobicity compared with the 0–15 cm soil layer.

The values of SUVA254 and SUVA260 did not change significantly at sites A1, A2, and
A3 (Figure 4). E2:E3 of site A1 at 0–15 cm was significantly higher than that of site A2 and
A3, indicating its low aromaticity and low molecular weight.
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3.2.2. Characteristics of Fluorescence

FI values of soil samples ranged from 1.54 to 2.40, with an average of 1.75 ± 0.02,
indicating that the soil contained microbial DOM sources [36]. FI values of all samples were
less than 1.90 and greater than 1.40 (Figures 5 and 6), and values did not vary much between
the two depths, nor did they change with the site. It showed that the upper, middle, and
lower reaches of the soil had similar microbial sources and exogenous sources [37,38]. HIX
values ranged from 0.75 to 2.88, with an average of 1.80 ± 0.07. In the 0–15 cm soil layer,
HIX was 0.2 higher in A2 than in A1. In the 15–30 cm soil layer, HIX was 0.38 higher in
A2 than in A1 (Figure 6). These showed that A1 soil had a higher humification degree and
contained more aromatic substances [39]. The change from A2 to A3 was reversed from A1
to A2, with A3 having the highest degree of humification. BIX values were mostly below
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0.8 (Figure 6), indicating that the soil microbial activity was weak [39]. BIX in the 0–15 cm
soil layer was lower than that in 15–30 cm soil layer, and the closer the samples were to A3,
the more obvious the difference between the two layers was, indicating that the exogenous
soil in the 0–15 cm soil layer was stronger, and the endogenous behavior in the 15–30 cm
soil layer was stronger moving from A1 to A3 [39].
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discrete points represent outliers. Different letters in same soil layer indicate significant differences
between land use types at p < 0.05.
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3.3. PARAFAC Component Analysis of Fluorescent Substances

EEM-PARAFAC was used to identify soil sample DOM fluorescence components in
the drainage, and three fluorescence components were obtained (Figure 7). After comparing
with C1(Ex/Em = 320/434), C2 (Ex/Em = 290(360)/485) can be classified as exogenous
humic-like [7,41], C3 (Ex/Em = 280/318) can be classified as endogenous protein-like [42].
Each fluorescence component and its quantitative analysis is shown in Figure 8. The relative
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abundance of C3 component at three sites and two depths was the highest, accounting
for more than 35%, while the fluorescence component at A3 site was the lowest, and it
decreased by 52% compared to A2.
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4. Discussion
4.1. Spectral Characteristics and Isotopic Composition of Soils of Different Vegetation
Restoration Types

Generally speaking, the shallow soil organic matter mainly comes from the direct input
of plant litters, and the overlying vegetation types directly affect the SOC content [43–46].
DOC is a more active part in SOC, and it is closely related to microorganisms, temperature,
humidity, and other factors [47]. In this study, we controlled sampling in the same period,
the hydrothermal conditions in the region are relatively uniform [27], and microbial com-
munity structure and activity can be consistent. However, the distribution of land use types
in the drainages is broken, and soil covered by different vegetation has frequent material
exchange activities; these may lead to the DOC content not being significantly different
between land use types.

The δ13Csoc and spectral indices of the five vegetation restoration types were not
significantly different. The mean values of FI, HIX, and BIX were 1.75 ± 0.02, 1.80 ± 0.07,
and 0.71 ± 0.01, respectively. There were no significant differences in fluorescence indexes
between different vegetation restoration types (Figure 5), possibly due to the growth of
vascular plants generating the same components, especially the aromatic material that can
remain unchanged in the biodegradation process [48]. In comparison, the FI and BIX values
of soil covered by forest were the highest, which reflected the highest microbial activity
and autotrophic productivity in the soil [36,40]. The δ13Csoc values of abandoned soil were
more positive, and the enrichment of organic carbon was more obvious. The distribution of
SUVA260 was similar to that of SUVA254, and it was the highest in abandoned land. The
spectral index of abandoned land was more stable, and the soil had stronger aromaticity
and higher molecular weight. According to the field investigation, the vegetation coverage
of abandoned land was high (Table 1) and the vegetation diversity was high, indicating that
natural restoration and abandonment play a positive role in restoring the ecological function
of soil. In addition, as the dominant species in rock desertification control, Zanthoxyhum
planispinum var. Dingtanensis made a great contribution in rock desertification control [18,23].
It can be seen from this study that aromaticity, hydrophobicity, and molecular weight of
different soil layers planted with Zanthoxyhum planispinum var. Dingtanensis were relatively
stable, and the soil in the 15–30 layer had higher aromaticity, hydrophobicity, and molecular
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weight, and the positive effect of Zanthoxyhum planispinum var. Dingtanensis on soil was
basically the same as that of the abandonment restoration method.

This study confirmed the positive effect of Zanthoxyhum planispinum var. Dingtanensis
on karst soil restoration. Zanthoxyhum planispinum var. Dingtanensis forest not only plays a
role in soil fixation, but also is an important economic forest in this environment [23]. There-
fore, from the perspective of management, expanding the planting area of economic forest
can promote the balanced development of local economy and environmental protection.

