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Abstract: Metal mesh devices (MMDs) are novel materials that enable the precise separation of
particles by size. Structurally, MMDs consist of a periodic arrangement of square apertures of
characteristic shapes and sizes on a thin nickel membrane. The present study describes the separation
of aerosol particles using palm-top-size collection devices equipped with three types of MMDs
differing in pore size. Aerosols were collected at a farm located in the suburbs of Nairobi, Kenya;
aerosol particles were isolated, and pathogenic bacteria were identified in this microflora by next-
generation sequencing analysis. The composition of the microflora in aerosol particles was found to
depend on particle size. Gene fragments were obtained from the collected aerosols by PCR using
primers specific for the genus Mycobacterium. This analysis showed that Mycobacterium obuense, a
non-tuberculous species of mycobacteria that causes lung diseases, was present in these aerosols.
These findings showed that application of this MMD analytical protocol to aerosol particles can
facilitate the investigation of airborne pathogenic bacteria.

Keywords: aerosol; bioaerosol; next generation sequencing; metal mesh devices (MMDs); particulate
matter; pathogenic bacteria

1. Introduction

The rapid separation and detection of aerosol particles in the field is essential for
the assessment of environmental pollutants [1,2]. Aerosols, also called particulate matter
(PM), have been shown to cause lung diseases when inhaled by humans, leading to their
legal regulation in many countries. Of particular concern are particles <10 µm in diameter
(PM10), which can invade the lungs, and particles <2.5 µm in diameter (PM2.5), which
can invade deep lung tissue and the subepithelial environment. These fine particles have
been shown to adversely affect health through oxidative stress and are associated with
risks of allergies, asthma, cardiovascular diseases, and silicosis/pulmonary fibrosis [3–6].
In addition, since soil, water, sewage, and animal waste are major sources of aerosols,
bacteria and viruses in these materials can bind to various kinds of aerosol particles, which
contributes significantly to their widespread distribution. Among these aerosol particles,
PM2.5 is expected to be associated with the transmission of respiratory infections because
of its small size, which allows it to penetrate deeply into the respiratory system. Indeed,
PM2.5 concentration is a factor related to bacterial community structure in air [7,8].
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Several studies have assessed bioaerosols in natural environments. For example,
pathogens detected in dust obtained from arid climates in Africa have been associated
with local infections and allergies [9–11]. The effects of environmental bioaerosols have
also been evaluated. For example, workers in the waste recycling industry, who are often
exposed to very high levels of microorganisms, have high respiratory symptoms and airway
inflammation [1]. In addition, occupational and non-occupational exposure to legionella
bacteria in bioaerosols has been found to cause legionellosis [12–14]. These legionella
bacteria have been found in many aquatic environments, including natural and artificial
water systems, such as bathrooms, cooling systems, and water misting systems, leading to
legionellosis outbreaks. Epidemiological studies have assessed the transmission by aerosols
of infectious diseases, including Kawasaki disease [15] and SARS [16,17]. In addition,
the recent worldwide outbreak of SARS-CoV-2 shows that airborne infections caused by
bioaerosol inhalation can limit human activities and pose a risk of serious economic damage
to society [18–20].

Aerosols are frequently collected by filtration because of the convenience of collecting
samples using relatively little equipment [9–11,21]. Our research group has developed
novel membrane filters, called metal mesh devices (MMDs), to fractionate PM for qualita-
tive and quantitative evaluation. MMDs consist of a periodic structure of square apertures
of characteristic size, arranged on a thin nickel membrane. In contrast to common synthetic
resin membrane filters, MMDs have uniform pores and thus exhibit superior size-exclusion
separation [22]. In addition, MMDs can only transmit electromagnetic waves in the fre-
quency range determined by their periodic structure [23]. Because this optical property
is dependent on the amount of material trapped on the MMDs, these membranes can be
employed as label-free optical sensors. MMDs have been shown to easily separate and
detect proteins, DNA, and living cells, as well as to fractionate and evaluate PMs both
qualitatively and quantitatively [24,25].

