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Abstract: Federated learning (FL) provides a distributed machine learning system that enables
participants to train using local data to create a shared model by eliminating the requirement of
data sharing. In healthcare systems, FL allows Medical Internet of Things (MIoT) devices and
electronic health records (EHRs) to be trained locally without sending patients data to the central
server. This allows healthcare decisions and diagnoses based on datasets from all participants, as
well as streamlining other healthcare processes. In terms of user data privacy, this technology allows
collaborative training without the need of sharing the local data with the central server. However,
there are privacy challenges in FL arising from the fact that the model updates are shared between
the client and the server which can be used for re-generating the client’s data, breaching privacy
requirements of applications in domains like healthcare. In this paper, we have conducted a review of
the literature to analyse the existing privacy and security enhancement methods proposed for FL in
healthcare systems. It has been identified that the research in the domain focuses on seven techniques:
Differential Privacy, Homomorphic Encryption, Blockchain, Hierarchical Approaches, Peer to Peer
Sharing, Intelligence on the Edge Device, and Mixed, Hybrid and Miscellaneous Approaches. The
strengths, limitations, and trade-offs of each technique were discussed, and the possible future for
these seven privacy enhancement techniques for healthcare FL systems was identified.

Keywords: federated learning; privacy enhancement; differential privacy; homomorphic encryption;
blockchain; P2PS; edge device; edge federated learning

1. Introduction

Federated Learning (FL) has gained immense popularity recently in academic research
as well as real-world implementation. Compared to the traditional machine learning
system which collects data from all sources and trains data at a central server, FL provides
a distributed machine learning system that enables participants to train their local model
on local data and eliminates the requirement of data sharing [1]. The participants only
share the parameters of the trained model with the FL server. The FL server aggregates
the model weights and then sends the new model weights back to the participants. The
iterated training allows each participant to build one global model collaboratively without
ever sharing the data with other participants [2].

Due to the inherent characteristics of distributed training and learning model archi-
tecture, FL has gained significant popularity in the healthcare domain. In the context of
healthcare, FL allows multiple healthcare institutions to collaborate and train machine
learning models based on decentralized data without the need of sharing sensitive patient
information. It has been increasingly adopted and implemented in hospitals and healthcare
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settings. Not only serving as the academic pioneering pathway, but FL is also now being
applied in real-world healthcare scenarios.

Google and Stanford Medicine conducted a study, in which FL was employed to
develop a predictive model for hospital readmissions. Patient data from multiple hospitals
were stored locally. Without sharing sensitive information, the distributed machine learning
model trained the data stored locally from multiple hospitals. The resulting model provided
personalized readmission risk assessments while ensuring patient privacy.

Clinical decision support systems adopted FL. Kyung Hee University developed a
deep learning-based clinical decision support system under an FL paradigm enabled large-
scale clinical data mining [3]. The objective was to assist healthcare professionals in making
accurate diagnoses and treatment decisions.

FL has demonstrated potential in accelerating drug discovery and development pro-
cesses. Very recently, 10 pharmaceutical companies, academic research labs, large industrial
companies and startups constructed a large industry-scale FL model for drug discovery
without sharing the confidential data sets [4]. Diverse patient data can be trained on the FL
models to potentially achieve the identification of potential drug targets, prediction of drug
efficacy, and optimization of treatment protocols, while confidentiality of the patient data
are preserved.

FL has been leveraged for collaborative disease diagnosis and detection, such as
diabetic retinopathy from fundus images [5]. Several hospitals shared their locally trained
models for diagnosing diabetic retinopathy. The models were aggregated through FL to
achieve an accurate and generalized model for detecting the disease from fundus images.

In population health management, FL has been investigated, such as predicting clinical
outcomes in patients with COVID-19 [6]. This application helps in proactive intervention,
disease prevention, and resource allocation while ensuring privacy and compliance with
data protection regulations.

2. Existing Reviews

Driven by the recent advances in FL in the healthcare domain, quite a few reviews and
surveys have been done in the area of FL in healthcare applications in the last three years.
In this section, we provide a brief overview of these recent reviews and surveys.

Four review studies discussed and evaluated FL from the aspects of privacy and
security [1,7], data heterogeneity [1], traceability and accountability [1], system architec-
ture [1], statistical challenges [7], system challenges [7], data-centric perspectives [8], and
applicability for confidential healthcare datasets [9]. In the review from Rieke et al. [1],
summaries included the key factors of FL and how FL may provide a solution for future
digital health. Most importantly, the review highlighted the challenges and considerations
in FL systems: data heterogeneity, privacy and security, traceability and accountability,
and system architecture. Xu et al. [7] carried out a survey on FL technologies within
biomedical space. In their discussion, privacy-preserving issues covered secure multi-party
computation and differential privacy. Shyu et al. [8] reviewed 24 papers on FL in healthcare
applications, and evaluated challenges from a data perspective, including data partitioning
characteristics, data distributions, data protection mechanisms, and benchmark datasets.
Pfitzner et al. [9] provided a review of 80 relevant papers on FL and its applicability to
confidential healthcare datasets. In this research, decentralized learning using a Blockchain
or Peer-2-Peer was excluded.

Three review studies on FL are related to Electronic Health Records (EHR). Kumar
and Singla [10] investigated the FL healthcare models in the fields of EHR systems, drug
discovery and disease prediction systems. In this study, different FL algorithms were
assessed and compared using parameters such as accuracy, precision, recall and F-score.
Nguyen et al. [11] conducted a survey on the use of FL in smart healthcare. The survey
was based on 16 papers. This survey also provided a review of the FL-based applications in
healthcare domains including EHR data management, remote health monitoring, medical
imaging, and COVID-19 detection. Antunes et al. [12] presented a systematic literature
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review through 44 papers on FL-based healthcare applications in the context of EHR data.
The review further discussed the general architecture to facilitate the use of the FL with
ML-enhanced applications.

There are a few review studies focused on their own area, such as oncology-based
applications [13], IoMT-related FL [14], and security threats [15]. Chowdhury et al. [13]
discussed the FL applications and algorithms in the oncology space through a systematic
review of 63 papers. Ali et al. [14] conducted a survey on FL in smart IoMT healthcare
systems from the perspective of privacy. The study explained the security and privacy
of IoMT, and FL in IoMT. The paper also discussed FL architectures, which included
privacy-enabled FL, incentive-enabled FL for IoMT and FL-enabled digital twin for IoMT.
Mothukuri et al. [15] focused on privacy-specific threats associated with FL compared to
security threats. In the discussion, security vulnerabilities and threats in FL are identified
and examined, and privacy threats and their mitigation techniques in FL are identified
and evaluated.

The key topics and the highlights of these review studies are listed in Table 1.

Table 1. Key topics and highlights of the existing review studies.

Paper Key Topic Highlights

Rieke et al. (2020) [1] FL concept Discussion on data heterogeneity, privacy and security, traceabil-
ity and accountability, and system architecture in FL systems.

Xu et al. (2021) [7] FL concept
Solution on the statistical challenges, system challenges, and pri-
vacy issues including secure multi-party computation and differ-
ential privacy in FL systems.

Shyu et al. (2021) [8] FL concept
Evaluation on data partitioning characteristics, data distribu-
tions, data protection mechanisms, and benchmark datasets in
FL systems.

Kumar and Singla (2021) [10] FL in EHR
Comparison between different FL algorithms for different health
sectors by using parameters such as accuracy, precision, recall and
F-score.

Pfitzner et al. (2021) [9] FL concept
Research into FL and its applicability for confidential healthcare
datasets. Decentralized learning using a Blockchain or direct
Peer-2-Peer network is excluded from the review.

Mothukuri et al. (2021) [15] Security threats
of FL

Comparison between privacy-specific threats and security threats
in FL systems. Discussion on the security vulnerabilities and
threats and privacy threats with their mitigation techniques.

Chowdhury et al. (2022) [13] FL in Oncology Discussion on FL applications and algorithms in the oncol-
ogy space.

Nguyen et al. (2022) [16] FL for EHR Discussion on FL design from resource-aware FL, secure FL,
privacy-aware FL to incentive FL and personalized FL.

Antunes et al. (2022) [12] FL for EHR Investigation on applications in the context of EHR, and further dis-
cussion on general architecture to FL with ML-enabled applications.