4.2. Effects of Soil Erosion on the Distribution of Soil Organic Matter in the Drainage

As mentioned above, the value of SUVA254 is directly proportional to the soil aromatic-
ity, and the higher the aromaticity is, the more stable the soil organic matter is. In this study,
the mean value of SUVA254 in the drainage was 0.89 ± 0.03, and it was significantly lower
than that in the Loess Hilly drainage (the mean value of fallow farmland was the lowest:
4.86 ± 0.47) [7]; however, it was close to the periodically washed water-level fluctuation
zone of the Three Gorges (mean: 0.36 ± 0.27) [49]. Due to the scouring of periodic floods,
the soil and sediment organic matter in the water-level fluctuation zone will be released
into the water [50]. Under the same conditions of plant litters input, the SUVA254 value
was 5.46 times higher than that in the rocky desertification drainage, and annual rainfall
(542.5 mm) [7] was 2.03 times higher in the Rocky desertification drainage (1100 mm) than
in the Loess Hilly area, indicating that soil erosion by rainfall was significantly more serious
in the rocky desertification drainage than in other areas.

In this study, SUVA254 and BIX values showed a downward trend from site A2 to
site A3, showing that there was less aromaticity in site A3 and it was more exogenous.
Moreover, Fmax/DOC of each component at sites A2 to A3 showed a decreasing trend,
and the endogenous component (C3) decreased by 52% at A3 compared to that at A2,
while DOC content increased. The above results are similar to the research results of
Zhang et al. [10] and Liu et al. [7], which showed the change trend of soil from A2 erosion
to A3 deposition. In recent studies, Zhang et al. [10] believed that soil erosion breaks
the surface soil aggregates and other structures, and unstable carbon is deposited at a
lower place with soil particles subjected to runoff, soil midflow, gravity, and other factors.
However, the change trend of each index from A1 to A2 showed an opposite pattern; most
of Zanthoxyhum planispinum var. Dingtanensis land is concentrated in the middle reaches
of drainage, and the effect of soil and water conservation of Zanthoxyhum planispinum
var. Dingtanensis may be the reason why there was no continuous erosion and deposition
pattern in A1–A2–A3. As described in the results and analysis section, from A1 to A2
and then to A3, the soil had similar microbial and endogenous characteristics, and the
microbial activity was generally low, the variation trend of δ13Csoc values from upstream to
downstream was the same as that of BIX, both of which increased first and then decreased
(Figures 3 and 7). Therefore, A1 and A3 have stronger microbial activity than does A2. In
the drainage area, the SOC and DOC contents in the 15–30 cm soil layer were lower than
those in the 0–15 cm soil layer, while there was no significant difference in the DOC content
in the 15–30 cm soil layer (Table 2). Moreover, the exogenous characteristics of the 0–15 cm
soil layer were more obvious, indicating that the degree of soil erosion redistribution in the
0–15 cm soil layer was more obvious, and the unstable carbon in the 0–15 cm soil layer was
easier to release. Therefore, it can be considered that planting plants with developed and
short roots can help to preserve surface soil organic carbon. In addition, three fluorescent
components were detected, C1 and C2 are exogenous humus-like, and C3 is endogenous
protein-like. All soil samples showed the highest relative abundance of C3 component
(Figure 8), and it is consistent with the previous analysis results of the HIX value (Figure 6),
that is, the DOM humus degree of the whole soil in the drainage was weak and there
was an important recent natural source. Moreover, the components were similar to those
detected by Yao Xin et al. [51] in a karst water system, which reflected that soil organic
matter in karst areas has a strong release effect to groundwater and surface water systems
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under the action of rainfall in the wet season, and compounds rich in sugar and amino
sugar are prone to preferential leaching and migration.

Excessive loss of SOM from the soil inevitably leads to soil nutrient deficiencies.
Therefore, it is necessary to reduce farming and increase the area of trees and economic
forests to combat physical erosion. At the same time, interplanting plants with shorter
roots can preserve the organic carbon in the topsoil.

5. Conclusions

In this study, we collected soil from five vegetation restoration types in typical karst
rocky desertification drainage on the basis of altitude. SOM was characterized by stable
isotopes and fluorescence spectroscopy, and the key findings were as follows: Soil humi-
fication is weak and microbial activity is low in the Rocky desertification drainage. The
changes of organic carbon content, δ13Csoc, and various spectral indexes indicated that
SOC in abandoned land was more enriched than in other vegetation restoration types,
and the spectral properties of the soil were more stable, aromaticity was stronger, and
molecular weight was larger. Thus, abandonment could be a more suitable control measure
for enhancing SOC quality in the karst regions of south China. Three kinds of fluorescence
components were detected: C1 and C2, which are exogenous humus-like, and C3, which is
endogenous protein-like. The changes of organic carbon content, δ13Csoc, various spectral
indexes, and fluorescence components from A2 to A3 showed the change law of soil redis-
tribution. The response of organic carbon erosion in the 0–15 cm soil layer was stronger
than that in the 15–30 cm soil layer. Soil erosion preferentially destroyed aggregates and
other structures in the upper soil, and unstable carbon was deposited in the lower part of
the soil by runoff, soil flow, and gravity.

In rocky desertification area with serious soil erosion, SOM had an obvious response to
soil erosion, especially in the 0–15 cm soil. Without considering the time cost, abandonment
is more beneficial to soil stability. In addition, consideration can be given to maintaining
shallow SOC by interplanting plants with developed and short roots. Therefore, for eroded
soil, more attention should be paid to where organic carbon goes, and emphasizing carbon
management rather than carbon storage.
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