The present study describes the development of a method to evaluate airborne bacte-
ria, combining precise fractionation using MMDs and metagenomic analysis using next-
generation sequencing (NGS). The aim of this study is to establish a method for evaluating
airborne bacterial flora, which are difficult to evaluate using conventional methods, and
to assess the associations between PMs and airborne bacteria for use in infection preven-
tion. An analytical protocol that included a simple collection method for bioaerosols was
therefore established.

Tuberculosis is a serious health problem in developing countries in Africa [26]. Because
tuberculosis is an airborne infectious disease, analysis of bioaerosols may lead to a method
to prevent infection. Thus, bioaerosols were collected and analyzed using MMDs during
the dry season, when the climate is stable, from a farm in Githunguri District, a suburb
of Nairobi County, Kenya. The farm was considered a suitable site for a first trial of this
technology because a relatively diverse range of plants and livestock are cultivated at the
farm, suggesting that the bacterial flora would be diverse. Bacterial DNA was extracted
from these collected aerosol particles and subjected to metagenomic analysis to evaluate
the bacterial composition in the air. The results of these analyses demonstrated that MMDs
could fractionate aerosol particles by size, enabling the subsequent analysis of microflora
and the detection of specific pathogens in the collected samples.

2. Materials and Methods
2.1. Preparation of the MMD Filter Units

Figure 1A and Table 1 show the dimensions of single unit cells of three types of MMDs.
The MMDs were made from nickel and were manufactured using the electroforming
method. The MMDs were washed three times with 99.5% ethanol and pure water. After
complete drying, the MMDs were irradiated with excimer light (wavelength: 172 nm)
generated by an Excimer Photon Source Power Supply (Ushio Inc., Tokyo, Japan) filled
with N2 gas. Each MMD was fixed in a polyacetal cover with an opening 6 mm in diameter
(Figure 1B).
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Figure 1. Image of the metal mesh device (MMD). (A) Dimensions of a single unit cell representative
of the three types of MMD. D: aperture diameter of MMD; P: period of MMD; T: thickness of MMD.
(B) An MMD packaged in polyoxymethylene (POM).

Table 1. Properties of the MMDs used in this study.

Aperture Diameter (D) Thickness (T) Period (P)

1.0 µm 0.8 µm 1.4 µm
1.8 µm 1.0 µm 2.6 µm
4.5 µm 1.0 µm 6.4 µm

2.2. Collection of Aerosol Particles

A new type of portable air suction device was fabricated to capture aerosols from the
air (Figure 2). The two small air suction elements of this device are battery powered and
can draw 2 L/min (static pressure) of air from the air suction port. A stack of three types of
MMDs, fixed in the order of 4.5 µm, 1.8 µm, and 1.0 µm MMDs, were placed at the suction
port of this device, thus allowing air to pass through the MMDs. Suction was applied for
about 12 h at an air suction volume of about 1440 L, and the aerosol particles in the air were
separated by the three types of MMDs.

Aerosols were collected on three separate days, starting on 14 September 2016, at a
farm in Githunguri, a suburb of Nairobi, Kenya. With the approval of the farm owner, a
suction device was placed on the roof of a cowshed in open air. Air was suctioned during
the daytime on sunny days, with nine samples being collected. Temperature and humidity
were recorded as meteorological conditions. Collected MMDs containing aerosols were
stored under sterile containers at 4 ◦C.
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Figure 2. Schematic diagram showing the setup of the suction devices using stacked MMD sensors
to capture aerosol particles according to size. A low-flow-rate air suction device used 4.5 µm, 1.8 µm,
and 1.0 µm MMDs for collection of PM10, PM2.5, and PM1.0, respectively.

2.3. Analysis of Particle Size Distribution

The surfaces of the MMDs were evaluated by scanning electron microscopy (SEM;
S-3400N, Hitachi High-Tech Co., Tokyo, Japan). Four SEM images of each MMD were
evaluated and the contour shapes of the particles were determined using ImageJ/Fiji image
analysis software. Distribution graphs of particle size indicated by the long-axis diameter
were generated using OriginPro (Version 2021b, OriginLab Corporation, Northampton,
MA, USA).