Ali et al. (2022) [14] FL for IoMT
Focus on the IoMT network from the perspective of privacy.
Discussion on architectures, from privacy-enabled FL, incentive-
enabled FL for IoMT and FL-enabled digital twin for IoMT.

Our review
Privacy
Enhancement
for FL

Focus on the privacy enhancement methods used in FL in health-
care systems.

The existing work reviewed many different aspects of FL in healthcare systems includ-
ing data, system, statistical challenges, applicability, and privacy and security.
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In light of the inherent characteristics of FL architecture, a certain level of privacy is
provided in shielding healthcare data from leakage by not sharing the raw data. However,
the collective intelligence builder, FL, does not provide waterproof privacy protection.
Specially, healthcare data including digital health records generally contain personal data
that are highly private, sensitive, and confidential. The nature of healthcare data poses
significant privacy risks.

Recently several studies have brought to attention that the model parameters shared by
the participants within the FL systems could possibly reveal patients’ private information
[17,18]. Additionally, there is no formal proof of privacy guarantees [19] for the FL process
as there is a possibility of security attack due to inherent vulnerabilities associated with a
distributed system. Hence, FL systems require additional mechanisms to improve privacy
and security vulnerabilities when specifically used in the healthcare domain. In this paper,
the focus of privacy enhancement is on privacy leakage from the model gradients in the FL
systems (with some exceptions) [20].

There is no review conducted on privacy enhancement methods used in FL in health-
care systems. Therefore, our review aims to explore privacy enhancement methods used in FL
in healthcare systems. Specifically, our work aims to answer the following research questions:

• RQ. 1: What are the existing privacy enhancement methods in FL in healthcare systems
to make data more secure in the healthcare systems?

• RQ. 2: What are the strengths, weaknesses, and trade-offs of the existing privacy
enhancement methods in FL in healthcare systems?

• RQ. 3: What is the future of privacy enhancement methods in FL in healthcare systems?

In this paper, the recent privacy enhancement approaches proposed for FL in the
field of healthcare were reviewed. Only literature during the period of 2020–2023 that
specifically provides options to secure FL systems by providing privacy guarantees to
highly sensitive medical data was included in this review.

In Section 3, the review methodological approach is documented in detail. The results
of the review, and corresponding answers to the research questions, are provided in
Section 4. Section 5 summarises the findings, and provides a discussion of opportunities
for privacy enhancement methods in FL in healthcare systems, and future work.

3. Methodology

To achieve the objectives of our review, the relevant academic publishing was collected
from Scopus which has been supported as having the widest coverage in peer-reviewed
scholarly journals and publications among bibliographic databases [21–23]. The bibliogra-
phy data source and parameters of the search are listed in Table 2.

Table 2. Bibliography data source and parameters of the search.

Search Parameter Target

Bibliography Data Source: Scopus

Article Type: Journal articles, conference papers, working papers,
book section

Search On: Title, Abstract, Keywords

Sorting on Returns: Sort by Relevance

Publication Period: Unlimited

Search Date: 28 August 2022

There are three key components in the search query to serve the objectives of this
review. Firstly, all published work needs to be related to FL. Secondly, those published
studies need to be in the health domain. Thirdly, the published studies need to be related
to security, privacy or trust in the FL. The search components are listed in Table 3.
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Table 3. Search keywords.

Component Index Keywords

Component 1: “federated learning”

Component 2: “ehealth” OR “health”

Component 3: “security” OR “privacy” OR “trust”

Based on the search keywords identified in the three components, the Boolean search
string is constructed: TITLE-ABS-KEY (“federated learning” AND (“ehealth” OR
“health”) AND (“security” OR “privacy” OR “trust”) )

Through Scopus search, 216 records were returned. The returned papers were screened,
mapped, and extracted. Eventually, the assessment work of a full context review on the rel-
evancy of these returned papers were conducted. To determine whether a paper is relevant,
the paper needs to match all three search components: FL, health, and privacy/secure/trust.
As a result, a set of 39 articles were identified as relevant.

During the process of review, one article in the area of intelligence on the edge device
was found relevant through the reference list of an identified article. Therefore, it was
included in this review. As a result, 40 relevant articles were identified and included in
this review.

4. Results

In this section, the results of the review based on the 40 relevant articles are presented.

4.1. Research Question 1

The first research question is “What are the existing privacy enhancement methods in
FL in healthcare systems?”

To answer this research question, the selected papers can be categorised into the
following major areas based on the principle approach used for providing security and
privacy to the FL system:

• Differential Privacy
• Homomorphic Encryption
• Blockchain
• Hierarchical Approaches
• Peer-to-Peer Sharing
• Intelligence on the Edge Devices
• Mixed, Hybrid and Miscellaneous Approaches

The following subsections start with a brief introduction to the basic approach and
then provide the analysis and discussion on the research contribution of the selected paper
in the area of privacy enhancement for FL.

4.1.1. Differential Privacy

Differential privacy (DP) provides a way to securely share aggregate information from
a dataset without compromising the privacy of an individual data subject. AI techniques
generally require large datasets to train the models which arises privacy concerns for
sensitive information maintained in the datasets. DP provides a framework to develop
these intelligent algorithms with the ability to analyse privacy costs while maintaining
acceptable accuracy [24]. When it comes to FL, to prevent information leakage the concept
of DPis utilized by adding noise to the parameters that are exchanged by the participants
before model aggregation at the server side [25]. FL provides mitigation of privacy risks
as compared to centralized machine learning models but is still vulnerable to attacks
when it comes to extracting information from the gradients sent by the participants to the
aggregation server. DP provides means to quantify personal information disclosure when
machine learning models are using personal user data. By adding a level of uncertainty to
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the model, privacy is provided to safeguard user information. Hence, a tradeoff between
model accuracy and desired privacy level needs to be considered [26].

FL is vulnerable to privacy attacks as global model aggregation is performed at the
centralized server. In the healthcare field, patient data can reveal private information and
as the central server has access to the model parameters so a compromised server can be a
great security threat. Therefore, an edge aggregator is proposed that introduces artificial
noise to the client model parameters in three steps [27]. The introduction of this aggregator
still provided good model accuracy while achieving privacy due to the introduction of the
noise. This work falls under the category mentioned in Section 4.1.6 as well.

Due to the high privacy requirements associated with patients’ datasets, a security
challenge is presented when feeding data into machine learning models. Statistical feature
selection and differential privacy approaches are adopted [28] to reduce the data trans-
mission and to add noise to the local models before sending those to the FL server for
aggregation. The results showed good accuracy with the desired level of privacy applied
to the model parameters.

Additional privacy is crucial when FL is used for COVID-19 detection using chest X-
rays and symptoms information across multiple hospitals to safeguard data from malicious
attackers. In addition to the measures to improve model accuracy for data, non-IID privacy
preservation is achieved by adding the differential privacy stochastic gradient descent
(DP-SGD) which provides required resilience to adaptive attacks auxiliary information [26].
The participants of the FL system perform perturbation on their gradients after training
the model on their local data using DP-SGD. By adding random Gaussian noise to local
gradients privacy preservation was achieved at the cost of model accuracy, this tradeoff
is analysed. The results showed that by increasing the number of participants in the
FL system high differential guarantee can be achieved with minimal effect on model
accuracy [26].

The network traffic exchanged by the Internet of Health Things (IoHT) may be open
to attacks that can result in privacy breaches of patients’ personal information in health
systems. An FL-based anomaly detection system is proposed that uses DP to provide pri-
vacy guarantees to data owners and uses machine learning to secure network traffic [29]. A
blockchain-enabled collaborative FL architecture is proposed that uses DP for safeguarding
user data and blockchain for secure sharing of data [30]. The theoretical analysis showed
that the system provides security to the processes that require sharing of data.

DP provides the required privacy guarantees at the cost of reducing the prediction
accuracy of the machine learning model. An end-to-end pipeline consisting of FL and
DR is proposed for health data streams using a clustering mechanism to reduce model
training time with high accuracy [31]. DP mechanism is used by the system to provide
privacy guarantees and results showed that prediction accuracy only decreases by 2% for
the trained model due to this change. Similarly, DP is used to provide privacy guarantees
when FL is used in a distributed environment to train multiple instance learning models to
classify medical images [32]. The results showed that the distributed federated training
with privacy guarantees achieved comparable performance to the conventional centralized
training approach.

In a smart home environment where multiple IoT devices are used to collect personal
health and other data, privacy preservation is very crucial. Alzheimer’s disease detector
is designed that uses FL and considers user audio collected by different IoT devices to
detect the disease. FL system uses a novel DP-based asynchronous privacy-preserving
aggregation framework to provide guaranteed privacy. A secret sharing technique is
proposed which protects the confidentiality of the weighted average at every round in the
FL system and is based on the discrete logarithm difficulty hypothesis. The results show
good performance of the disease detection module with high-security protection.



Int. J. Environ. Res. Public Health 2023, 20, 6539 7 of 25

4.1.2. Homomorphic Encryption

Homomorphic encryption is a special type of encryption where ciphertext can be
used to apply mathematical operations without requiring deciphering of the text [33]. Full
harmonic encryption can be very suitable for encrypting the model updates from the partic-
ipant to the server in FL systems which can be aggregated without requiring decyphering.

Homomorphic encryption is used to provide privacy while training predictive models
on diabetes data using the FL system. A third-party collaborator is introduced to generate
public and secret key pairs and to send the public key to the participants [34]. Participants
use this key to perform homomorphic encryption on model updates before sending those
to the server. FL server can aggregate the updates without deciphering those and send back
the updated weights. The proposed federated forest algorithm showed good performance
in terms of privacy protection and prediction accuracy. Similarly, a cancer text classification
system based on FL is proposed that uses homomorphic encryption to secure model
parameter exchange between FL participants and server [35].

A multi-modal machine learning model is proposed to effectively solve the problem
of data islands and uses homomorphic encryption to securely share data required for
training machine learning models [36]. A vertical FL system is developed that compresses
and decompresses the feature value while transmitting those to improve the safety of
the feature value in the transmission process. The results showed the feasibility of the
proposed multimodal learning and provided better accuracy than unimodal options. A
secure FL system is proposed to protect against data island-level poisoning attacks for
medical diagnosis based on multikey computation [37]. For keeping the FL system secure
a trimmed optimization method is used to provide protection against a range of data
island-level poisoning attacks in the FL and for privacy preservation pocket diagnosis
is proposed based on multi keys using homomorphic encryption. A privacy-aware and
resource-saving collaborative learning protocol is proposed to provide privacy for EHRs
when the FL system is engaged in resource-saving scenario [38]. The resource savings at
the participants are provided by outsourcing the major learning component of the neural
network model to the cloud servers. Lightweight data perturbation and packed partially
homomorphic encryption are used to protect the privacy of data during transmissions and
also the privacy of the model updates transferred between participants and servers.

4.1.3. Blockchain

FL allows multiple participants to train a shared model without the need to exchange
their raw data. One of the significant privacy challenges FL is facing is to ensure that the
participating devices are trustworthy and not malicious. Corrupted data from a malicious
intentional participant can have a major impact on the model’s outcome. Additionally,
there is the issue of fairness and transparency in the distribution of rewards for participants.
Blockchain technology can help overcome these challenges to manage the FL process
without the need for intermediaries. Blockchain technology provides a decentralized ledger
that can store transactions securely and transparently. In the context of FL, blockchain
technology can be used to create a transparent and tamper-proof record of the data provided
by each participant [11,39].

In an FL-chain (FL with blockchain technology) system, the participating devices can
be identified and verified using their public key [40]. This ensures that only trustworthy
devices are allowed to participate in the learning process. Additionally, the devices can be
incentivized to participate in the learning process by rewarding them with tokens that can
be exchanged for goods or services.

Blockchain technology can also be used to create a transparent and decentralized
model selection process and machine learning process [41]. In a traditional FL system, the
model selection process is typically managed by a centralized server. However, in an FL-
chain system, the selection process can be decentralized, ensuring that the decision-making
process is transparent and fair. In a traditional machine learning process, the model owners
have to trust the centralized platform to manage the transaction process. However, with
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an FL-chain, the transaction process can be managed in a decentralized and transparent
way, ensuring that the transaction process is fair and trustworthy. This process can be set to
fully decentralized, partially decentralized or hybrid mode.

Chang, Fang, and Sun [42] proposed an FL-chain system with an adaptive differential
privacy algorithm. Technically, the system adjusts the amount of noise by adding on the
gradient to achieve the balance between privacy and accuracy in a MIoT environment. The
key strength of this FL-chain system is the gradient verification-based consensus protocol
which is implemented to prevent malicious attacks and single point of failure.

Passerat-Palmbach et al. [43] proposed an FL-chain framework with six elements for
privacy-preserving in electronic health data to avoid bias for higher security and persistence.
The six elements are discoverable data and analytic process, fabricated value, compute
guarantees, privacy guarantees, and data quality.

Salim and Park [44] presented a secure EHR scheme in a hospital that adopted FL and
blockchain technology. In the scheme, Inter Planetary File System (IPFS) stores private data.
In the IPFS, all EHR hashed addresses are recorded using a Consortium Blockchain-based
network. Access to the EHR is granted by individual patients enabled by smart contracts.
EHR data are trained both locally and globally.

Lakhan et al. [45] implemented fraud detection using the rule-based blockchain in the
IoMT FL network. In this study, an FL-chain-enabled task scheduling (FL-BETS) framework
with different dynamic heuristics was proposed. The goal of FL-BETS is to identify and
ensure the privacy preservation and fraud of data at various levels.

4.1.4. Hierarchical Approaches

Although FL may overcome privacy issues faced by a centralized cloud server-based
data analysis approach to some extent, the existing traditional FL approach is still restrictive
when data aggregation is done on a single server. Hence few works concentrated on the
development of a hierarchical FL approach that permits aggregation at varying levels,
facilitating collaboration among multiple parties [46–48].

Gupta et al. [46] proposed a hierarchical FL approach for the Internet of Medical
Things (IoMT) application which allows data aggression at different levels enabling multi-
ple healthcare organisations to collaborate with each other securely. A novel approach of
grouping is proposed where the data is grouped based on different disease groups. The au-
thors also developed a novel technique, called Federated Time Distributed (FEDTIMEDIS)
Long Short-Term Memory (LSTM), for training the anomaly detection model.

Singh et al. [47] introduced a Hierarchical FL (HFL) model based on Dew-Cloud
technology, which offers an enhanced level of data confidentiality for Internet of Medical
Things (IoMT) applications. In this study, for detecting intrusion in incoming traffic a
hierarchical long-term memory (HLSTM) model has also been deployed at distributed
Dew servers. The authors claim that the proposed model can gain users’ trust in the
IoMT ecosystem.

Abdellatif et al. [48] presented a hierarchical FL application that aims to enhance
privacy in healthcare applications. The proposed architecture comprises different layers
such as End User (EU) layer, Edge node layer, and Centralized Server layer. In this approach,
EUs collaborate to train a deep learning model without sharing raw data, by connecting to
the edge nodes within their communication range. These edge nodes are then connected to
a centralized server. The authors highlight that their proposed method achieves efficiency
by considering the varying data distributions among EUs, as well as the conditions of the
wireless environment.

4.1.5. Peer to Peer Sharing

Efficiency is also very important in FL. To achieve high efficiency, peer-to-peer sharing
(P2PS) in FL is utilised to facilitate the exchange of model updates between participating
devices and enhance the efficiency of the learning process by reducing the computational
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burden on centralized servers. In addition, P2PS can also improve user privacy without the
need for a central intermediary to store and process sensitive data.

Gandhi et al. [35] proposed an FL system to maintain the integrity of sensitive medical
data by using a few deep-learning models for cancer text classification. Their results
showed that the proposed framework is effective in addressing the privacy issues of
sensitive medical data for cancer text classification.

With the increasing EHRs collected from smartphones and wearable devices, Chen et al.
[49] proposed an efficient and privacy-preserving system (PFL-IU), which is compatible with
irrelevant updates. The results showed that the PFL-IU has good performance in terms of
privacy, accuracy, convergence and efficiency.