2.4. Particle Counting by IR Transmittance Measurements

The transmittance IR spectra of the 1.8 µm MMD were acquired using Fourier trans-
form infrared spectroscopy (FT/IR-6600, JASCO International Co., Ltd., Tokyo, Japan).
The wavenumber resolution, cumulative number, and diameter values were set to 2 cm−1

(0.06 THz), eight measurements, and 6 mm, respectively. A previously described method
was used to estimate the number of aerosol particles from the frequency shift [23,24]. The
frequency shift (−∆ƒ) was calculated from the difference in the dip of the transmittance
peak before and after the capture of aerosol particles and was corrected by subtracting
the frequency shift of the MMD not exposed to aerosol particles. The calibration curve
for obtaining the number of particles for these frequency shift values was prepared as
follows. The aerosol was collected in Nagahama, Japan and the number of particles on
the MMD was counted using a phase contrast microscope (CX31, Olympus Co., Tokyo,
Japan) at a magnification of 200×. The average number of particles present in an area of
500 µm × 500 µm (n = 3) was calculated to obtain an estimate of the surface area of the
MMD (28.3 mm2). The number of aerosol particles collected in Kenya was estimated using
a calibration curve obtained using 1.8 µm MMDs.

2.5. Extraction of DNA from Aerosol Particles

DNA was extracted from the collected aerosols using NucleoSpin® Soil kits (Takara Bio
Inc., Shiga, Japan). Briefly, MMDs containing aerosols were removed from the polyacetal
containers and transferred to NucleoSpin® soil bead tubes containing ceramic beads. DNA
was subsequently extracted using the protocol described by the manufacturer, with each
sample yielding 40 µL of the final DNA extraction solution.

2.6. Preparation of 16S rDNA Samples

The V3–V4 region of 16S rDNA in the DNA samples extracted from the aerosol
particles was PCR amplified on a PCR thermal cycler SP (Model. TP400, Takara Bio,
Kusatsu, Japan), using the primers 341F/R805 (Table 2) [27,28]. Each 50 µL reaction mixture
contained 12 µL of DNA template, Tks Gflex™ DNA polymerase (Code. R060A, Takara Bio,
Kusatsu, Japan), and 1 µM of each primer. The amplification protocol consisted of 40 cycles
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of denaturation at 94 ◦C for 30 s, annealing at 50 ◦C for 30 s, and extension at 72 ◦C for
30 s. Indexed NGS adapters were attached to each amplified DNA fragment isolated by
the PCR products purification kit. Eight sets of forward primers (D501-08, Illumina Inc.,
San Diego, CA, USA) and two sets of reverse primers (D709-710, Illumina, San Diego, CA,
USA) were used. A second PCR amplification was performed using the same protocol as
above. Amplified DNA fragments were isolated from each solution using magnetic beads
DNA isolation kits (AMPure XP, Beckman Coulter Inc., La Brea, CA, USA), with the quality
of the 16S rDNA fragments determined using a capillary electrophoresis device (MultiNA,
Shimadzu Co., Kyoto, Japan). DNA concentrations were measured using Qubit dsDNA
HS assay kits (Thermo Fisher Scientific Inc., Waltham, MA, USA) and a Qubit fluorometer
(Thermo Fisher Scientific, Waltham, MA, USA).

Table 2. Primers used in this study.

Name Primer Sequence (5′–3′)

341F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG
R805 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC

MYCGEN-F AGAGTTTGATCCTGGCTCAG
MYCGEN-R TGCACACAGGCCACAAGGGA

2.7. Metagenomic Analysis Based on 16S rDNA Sequence Data

The sequences of the obtained 16S rDNA samples were determined by NGS sequenc-
ing (Miseq, Illumina, San Diego, CA, USA), with the 16S rDNA sequences analyzed using
the QIIME2 (Quantitative Insights Into Microbial Ecology; 2020.8) microbiome bioinformat-
ics platform 15 [29,30]. To eliminate noisy reads, DADA2, a plugin for QIIME2, was used
to eliminate sequence data with a quality score of <25 for both forward and reverse reads,
with the remaining 75% of the data was used for further analysis. The clustering sequences
from these data were treated as operational taxonomic units (OTUs), allowing their clas-
sification into species or genera by taxonomic analysis with reference to the Greengenes
database [31].

2.8. Detection of the Genus Mycobacterium

Multiplex PCR was performed using primers specific for the 16S rRNA gene of My-
cobacterium spp. (Table 2) [32,33]. Each reaction solution contained template DNA, 1.25 U
TaKaRa ExTaq HS, ExTaq buffer (Code. RR006A, Takara Bio, Kusatsu, Japan), and 1 µM
of each primer. The amplification protocol consisted of 35 cycles of denaturation at 94 ◦C
for 30 s, annealing at 62 ◦C for 1 min, and extension at 72 ◦C for 1 min. PCR products
were electrophoresed on 2% agarose gels, which were stained with ethidium bromide. The
amplified fragments were purified using AMPure XP magnetic beads DNA isolation kits,
and each fragment was ligated to 50 ng pMD20 T-vector. Following vector transformation
of Escherichia coli HST08, the subcloned vectors were obtained using E. coli HST08 Premium
Competent (Takara Bio, Kusatsu, Japan) kits and extracted by the alkaline SDS method.
The DNA inserts were subjected to DNA sequencing (Applied Biosystems 3130, Thermo
Fisher Scientific, Waltham, MA, USA) using a method based on the big dye terminator cycle
sequencing method and the M13 primers RV 3 (sense strand) and M4 (antisense strand),
as appropriate.

3. Results
3.1. Microflora Analysis of Aerosol Particles on MMDs

Aerosol particles were collected by size using the air suction device (Figure 2), taking
advantage of the fractionation capability of the stacked MMDs. The size-fractionated
particles were evaluated by SEM (Figure 3A). The average long-axis sizes and numbers (n)
of the particles recovered on the 4.5 µm, 1.8 µm, and 1.0 µm MMDs were 5.39 ± 4.9 µm
(n = 201), 1.4 ± 1.4 µm (n = 202), and 0.97 ± 0.49 µm (n = 490), respectively (Figure 3B).
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Figure 3. (A) SEM images of the surfaces of MMDs on which aerosol particles were collected with
the low-flow-rate air suction device. Size bar, 50 µm. (B) Distribution of the sizes of aerosol particles
captured on each pore size MMD.

To estimate the number of particles from the peak shift in the IR transmission spectrum,
a calibration curve was constructed using the relationship between the number of aerosol
particles counted by the microscope and the transmission peak [23,24]. The 1.8 µm MMD
had IR transmission characteristics that were approximately proportional to the number of
aerosol particles collected (Figure 4). The regression line was used to estimate the number
of aerosol particles collected in Kenya. The average value of the peak shifts of the collected
MMDs in Kenya was 1.2 ± 0.3 THz, and the number of aerosol particles was estimated to
be 3.1 ± 0.6 × 104 particles/MMD.

Figure 4. (A) Spectral changes over time for the 1.8 µm MMD, showing a shift of −3.15 THz after
collecting aerosol particles for 12 h. (B) The regression line of particle number vs. frequency shift for
particles captured by the 1.8 µm MMD (R2, 0.8153).
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Aerosol samples were collected by MMDs three times on three successive days. DNA
was extracted from aerosols collected from three different MMDs, and PCR was performed
using universal primers that amplify the V3–V4 region of bacterial 16S rDNA. The amount
of DNA obtained after amplification from each MMD collection was confirmed to be
approximately 40 ng by measurement using Qubit. Agarose electrophoresis showed that
the molecular weight of the amplified DNA fragment corresponded to the length of the
V3–V4 region (about 550 bp) (Figure 5). No DNA was amplified from samples extracted in
the same procedure from not used MMDs as negative controls.

Figure 5. PCR results obtained universal primers for bacterial 16SrDNA amplification. Negative
controls were subjected to the same procedures but without DNA extraction from MMD-captured
aerosol particles.

The average numbers of families, genera, and species identified from each OTU are
summarized in Table 3. The effective sequence information for each sample collected by
the low-flow-rate suction device ranged from 95,000 to 115,000 reads, and the numbers of
OTUs ranged from 87 to 139. The number of OTUs tended to decrease slightly as the pore
sizes of the MMDs decreased.

Table 3. Metagenome analysis of 16S rDNA extracted from aerosol particles collected with the air
suction devices.