4.1.6. Intelligence on the Edge Device

In the healthcare field, edge intelligent computing is often deemed highly appropriate
for use with FL as it minimizes the need to transmit patients’ private data to the cloud [50].
Border gateways collect the initial model from the cloud and then train the model with
the data collected from edge intelligent devices. A mask and digital signature are used to
secure model parameters after training at the gateways. The aggregator at the cloud adds a
common mask vector before sending the updated model to the gateways. As no noise is
added to the model parameters so the model shows higher accuracy than systems that use
differential privacy for safeguarding patients’ information.

Intelligence in the edge could be improved by incorporating a data analytics frame-
work on the edge which assists the FL module to re-train local ML models with user-
customised insights [51]. Hakak et al. [51] proposed a framework that provides privacy
of data by incorporating cloud, edge and application modules. By providing aggregation
at the local device and central cloud level, the privacy of data is maintained. Based on
application requirements local controller saves the data and the updated encrypted local
weights from the local devices are aggregated locally by the local aggregator. These values
are sent to the cloud aggregator for the global model update. Homomorphic encryption is
used as it allows calculations to be computed over the encrypted data without the need
for decryption.

Wang et al. [52] proposed a novel protocol for parameter aggression in FL and its
application for edge devices that have limited capacity. The goal is to improve security
while reducing communication and computational overhead. The authors has proposed
a novel approach of orthogonal gradient aggregation (OGA) that can protect previously
learned knowledge when the related training samples are removed and hence ensure
privacy of data.

Wang et al. [50] proposes a Privacy Protection Scheme for FL under Edge Computing
(PPFLEC) that uses a newly proposed privacy protection protocol based on a shared secret
and weight mask. The proposed protocol uses a random mask scheme of secret sharing
and focuses on achieving lightweight features to make it suitable for the Internet of Medical
Things on the edge. This work also uses a hash function and a digital signature to ensure
the integrity of the message, as well as protect the system from replay attacks.

In edge computing, as most computations are done at the edge using long encryption
keys, this causes a large overhead for resource-constrained IoT devices. Hence, some intel-
ligence on the edge could be a possible solution for enhancing data privacy and achieving
low complexity. To achieve this goal, Akter et al. [27] proposed an edge aggregator that
introduces noise to the clients’ model parameters and by employing DP while considering
the privacy budget, the results showed high model accuracy.

4.1.7. Mixed, Hybrid and Miscellaneous Approaches

By combining different types of privacy-preserving approaches, a hybrid solution
can overcome the weaknesses of individual approaches by providing stronger techniques.
For example, by combining blockchain with homomorphic encryption a decentralised,
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transparent privacy-preserving solution is presented for smart parking with minimum
computation and communication overhead [2]. In this section, we discuss approaches that:

• have employed multiple approaches for providing privacy to FL systems
• are different from other categories and due to being the only approach of its type

cannot be placed in a separate category

Instead of the commonly used differential privacy approach, the syntactic approach is
proposed for FL systems that provide required guarantees for privacy and still have good
model accuracy [53]. The proposed syntactic anonymity approach provides interpretable
universal privacy guarantees. The training is done according to the requirements of the
syntactic privacy model. The FL system used healthcare data to predict adverse drug
reactions and mortality rates and benchmarked against the centralized model.

A privacy-preserving FL system that resolves the issue of irrelevant updates is pro-
posed [49]. The system provides secure aggregation of the model updates at the FL server
with a non-interactive key generation algorithm. The sign of the model parameter which
is considered as the gradient’s direction determines the direction in which the model
is updated and the relevance of every local update is determined by this. The results
showed that the proposed system can accelerate model convergence while providing high
prediction accuracy in a secure manner.

The purpose of the hybrid approaches is to improve the overall performance of the
models used in FL by leveraging the strengths of different models. It can not only improve
the efficiency of FL models by accelerating the convergence speed but also enhance their
accuracy by improving the data quality. In addition, domain-specific knowledge can be
incorporated into the training to improve the model’s robustness.

Considering the patients’ privacy, [54] applied the FL to overcome the limitations
of privacy and data-sharing laws and regulations in radiology. To maintain user data
privacy, an anomaly detection system was proposed in [55]. Their results showed that the
proposed post-quantized FL model is able to effectively identify malicious events with
high accuracy and also ensures privacy. To address the privacy-preserving analysis with
horizontally partitioned data. In addition, [56] proposed creating multiple models from
different families. Otoum et al. [57] proposed a solution to secure medical devices by
employing transfer learning and neural networks in a federated system. The proposed
model showed better performance than other models under comparison in centralized
learning schemes. Chamikara et al. [58] proposed privacy-preserving method for horizontal
FL systems showed comparatively better performance in terms of accuracy, efficiency,
scalability, and attack resistance. Nguyen et al. [59] proposed a knowledge distillation-
based decentralized FL model to ensure data privacy and protection. Even with poor-
quality data, the proposed model has shown high performance. Luo et al. [60] proposed a
novel method to fit the generalized linear mixed model with advantages including lossless,
privacy-preserving and fast-converging for hospital profiling.

Ma et al. [61] proposed an improved federated tensor factorization to reduce the
uplink communication cost. They also proved that the convergence speed of the proposed
model did compromise using aggressive communication compression. Wu et al. [62]
proposed the FL model to reduce communication costs by considering different techniques
and results showed a huge reduction of communication cost with competitive results. To
reduce the parameters shared in the FL process, Paragliola [63] proposed a method that
balances model accuracy while considering costs associated with communication among
participants and servers.

Han et al. [64] introduced a secure approach that preserves the accuracy of the medical
data and the results verified its robustness to conventional and geometric attacks. Gong
et al. [65] proposed a cloud based FL model for user behaviour sensing where LSTM is
introduced to deal with the non-IID (Independent and Identically Distributed) problem of
the distributed training data with its performance better than the comparing models. To
address the unfairness problem in FL, Siniosoglou et al. [66] proposed an unsupervised
fairness method to identify defective models with promising results. Considering the
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traditional decentralized FL models are sensitive to Byzantine attacks, Gouissem et al. [67]
proposed a decentralized server-less FL model using dual-way update. The results showed
the proposed model is effective for error propagation control and in a collaborative isolation
decision of the malicious users with high efficiency.

4.2. Research Question 2

The second research question is “What are the strengths, weaknesses, and trade-offs
of each type of the existing privacy enhancement methods in FL in healthcare systems?”

The second research question is answered based on the seven method types as sum-
marized in the literature review in RQ1.

The key strengths of each privacy enhancement method type are listed in Table 4.

Table 4. Key strengths of privacy enhancement methods of the existing review studies.

Strength DP HE BC HA P2PS IE HYA

Privacy Yes Yes Yes Yes Yes Yes Yes

Security Partial Partial Yes Yes Yes Yes Yes

Decentralization Partial Partial Yes Yes Yes Yes Yes

Transparency Yes Yes Yes Yes Yes Yes

Data Governance Yes Yes Yes Yes Yes Yes

Collaboration Yes Yes Yes Yes Yes Yes Yes

Scalability Yes Yes Yes Yes Yes Yes

Computational Capability Yes Yes Yes Yes Yes Yes

Data Transmission Yes Yes Yes Yes

Fault Tolerance Yes Yes Yes Yes Yes

Energy Efficiency Yes Yes

Improved Robustness Yes Yes

Smart Contract Automation Yes Maybe

Geographical Distribution Yes Yes Yes Yes

The key weaknesses of each privacy enhancement method type are listed in Table 5.

Table 5. Key weaknesses of privacy enhancement methods of the existing review studies.