MMD Size Reads OTUs Family Genus Species

4.5 µm 104,884 ± 6138 121 ± 18 90 ± 16 50 ± 12 26 ± 7
1.8 µm 105,624 ± 9921 104 ± 11 83 ± 8 53 ± 7 23 ± 5
1.0 µm 112,534 ± 2784 92 ± 6 71 ± 4 53 ± 4 25 ± 2

Metagenomic data analysis was performed with QIIME2, with a comparison of α-
diversity, a statistical index for phylogenetic diversity, shown in Figure 6. A larger index
indicates the presence of more diverse bacteria. These results indicate that the α-diversity of
microflora in aerosol particles tended to decrease as the pore size of the MMDs decreased.

The total number of OTUs obtained from the metagenome analysis of the airborne
microflora collected by the MMDs was 198, with genus or species identified for 118 of
these OTUs. The top 10 bacteria from the OTUs collected by each MMD are summarized in
Table 4. The 34 bacterial species classified as pathogenic and their contents are summarized
in Table 5. Six, seven, and seven pathogenic bacteria were collected by the 4.5 µm, 1.8 µm,
and 1 µm MMDs, respectively.
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Figure 6. Boxplot of α-diversity indices, which reflect abundance and consistency, of microflora
obtained from the MMDs at low- and high-flow rates. Boxes represent the interquartile range (IQR)
between the first and third quartiles (25th and 75th percentiles, respectively), and the horizontal line
inside each box represents the median. Whiskers represent the lowest and highest values within 1.5
times the IQR from the first and third quartiles, respectively. Diversity decreased significantly as
MMD pore size decreased MMD. P-values were determined by Student’s t-tests.

Table 4. The top 10 bacterial isolates identified from air samples collected by MMDs installed in
the air suction device. Content rates are mean values (n = 3) of each OTU read number for the total
NGS reads.

Rank Bacteria Content Rate (%)

4.5 µm MMDs
1 Pseudomonas spp. 48.896
2 Gammaproteobacteria 17.592
3 Streptophyta 5.589
4 Betaproteobacteria 4.340
5 Enterobacteriaceae 4.334
6 Actinomycetales 2.453
7 Propionibacterium spp. 1.978
8 Staphylococcus saprophyticus 1.500
9 Corynebacterium spp. 1.430
10 Enhydrobacter aerosaccus 0.582

1.8 µm MMDs
1 Pseudomonas spp. 49.908
2 Gammaproteobacteria 22.097
3 Enterobacteriaceae 10.825
4 Nostocales 1.424
5 Enhydrobacter aerosaccus 1.022
6 Betaproteobacteria 0.944
7 Pseudomonas syringae 0.899
8 Acinetobacter spp. 0.863
9 Actinomycetales 0.804
10 Staphylococcus saprophyticus 0.564

1.0 µm MMDs
1 Pseudomonas spp. 55.843
2 Gammaproteobacteria 24.476
3 Enterobacteriaceae 5.016
4 Enhydrobacter aerosaccus 1.371
5 Staphylococcus saprophyticus 1.012
6 Pseudomonas syringae 0.963
7 Actinomycetales 0.838
8 Betaproteobacteria 0.787
9 Acinetobacter spp. 0.533
10 Propionibacterium spp. 0.525
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Table 5. Pathogenic bacteria identified from air samples collected by MMDs installed in the air suction
devices. Content rates are mean values (n = 3) of each OTU read number for the total NGS reads.

Content Rate (%)

NO Bacteria 4.5 µm 1.8 µm 1.0 µm

1 Pseudomonas spp. 48.896 49.908 55.843
2 Staphylococcus saprophyticus 1.5 0.564 1.012
3 Propionibacterium spp. 1.978 0.553 0.525
4 Pseudomonas syringae 0.553 0.899 0.963
5 Corynebacterium spp. 1.43 0.308 0.273
6 Acinetobacter spp. 0.393 0.863 0.533
7 Streptococcus spp. 0.337 0.394 0.067
8 Elizabethkingia spp. 0.128 0.059 0.106
9 Corynebacterium pilosum 0.006 0.137 0.074
10 Peptoniphilus spp. 0 0.16 0
11 Anaerococcus spp. 0.145 0 0
12 Streptococcus equi 0.058 0.087 0
13 Bordetella ansorpii 0 0 0.126
14 Brevundimonas vesicularis 0.091 0.03 0
15 Bacillus spp. 0 0 0.116
16 Roseomonas spp. 0.112 0 0.004
17 Corynebacterium simulans 0 0.111 0
18 Haematobacter massiliensis 0 0.106 0
19 Finegoldia spp. 0 0.103 0
20 Clostridium paraputrificum 0 0 0.097
21 Enterococcus cecorum 0.055 0.035 0
22 Helicobacter spp. 0 0 0.089
23 Propionibacterium granulosum 0.072 0.01 0
24 Kocuria kristinae 0 0.071 0
25 Rhodococcus fascians 0.063 0 0
26 Rhodococcus spp. 0 0.061 0
27 Aeromonas spp. 0 0 0.044
28 Bacteroides spp. 0.043 0 0
29 Brevibacterium casei 0 0 0.035
30 Brevundimonas spp. 0 0.034 0
31 Helcobacillus massiliensis 0 0 0.022
32 Methanobrevibacter spp. 0.015 0 0
33 Bordetella spp. 0.003 0 0
34 Rothia spp. 0.002 0 0

3.2. Detection of Mycobacterium spp.

Tuberculosis, an airborne infectious disease caused by Mycobacterium spp., is highly
prevalent in Kenya. This pathogen, however, was not detected in the above analyses of
airborne bacteria. PCR-amplified fragments corresponding to those of Mycobacterium spp.
were observed only in the flora of airborne bacteria collected by 4.5 µm pore-size MMDs.
Sequence analysis showed that the 973 bp PCR product was 99% identical to a sequence of
Mycobacterium obuense, a non-tuberculous Mycobacterium that causes lung disease.

4. Discussion

This study describes the development of a new sampling protocol in which atmo-
spheric aerosols were size fractionated by small collectors equipped with MMDs, followed
by genetic analysis to identify airborne microflora. Conventional technologies, such as
high-volume filter samplers [34] and high-flow-rate impingers [35], require the collection
of 1000–100,000 L or more of air to obtain biomass sufficient for downstream analysis. The
volume of air collected by this technique was about 1500 L, a volume estimated to contain
102–106 bacteria [8]. Although this amount is smaller than the amount conventionally
collected, the recovery of DNA from the MMD surface is excellent, and amplified fragments
of the 16S ribosomal region were obtained by conventional PCR.
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NGS analysis detected 87–139 OTUs in these samples. Stacking of three types of
MMDs enabled the fractionation and analysis of bacterial composition and content from a
smaller sample than the previously mentioned conventional techniques. The drawbacks
of filtration include concerns about damage to the microorganisms caused by prolonged
collection, the clogging of the pores by the particles, and the difficulty releasing particles
following their attachment to the filter [11,36,37]. The pores of the MMDs described in
this study have a large aperture ratio, preventing clogging of the pores until the surface
is completely filled with collected particles [22,24]. Furthermore, because of the single
thin-layer structure of the MMDs, the collected particles are exposed on their surfaces,
making it easy to release the particles and to extract DNA from them by direct immersion
in DNA extraction reagents.

Stacking MMDs with pore sizes of 4.5 µm, 1.8 µm, and 1 µm resulted in the fraction-
ation of particles with average sizes of 5.39 ± 4.9 µm, 1.4 ± 1.4 µm, and 0.97 ± 0.49 µm,
respectively, indicating the effectiveness of size fractionation by MMDs. The PCR amplifi-
cation of bacterial 16S rDNA from these fractionated aerosol particles revealed the presence
of intrinsic bacterial flora in each aerosol fraction.

The aerosol samples in this study were collected at a farm that grows a variety of crops
and raises cattle, pigs, and chickens on a small scale. Livestock manure is composted and
spread on the fields. Bacterial flora in the aerosols obtained from this environment were
reported to have greater diversity than flora in aerosols obtained from areas in cities [38,39],
a finding supported by the present results. Differences in floral diversity may have resulted
from differences in propagation distance depending on particle size, in that smaller-sized
particles may have collected airborne bacteria from a wider range of sources.