Weakness DP HE BC HA P2PS IE HYA

Scalability Yes Yes Yes Yes Yes Yes

Computational Overhead Yes Yes Yes Maybe Yes Yes

Transmission Overhead Yes Yes Yes Yes Yes Yes Yes

Privacy Challenges Partial Partial Yes Partial Yes Yes Yes

Design Complexity Yes Yes Yes Yes Yes Yes Yes

Energy Consumption Yes Yes Yes Partial Yes No Yes

Governance Yes Yes Yes Yes Yes Yes

Heterogeneous Devices Yes Yes Yes

Data/Device
Imbalance Yes Yes Yes
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4.2.1. Differential Privacy

DP provides privacy of user data as a mathematical guarantee, that from the model
parameters, the individual data points cannot be distinguished in a decentralised manner
as no central entity is required to manage this privacy enhancement. DP is not primarily
used for securing systems but it certainly improves the security of an FL system by making
it harder for the attackers to extract information from the model parameters. The noise is
added to these parameters before the aggregation process which makes model inversion
attacks difficult to carry out. The principles of DP are based on the quantifiable framework
of privacy guarantees with a defined privacy budget and noise variance to provide trust
among participants. Hence, some sharing of these initial parameters may be required but
the actual processing is done by individual clients, hence, this makes it a semi-decentralised
approach, which fits exactly the architecture of the FL system. DP has no contribution
to data governance in an FL system, aspects like data quality, data access policies and
consent management are not part of the DP approach. FL systems are based on principles
of collaboration which are promoted by the use of DP in FL as it provides additional privacy
for individual data sources.

Differential privacy in large-scale systems may introduce scalability issues as the
amount of noise required for providing the guarantee increases with the increase in client
numbers. This may impact the performance of ML algorithms in FL systems. Similarly,
as the clients need to perform additional tasks for adding noise to the model parameters
before sending those to the server so all DP approaches add computational overhead and
increase design complexity. For resource constraint IoT devices, DP based approaches also
increase energy consumption due to added tasks. As already discussed, governance is not
part of any DP-based approach so that needs to be handled by adding relevant governance
frameworks, policies and mechanisms for ensuring proper use of data and resources.

In FL systems the data from multiple participants are collected and shared, DP ensures
the identity of any individual in the dataset cannot be reconstructed and hence provides
privacy protection to user information. DP does that by introducing noise to the data, which
adversely affects the prediction accuracy of the ML algorithms. Higher privacy guarantee
results in higher degradation of the accuracy of the system and hence, this tradeoff needs to
be considered carefully for FL systems. An optimal balance between privacy and accuracy
is a critical area of future work in differential privacy and requires context awareness for
applications in different domains. In the healthcare field, the accuracy of the prediction
model is a critical factor when it comes to disease detection and other related applications.
The healthcare FL system that provides a high privacy guarantee, and high accuracy is
still a crucial requirement, hence the use of DP is very challenging and requires additional
methods to mitigate the impact on system accuracy.

4.2.2. Homomorphic Encryption

Homomorphic encryption matches the FL architecture in terms of decentralization as
the encryption is performed at the clients, with some form of key management required.
Homomorphic encryption promotes the privacy and security of FL systems as data and
model parameters remain confidential throughout the learning, transfer and aggregation
process. All clients may use the same encryption/decryption methods which provides
transparency of the homomorphic encryption mechanism. Collaboration is supported
in HE-based systems as clients keep control of their data and allow computations on
the encrypted shared model information without raising privacy concerns. However,
governance is something that is only partially supported as other mechanisms are required
to perform tasks like key sharing, data lifecycle management and consent management etc.

Homomorphic encryption-based approaches for FL have numerous weaknesses, espe-
cially in terms of resource usage. The encryption process that clients need to perform adds
design complexity, increased computational overhead and also results in increased energy
consumption for resource constraint IoT devices. In FL systems with a large number of
clients, scalability can be an issue as the computational requirements increase significantly
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due to the additional complexity of computations required on encrypted data. Privacy
provided by this method also has issues like the vulnerability related to Metadata, which
can still leak information and may reveal sensitive details of the data and computations.
Governance is an important factor in this case as the management of encryption keys is
a challenge.

For FL applications where data is distributed and the computational capacity of the
participants is not known, new algorithms are required that consider optimised use of
computational resources at the participants. In this context, we need to consider the type of
computations required by different ML algorithms and a suite of Homomorphic algorithms
may be required to optimise computational efficiency for specific machine learning models,
As discussed in the previous section, scalability and privacy-accuracy trade-off needs to be
considered when FL specific Homomorphic algorithms are designed.

4.2.3. Blockchain

The strengths of using blockchain technology in FL systems lie in its ability to enhance
privacy, security, and transparency. The inherent architecture of blockchain including the
local data storage on individual devices, in addition to the cryptographic algorithms and
immutability feature in the blockchain technology, provides enhanced data privacy and
security. The transparent nature of the blockchain enables all participants in the FL systems
to have visibility into the updates and changes made to the model. The decentralized and
trust-enhancing properties of blockchain technology facilitate collaboration in FL systems.
Participants have higher trust in the shared model and the integrity of the updates due to
the consensus mechanism and immutability. Smart contracts automation is the embedded
strength of blockchain technology. Smart contracts can be utilized to define and enforce
data usage policies, ensuring that data is shared and utilized in accordance with predefined
rules and regulations.

The use of blockchain technology in an FL system can have several limitations. Al-
though blockchain technology offers enhanced privacy through decentralization and cryp-
tographic techniques, it does not provide complete privacy protection. The transparent
nature of blockchain can expose certain information. This may be harmful to sensitive data
in FL-chain systems. All of the four FL-chain systems [42–45] from this review adopted
additional privacy enhancement methods to improve privacy protection. Besides the in-
tegration of the additional privacy enhancement methods, the consensus process in the
FL-chain systems [42–45] requires significant computational resources. When multiple
participants are involved in an FL-chain, the computational overhead of maintaining the
blockchain would increase dramatically. This could result in a slower training speed, impact
the efficiency of the system, and face scalability challenges. Additionally, it requires a signif-
icant amount of energy to complete the computation. Blockchain networks often struggle
with scalability limitations. This could be a significant drawback when a large number of
participants proceed with the updates in the FL-chain systems. The consensus mechanisms
can result in slower processing time and the scalability can be reduced. Incorporating
blockchain into an FL system requires detailed design and integration. Developing smart
contracts, defining consensus mechanisms, and ensuring compatibility with the existing FL
protocols need to be included in the design and implementation. The complexity of the
FL chain could increase development time and budget. From a governance perspective, to
integrate blockchain technology in FL systems, reaching consensus on system updates, pro-
tocol changes, or policy modifications may require extensive coordination and agreement
among participants, potentially slowing down decision-making processes.

Using blockchain technology in FL healthcare systems involves several trade-offs that
need to be carefully assessed. Blockchain’s decentralized architecture enhances security
and transparency. However, it comes at the cost of scalability. The transparency offered by
blockchain makes all transactions visible to all participants in the network, which enhances
trust and auditability but also conflicts with privacy requirements in FL systems. Crypto-
graphic algorithms and consensus mechanisms enhance the security feature, however, it
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comes at a cost in terms of computational overhead. The computational complexity can
impact the efficiency and speed of the FL systems, especially during the training phase.
Integrating blockchain into an FL system requires significant development work and ex-
pertise. It requires smart contracts and consensus mechanisms, and interoperability with
existing FL protocols. The complexity increases the challenges of long-term maintenance
of the system. Time and cost are the two objectives for governance and decision-making
for implementing or maintaining a system. Consensus on system updates, policy modifi-
cations, and protocol changes may require extensive coordination and agreement among
participants, which may slow down the decision-making process. The trade-offs between
scalability and decentralization, transparency and privacy, security and efficiency, difficulty
level of implementation and integration, and governance and control need to be carefully
considered when designing an FL-chain healthcare system.

4.2.4. Hierarchical Approaches

Hierarchical approaches have inherent strengths in terms of decentralization and trans-
parency as adding multiple edge servers and having a transparent grouping mechanism
can make these approaches suitable for a large number of FL applications. The distributed
nature of the system and collaboration at the tier level adds a privacy and security layer
to the system. Governance and collaboration can be considered strengths of hierarchical
systems as they provide a structural framework for managing and controlling data and
grouping clients.

Scalability can be considered a strength of these approaches as with the addition of
more clients, adding more edge servers can provide clear distribution of load and manage-
ment overhead. However, as the number of participating clients increases computational
overhead and energy consumption at the cloud and edge servers increase but will not
affect the clients. However, governance and design complexity are considerable challenges
in these systems as management of a large number of clients and servers and designing
appropriate aggregation mechanisms are non-trivial in those cases.