Pseudomonas, on the other hand, was detected in all MMDs with different pore sizes.
At the sampling sites, aerosols were assumed to originate from soil, livestock feed, and
compost and were ejected into the atmosphere near the sampling sites. Considering the
relationship between particle size and dispersal distance, it is assumed that aerosol particles
fractionated in MMDs with larger pore sizes would have shorter dispersal distances and be
collected from the vicinity of the collection site, while aerosols fractionated in MMDs with
smaller pore sizes would have longer dispersal distances and be collected from a wider
area. Pseudomonas is abundant in the environment and may be present in a wide range of
aerosol particles, ranging from small to large.

The α-diversity indices suggested that the unique flora in aerosols depend on the
size of the particles, with smaller particle sizes resulting in a greater difference. This
difference could be due to factors such as the origin, dispersal distance, and differences
in the protective effects of UV light and drying among different-sized particles [40], but
analyses with larger numbers of samples are required.

In this study, we also assessed whether the sensitivity of detection of floating bacteria
could be improved by primer selection. For example, to detect Mycobacterium tuberculosis, a
highly prevalent species in Kenya, we utilized a tuberculosis-specific primer set (MYCGEN
primers) [32] and attempted to detect this bacterium in the airborne bacteria collected
on MMDs. Although 16S rDNA analysis did not detect M. tuberculosis, the MYCGEN
primers detected M. obuense on the 4.5 µm pore-size MMDs. However, in the present study,
fungal species and viruses were not targeted; therefore, further work will be required
to diversify the application so that it can identify different microorganisms, including
SARS-CoV-2 viruses.

This study was able to identify pathogenic bacteria in plants, including Pseudomonas
syringae, Clostridium disporicum, and Rhodococcus fascians, as well as bacteria associated with
infectious diseases in animals, including Corynebacterium pilosum, which induces cystitis
and pyelonephritis in cattle, Enterococcus cecorum, which causes bacterial infections in pigs,
calves, and other species, Streptococcus equi, which induces streptococcal mastitis in cattle
and acute septicemia in poultry, and Staphylococcus saprophyticus, which induces cystitis [41].
Analyses of the bacterial flora in dust from arid climates in Africa have identified several
genera and species of pathogenic bacteria observed in this study [9–11,42]. Although most
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of the pathogens identified in the study were opportunistic, exposure to dust on farms with
livestock has been shown to pose some risks to human health [42].

Bioaerosols have a wide particle-size distribution, ranging from 0.01 µm (viruses) to
100 µm (pollen). Bioaerosols are often found mixed with other matter, such as mineral dust
or sea salt. Because many of these particles adsorb to each other to form composite particles,
bioaerosols can change in size depending on their source and time course. Since the pore
size of the MMDs can be strictly regulated, the size fractionation performance of the MMDs
is useful in elucidating bioaerosol characteristics and particle size. One limitation is that
the lower pore-size limit of current MMDs is 1 µm, which is too large to capture viruses
floating alone. However, most viruses are likely to be adsorbed on the carrier particles [43],
and it is thought that this limitation can be compensated for when the MMD is combined
with a highly sensitive detection method.

In the future, MMDs are expected to establish detection protocols for pathogenic
bacteria and viruses, especially coronaviruses, which will make them useful in hospitals
and workplaces as a tool for judging the effectiveness of infection prevention and control.
The developed aerosol collector is compact and quiet, making it also suitable for indoor
aerosol collection. This feature is attributed to the MMD’s large aperture ratio and low
pressure resistance. We plan to perform further testing of the MMDs in a hospital facility
specializing in tuberculosis. The aerosol collector has advantages in that it can be used in
hospital rooms without stressing patients or hospital staff.

5. Conclusions

The present study describes the utilization of new MMDs to analyze bacteria in
air samples at a farm in the suburbs of Nairobi, Kenya. MMDs are substrate materials
consisting of thin membranes with a periodic structure on smooth surfaces that can be used
to detect and separate particles. Aerosol particles, including the damaging environmental
pollutant PM2.5, were separated based on size and captured on MMD surfaces using a
small air pump. Bacterial genomic DNA could be extracted at high yield from aerosol
particles on MMDs, with NGS analysis of bacterial 16S rDNA sequences showing the
bacterial constituents of these air samples. These results provided information on the
bacterial biota in the local environment, including the identification of pathogenic bacteria.
MMDs can be considered a simple monitoring device for the detection and quantification
of airborne pathogens.
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