For hierarchical approaches in FL, existing work focused mainly on grouping clients
in different levels or providing a hierarchical architecture to ensure even distribution of the
network load among all connected devices. A more detailed insight into the trade-offs of
these hierarchical approaches is required in order to evaluate the security compromises
related to the sensitive participant information and security threats from adversaries to
different levels of the network. The introduction of multiple edge servers introduces more
vulnerable entities in the system where all participant information and data need to be
secured. Also, due to the introduction of multiple tiers, the global model may take longer
to converge and this trade-off needs to be considered for systems requiring real-time task
management.

4.2.5. Peer to Peer Sharing

The P2PS technology has been widely used in FL systems, which shows multiple
advantages. First of all, is the enhanced privacy. The participants can share the model
updates directly with each other. The exposure of sensitive user data to third-party entities
and reduces the risk of data breaches is minimised. Additionally, P2PS reduces the impact
of individual failures which makes the FL systems resilient. If any participant in the FL
system is unavailable, the remaining participants can continue to collaborate and contribute
to the learning process. P2PS techniques utilize the computing resources across multiple
participants where each participant contributes its own processing power, which can
significantly improve the overall computational capabilities of the FL systems. With more
participants joining the P2PS, the available computing resources increase in the FL system.
Thus, the FL system has the capacity to handle large datasets or complex models. P2PS in
FL allows for direct communication between participants, bypassing the need for a central
server. By doing so, the P2PS is able to alleviate network congestion and reduce the overall
communication latency in the system. In other words, P2PS could create a bigger and faster
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FL system. The last but not the least advantage of the P2PS is that they can span across
different geographical locations, which allows for diverse participation in the FL system.
Thus A model from a broader range of data distributions can be generated.

Although P2PS has shown many strengths in enhancing the privacy of FL systems, it is
not completely free from limitations. Although the P2PS is able to provide offer scalability
as mentioned in the advantages, managing large-scale FL systems with a massive number
of participants can be difficult. It is very challenging to coordinate and synchronize
model updates across numerous participants. In addition, the overhead of maintaining
network connections increases and communication reliability decreases with the growing
number of participants. The lack of centralized control or authority makes it hard to
control the reliability of all participants. Direct communication among participants in P2PS
architecture could bring security risks in the FL systems, such as an increased risk of data
leakage and unauthorized access. In addition, some malicious participants might try to
exploit vulnerabilities in the system to gain unauthorized access to sensitive user data
or manipulate the learning process. Due to the decentralized mechanisms for resource
discovery and P2P connections, it is difficult to discover available and suitable participants
with the desired computational resources and it is challenging to identify capable and
trustworthy participants in the learning process. As a result, the overall performance
of the FL systems could be affected. In P2P FL systems, The communication between
participants and model updates could lead to overhead and high communication costs.
The transmission of large model parameters among participants results in high network
bandwidth and increase communication latency.

Considering the strengths and limitations, there are some trade-offs in designing a P2P
FL system. Although the P2PS is able to provide the utilization of distributed computing
resources among participants, the heterogeneity of participants’ capabilities could result in
imbalances of resource utilization. The FL emphasizes data privacy by keeping user data
on local devices. However, P2P allows participants directly share model updates, which
results in trust concerns. It is important to establish trust among participants to ensure
the integrity and confidentiality of the shared data. With the lack of centralized control,
the P2PS could introduce security risks. To reduce such risks, it is important to ensure the
security measures, such as encryption, authentication, and so on. P2PS provides scalability
by distributing computational tasks among participants, it is difficult to coordinate and
synchronize the learning process as the number of participants increases. A trade-off exists
between network efficiency and communication overhead in P2PS. Transferring large model
parameters across participants can consume significant network bandwidth and increase
latency. Balancing network efficiency and communication overhead is crucial to optimize
the learning process. Careful considerations are required when addressing the trade-offs to
balance resource utilization, privacy, security, scalability, and network efficiency.

4.2.6. Intelligence on the Edge Device

The first and most important strength of adopting intelligence on edge devices in FL
systems lies in privacy enhancement. Its decentralized architecture ensures preserving
data confidentiality and compliance with regulations. Additionally, due to the distributed
architecture, scalability can be achieved, allowing for larger datasets and improved model
performance. Via this technique, transmitting only model updates and aggregated results
reduces communication costs, saves network resources and minimizes latency. Immediate
responses are enabled by the real-time processing and inference on the edge devices.
System robustness and fault tolerance are improved as the edge devices can operate
autonomously. Energy efficiency is improved as local processing minimizes the need
for continuous network communication. These strengths make intelligence on the edge
devices an optimal choice for FL systems where privacy, reduced communication, real-time
processing, robustness, energy efficiency, and scalability are critical factors.

Intelligence on edge devices in FL systems also has certain limitations. The model
complexity and training capabilities are restricted due to the limited computational re-
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sources provided by the edge devices. Heterogeneity among devices caused by variations
in hardware and software can complicate optimization and compatibility. Model perfor-
mance could be affected by the data imbalance among the distributed datasets. Network
bandwidth and latency could hassle data synchronization and model updates. Security
could set the alarm due to the vulnerability of edge devices, requiring robust security
measures which governance is not provided by edge devices.

Certain trade-offs should be considered when designing intelligence on edge devices
in FL systems. The model complexity may be limited by the device’s computational capa-
bilities. The limited computational resources on edge devices could compromise model
accuracy. As data distribution and quality may vary among devices, privacy preserva-
tion can affect model performance, potentially impacting model generalization. Energy
efficiency is achieved by local processing, but complex models can consume more energy.
Scalability could be affected due to heterogeneity among various types of edge devices,
which requires additional efforts for compatibility. Balancing model accuracy, privacy,
scalability, real-time processing, centralized control, and energy efficiency is crucial to
effectively leverage intelligence on edge devices in FL systems.

4.2.7. Mixed, Hybrid and Miscellaneous Approaches

Mixed, hybrid, and miscellaneous approaches try to leverage their strengths and
compensate for their weaknesses so as to provide a more comprehensive and robust privacy
framework. These approaches allow for fine-grained privacy control over different aspects
of the FL process. They explore techniques that can provide strong privacy guarantees
while still maintaining acceptable levels of model accuracy and performance. They also
provide flexibility and adaptability to accommodate diverse privacy requirements and
system constraints. In addition, they improve the resilience of the FL system against
various privacy attacks by integrating multiple techniques. These approaches strive for
compatibility and interoperability with existing FL frameworks and infrastructures and
encourage continuous improvement and innovation in privacy protection. It’s worth
noting that the specific strengths and effectiveness of mixed, hybrid, and miscellaneous
approaches depend on the selection and combination of techniques, as well as their proper
implementation and configurations. Considering the specific privacy requirements, data
characteristics, and system constraints are key factors in determining the most suitable
approach for a given FL system.

However, integrating multiple privacy techniques in a mixed or hybrid approach
can increase the complexity of the FL system. In addition, combining different privacy
techniques may introduce compatibility and interoperability challenges. Privacy techniques
such as encryption, secure multiparty computation, or differential privacy can introduce
computational complexity and communication requirements. The combination of privacy
techniques may introduce a trade-off between privacy protection and model utility. The
integration of multiple privacy techniques may introduce new attack vectors or vulnera-
bilities and require fine-tuning of various configuration parameters. Integrating multiple
privacy techniques in an FL system requires additional development and maintenance
efforts. The field of privacy enhancement technology in FL is still evolving, and standard-
ization is limited. Addressing these weaknesses requires careful consideration, proper
evaluation, and robust implementation of mixed, hybrid, and miscellaneous approaches.
Balancing the complexity, performance impact, and security considerations is essential to
leverage the strengths of these approaches while mitigating their weaknesses in the context
of FL.

Thus, the trade-offs arise due to the combination of different techniques and the
complexity of integrating them, including Complexity vs. Effectiveness, Privacy vs. Utility,
Performance vs. Privacy, Compatibility and Interoperability vs. Customization, Security vs.
Complexity, Standardization vs. Flexibility. Addressing these trade-offs requires careful
evaluation, analysis of the specific use case, and understanding of the trade-offs within the
context of the FL system. Regarding the adoption and integration of mixed, hybrid, and
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miscellaneous privacy enhancement approaches, the priorities, constraints, and goals to
make informed decisions should be considered.

4.3. Research Question 3

The third research question is “What is the future of privacy enhancement methods in
FL in healthcare systems?”

The third research question is answered based on the seven aspects as summarized in
the literature reviewed in RQ1.

4.3.1. Differential Privacy

Differential privacy provides an excellent solution for quantifying privacy guarantees
of the learning algorithms for FL systems, it has been adopted by many leading technology
companies, such as Apple, Google, and Facebook. The basic idea behind DP is the require-
ment of indistinguishable results by machine learning algorithms for any two datasets that
differ by at most one individual’s data. As data from multiple participants are collected and
shared, DP ensures the identity of any individual in the dataset cannot be reconstructed
and hence provides privacy protection to user information.

The differential privacy approach provides an effective mechanism to safeguard the
exchange of ML model parameters from clients to FL or edge server [27–29,31]. DP also
poses all relevant characteristics to mitigate all risks associated with information leakage
during model parameter exchange [26,30,32]. It exhibits all qualities that stop adversaries
from reverse-engineering or inferring sensitive patient information from healthcare data by
carefully controlling the amount of noise added during the FL model aggregation process.

As discussed before, the differential privacy technique provides data privacy by intro-
ducing noise that adversely affects the prediction accuracy of the ML algorithms used in
FL systems. One way to achieve a balance of privacy and accuracy is by designing new
aggregation algorithms that are optimized for differential privacy in FL. The basis existing
aggregation techniques for FL, such as the Federated Averaging Algorithm (FedAvg), use
randomized approaches to achieve differential privacy, but their performance may dete-
riorate in the presence of adversarial attacks. More sophisticated aggregation techniques
need to be designed that can withstand the attacks while still providing strong privacy
guarantees. FL systems generally involve a large number of participants, that are willing
to collaborate without sharing their data. New aggregation algorithms and techniques
must be scalable while having the capability to handle the computational challenges of
differential privacy in FL. DP involves evaluations of privacy guarantees and the existing
privacy evaluation metrics are not designed for distributed systems like FL. Hence, suitable
and robust evaluation metrics are required that can account for the unique characteristics
of the FL systems.

4.3.2. Homomorphic Encryption

Homomorphic encryption provides privacy preservation for FL systems by allowing
computations to be performed on encrypted data without compromising the privacy
of the data. This approach is very effective for FL privacy preservation as most of the
operations required by the FL systems like aggregation, model updates, and gradient
calculations can be performed without accessing the raw data [34–38]. This encryption
method provides a very relevant and suitable option for FL systems as even the cloud or
edge servers performing the aggregation processes cannot access the data and only clients
have access to the raw data. This decentralised control of the local data encourages clients
to participate in FL systems without worrying about the patient information leakage in
healthcare applications.

Homomorphic encryption can be computationally expensive, and performing compu-
tations on encrypted data requires significant computational resources. For FL applications
where data is distributed and the computational capacity of the participants is not known,
new algorithms are required that consider optimised use of computational resources at
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the participants. In this context, we need to consider the type of computations required
by different ML algorithms and a suite of Homomorphic algorithms may be required to
optimise computational efficiency for specific machine learning models, As discussed in the
previous section, scalability and privacy-accuracy trade-off needs to be considered when
FL specific Homomorphic algorithms are designed.

4.3.3. Blockchain

In FL, blockchain technology has been adopted as a privacy-enhancing approach. In
the decentralized environment, blockchain enables the secure and tamper-proof process for
data sharing and computation using encrypted public keys. Therefore the participants’ data
at the local level are better protected in terms of privacy and security. The existing work in
this review presented the approaches including adding gradient [42], extra elements [43],
hashed EHR address [44], and additional rules [45]. These approaches all require the second
privacy-enhancing technique.

Four FL-chain healthcare applications [42–45] in this review prove that the blockchain
technology is relevant to FL. The combined technologies effectively enhance privacy, secu-
rity, transparency, collaboration, and governance. The biggest challenge is the computation
overhead. To achieve maximum effectiveness, decisions need to be made regarding the
design of smart contracts and consensus mechanisms, overall system design, acceptable
training time, additional privacy enhancement techniques, regulations, governance, and
so forth.

Although blockchain technology provides a high level of security, it is not inherently
protected. There are still concerns that adversaries could link transactions to individual
participants in the network. Future work also includes the investigation of alternative
second privacy-preserving techniques, such as multi-party computation, or zero-knowledge
proof, into an FL-chain system to achieve higher privacy and security.

Additionally, smart contracts, self-executing agreements stored on the blockchain,
may automate certain aspects of the FL systems. Theoretically, those smart contracts
facilitate the predefined rules, protocols, and incentives, ensuring compliance with data
usage policies, distributing rewards if any, and managing the overall governance of the
system. Additionally, smart contracts reduce the need for manual intervention and enhance
efficiency. Smart contracts have only been mentioned in one of the existing works in this
review [68]. It awaits further exploration in the future.

The evolving blockchain technology creates the concept of a token economy where
the community’s revenue can be allocated to the users who create value in the system [69].
None of the four FL-chain applications in this review adopted a reward system. To achieve
greater collaboration and participation, token-based economies or reward mechanisms can
be implemented in blockchain-based FL healthcare systems.

4.3.4. Hierarchical Approaches

In the category of hierarchical approaches in FL, existing work focused mainly on
grouping clients in different levels or providing a hierarchical architecture to ensure even
distribution of the network load among all connected devices and to minimise the ef-
fect of client movement or heterogeneity. These approaches are effective and relevant
for enhancing privacy preservation in FL systems as they provide additional layers of
control over data sharing among clients, edge and cloud servers. By leveraging hi-
erarchical structures to organize clients and servers, privacy-preserving collaboration
is facilitated [46–48].

For this approach, further work is required in order to secure sensitive participant
information and minimise security threats from adversaries in the network. Secure com-
munication mechanisms are vital to ensure that communication at different levels of the
FL hierarchical system provides privacy of the data in an effective manner. Fine-grained
privacy guarantees need to be incorporated into these approaches to provide fine-grained
control over data sharing and participation. A dynamic hierarchical structure can build
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trust in the system as that allows clients to connect to servers that they know or trust.
These approaches need a customised aggregation mechanism according to the applications’
requirements while providing privacy preservation. In addition, information flow manage-
ment is crucial for ensuring privacy compliance and assurance against information leakage.

4.3.5. Peer to Peer Sharing

P2PS is able to provide high privacy guarantees, improved data availability, distributed
computing power, geographic distribution, collaborative learning, better scalability, and
increased fault tolerance. There still has room to improve P2PS in FL. For example, consid-
ering the communication overhead and synchronization issues, developing new algorithms
and protocols for communication and synchronization in FL is a promising area to reduce
communication overhead and ensure efficient synchronization. Security and trust chal-
lenges, network and communication overhead, governance and control, and adoption and
compatibility also need to be considered.

The implications of using P2PS technology in FL highlight the potential for improved
privacy, enhanced collaboration, and distributed computing power. However, addressing
security challenges, managing network overhead, establishing governance models, and
ensuring compatibility are important considerations for successful implementation.

In addition, although the decentralized architecture for P2PS in FL is very important,
the underlying architecture is a complex and dynamic process that needs to be optimized.
Thus, to efficiently handle the computational requirements of machine learning tasks, it
is critical to improve P2PS. Furthermore, developing privacy-preserving mechanisms is
crucial to further improve privacy and security in P2PS. Besides, consensus mechanisms
are a suitable solution for the P2PS network to reach agreement on data or models. New
consensus mechanisms are needed to efficiently achieve agreement on large-scale datasets.

In conclusion, future work of P2PS should focus on developing new algorithms and
protocols for communication and synchronization, optimizing the decentralized archi-
tecture, developing new privacy-preserving mechanisms, consensus mechanisms, and
developing evaluation metrics. The effectiveness of P2PS technology in an FL system
depends on the specific implementation, network characteristics, security measures, and
governance mechanisms in place. Proper design and management of the P2P infrastructure,
along with addressing potential challenges, contribute to maximising its effectiveness in
FL scenarios.

4.3.6. Intelligence on the Edge Device

As discussed in the Section 4.1, various techniques (such as the use of various ML
and AI models, injection of noise, use of encryption techniques etc) have been used in the
existing literature to improve the privacy of data in health systems. However, more work is
needed in developing a new privacy protection scheme for FL especially considering the
lightweight requirements for medical IoT devices used on the edge. Also, there is still room
for improvement in privacy-preserving strategies, such as the incorporation of differential
privacy, efficient encryption techniques, noise injection and secure multi-party computation
for better results.

To summarise, we emphasise that intelligence on the edge device can play a big role
in improving privacy and efficiency in FL. But there are significant challenges that need
further attention, such as designing optimal infrastructure, and developing new privacy-
preserving mechanisms and strategies. By addressing these challenges, we can develop
more effective and efficient privacy-preserving techniques for FL on the Edge.

Besides privacy enhancement, intelligence on edge devices in FL systems holds signif-
icant relevance in various contexts and domains, including but not limited to scalability,
real-time processing, bandwidth optimization, energy efficiency, and offline functionality.
Intelligence on the edge devices in FL systems brings effectiveness through improved
privacy protection, enhanced data security, scalability, reduced network latency, real-time
decision-making, fault tolerance and resource efficiency. These benefits make intelligence
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on the edge a powerful approach, ensuring efficient and secure machine learning deploy-
ments in decentralized environments. By leveraging intelligence at the edge devices, FL
systems could enable efficient and secure machine learning deployments.

4.3.7. Mixed, Hybrid and Miscellaneous Approaches

The mixed, hybrid, and miscellaneous approaches have higher privacy guarantees
compared to using a single technique alone by integrating multiple privacy techniques.
Thus, it is important to combine different mechanisms to reduce the vulnerabilities and
limitations of individual techniques, which is able to improve privacy preservation. These
approaches can contribute to improved data confidentiality by encrypting data or perform-
ing computations without exposing the raw data, these approaches can reduce the risk of
data leakage or unauthorized access. These approaches offer flexibility in tailoring privacy
protection to specific requirements and constraints by customizing the privacy measures
based on the sensitivity of the data, regulatory compliance needs, or the privacy preferences
of participants.

However, the integration of multiple privacy techniques could increase computational
complexity, interoperability, and standardization challenges. In addition, implementing
and managing these hybrid approaches can be more complex than using a single technique.
Evaluating the effectiveness and security of these approaches is challenging as they may
require specialized evaluation methodologies and benchmarks to assess their impact on
privacy, utility, and overall system performance.

These mixed approaches have shown high performance in FL by addressing the chal-
lenges associated with privacy preservation. They offer several relevances that contribute
to the effectiveness and practicality of privacy protection in FL. First, they provide a com-
prehensive framework for privacy protection in FL by integrating multiple techniques to
ensure that sensitive data remains secure and private throughout the FL process. They also
offer flexibility and customization options to meet specific privacy requirements, enabling
organizations to adapt the privacy measures to their unique use cases and compliance
needs while achieving the desired level of privacy protection. They allow for optimizing
the trade-off between privacy and utility in FL, ensuring that privacy enhancement does
not compromise the effectiveness and utility of the FL system. The integration of multiple
privacy techniques increases the resilience of the FL system against privacy attacks, helping
protect against different types of privacy attacks, including inference attacks, membership
inference attacks, or model inversion attacks. By employing a comprehensive privacy
framework, organizations can demonstrate their commitment to protecting the privacy
of individuals’ data. By combining different techniques, researchers can explore new
ways to improve privacy protection and address emerging privacy challenges, driving
the development of new privacy-enhancing mechanisms, algorithms, and protocols. In
addition, researchers can combine their expertise and leverage the strengths of various
privacy mechanisms, promoting collaboration across different disciplines, fostering the
exchange of ideas, and accelerating progress in privacy-enhancing technologies.

The effectiveness of mixed, hybrid, and miscellaneous approaches to privacy en-
hancement technology in an FL system depends on several factors, including the specific
techniques employed, the nature of the data, and the use case. While these approaches offer
the potential for improved privacy protection, their effectiveness can vary. They should
be evaluated on a case-by-case basis, taking into account the specific requirements, data
characteristics, and threat landscape of the FL system. It is very important to have proper
implementation, configuration, and validation to ensure the effectiveness of mixed, hybrid,
and miscellaneous approaches to privacy enhancement in FL.

For future work, new decentralized FL models can be explored to reduce communica-
tion overhead and ensure efficient synchronization. Considering the model architecture is
the key to combining different machine learning models, a proper optimization algorithm
can be designed. In addition, privacy concerns still exist using the current hybrid FL, the
use of encrypted data in FL is able to ensure the privacy and security of the data. This
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involves encrypting the data before sharing and performing computations on the encrypted
data. It is necessary to develop a strategy by combining differential privacy, homomorphic
encryption, and secure multi-party computation to further improve privacy and security.
Furthermore, multiple privacy enhancement methods can be integrated into FL systems.
Finally, as robust evaluation metrics can provide a standardized framework for measuring
the effectiveness of P2P-sharing-based FL systems, it is vital to develop proper evaluation
metrics in hybrid FL.

5. Conclusions

Machine learning, and in particular deep learning, has led to a wide range of innova-
tions in the digital healthcare area. FL opens further opportunities in the novel research
and business avenues by providing security and privacy for user data. This distributed
machine learning technology enables participants, such as multiple hospitals, MIoT devices,
or EHRs from various locations in healthcare systems, to perform training locally without
sending data to the central server. This streamlines the healthcare process and improves
healthcare decisions and diagnoses.

Given the lack of a comprehensive survey on the privacy enhancement methods
in FL in healthcare systems, our review provides a detailed discussion and analysis in
seven main areas: Differential Privacy, Homomorphic Encryption, Blockchain, Hierarchical
Approaches, Peer to Peer Sharing, Intelligence on the Edge Device, and Mixed, Hybrid
and Miscellaneous Approaches. Then, the possible future work for these seven areas to
enhance privacy for FL in healthcare systems is identified and discussed.

The innovative FL applications in healthcare systems are still at a very early stage. It is
crucial to assess the specific requirements, constraints, and trade-offs of utilizing additional
privacy-enhancing techniques in an FL system. Exploring all approaches and building
hybrid solutions that combine multiple techniques may help mitigate the limitations of
each privacy-enhancing technique and optimize the overall performance of the system.
Approaches like DP and HE provide significant privacy enhancements but add compu-
tational and governance overhead. On the other hand, more decentralized approaches
like blockchain and P2PS provide robustness, scalability and fault tolerance with limited
privacy guarantees. Therefore, while considering the strengths and limitations of all these
approaches more research efforts are required for a one-fit-all method for all healthcare
applications using the FL-based collaborative machine learning.

The P2PS can be used in FL systems where distributed computing power, scalability,
privacy, fault tolerance, and geographical distribution are required. For intelligence on
edge devices, they can be applied in FL systems where privacy, reduced communication,
real-time processing, robustness, energy efficiency, and scalability are critical factors. While
the mixed, hybrid, and miscellaneous approaches can be utilized in FL systems where
complementary privacy techniques, fine-grained privacy control, balancing privacy and
utility, flexibility and adaptability, robust defence against attacks, and compatibility and
interoperability are needed.

In light of its highly personal nature, patient data is considered sensitive, confidential
and private. The potential risks associated with its unauthorized access or disclosure. Al-
though the inherent characteristics of FL architecture and additional privacy enhancement
techniques, this intelligence builder faces ethical challenges. During the aggregation and
transmission phases, sensitive patient data face the risks of data breaches, unauthorized
access, identity theft, or even malicious modification. Sharing patient data across multi-
ple institutions requires informed consent. Additionally, collaboration between multiple
healthcare institutions requires accountability guidelines and governance structures to
ensure ethical conduct throughout the FL process. Furthermore, biased data could affect FL
training outcomes. Regular audits and validation processes in FL should be implemented
to detect and address potential bias. Lastly, errors occurring in data transmission or training
outcomes can erode the trust in the FL system. Therefore, it is crucial to run the FL-based
healthcare systems in an ethical and trust environment.
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We have a strong belief that technological advancements oriented from FL will enhance
the healthcare systems globally, and the privacy enhancement methods presented in this
review, as well as beyond this review, will propel FL to a new height.
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