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Abstract: This study analyzed change and spatial patterns of land use in Shanxi from 2000 to 2020. The
drivers of land use and cover change (LUCC) in cultivated lands, forest lands, grasslands, and rural
construction areas were explored from four dimensions, including population, natural environment,
location traffic, and economic development. The CA-Markov model was used to simulate the
scenarios of natural growth (NG), ecological protection (EP), economic development (ED), food
security (FS), ecological protection–economic development (EP-ED), and ecological protection–food
security (EP-FS) in 2030. The results indicated that: (1) The conversion to built-up areas primarily
dominated the LUCC processes, and their expansion was mainly to the detriment of the cultivated
lands and grasslands during 2000–2020. (2) From 2000 to 2020, population, economy, and land
productivity were the main factors of LUCC; the interaction of drivers for the increase of cultivated
lands, forest lands, grasslands, and rural construction areas showed enhancement. (3) Under the
NG, ED, and EP-ED scenarios, the rural construction areas would have increased significantly, while
under the FS and EP-FS scenarios, the cultivated lands would only just have increased. These future
land use scenarios can inform decision-makers to make sound decisions that balance socio-economic,
ecological, and food security benefits.

Keywords: land use change; land driving factors; geographical detector; CA-Markov; scenario
simulation; Shanxi

1. Introduction

Land use and cover change (LUCC) is the link between human economic activities
and natural ecological processes. LUCC can influence international energy balances and
biogeochemical cycles, resulting in global ecosystem services [1] and climatic changes [2–4].
Human activities have significantly altered much of the Earth’s surface in recent years [5].
Increasing demands for food, water, and shelter from growing human populations have re-
sulted in large-scale deforestation, expansion of urban construction areas [6], fragmentation
and loss of agricultural land [7,8], and accelerated evolution of regional land use patterns
globally [9], all of which have inevitably affected changes in and the sustainable develop-
ment of land use systems [10–12]. In addition, the impact of human activities on LUCC has
led to irreversible loss of biodiversity [9,13,14], isolation of habitat [15], changes in surface
temperature [16], and soil erosion [17,18]. Irrational land use will also severely affect carbon
sources [19], carbon sinks [20], habitat integrity [21], and food production [21,22], which in
turn will exacerbate tensions between humans and the environment [23]. Consequently, it
is essential to quantify LUCC dynamics to address climate change, biodiversity loss, and
food security [24].

LUCCs are the result of the interaction of many spatiotemporal scale factors [25]. Iden-
tifying the relationship between LUCC and its drivers has become indispensable research
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in recent years [26,27]. Understanding and revealing the LUCC and its driving forces in
different regions are significant to regional socio-economic development regulation, land
resource management, and ecological environment protection [28]. Furthermore, by re-
vealing the driving force behind LUCC [29], not only can future land use be predicted [30],
but it also provides an accurate scientific foundation for effective, green, and sustainable
development of regional land use. The geographical detector can detect the spatial dif-
ferentiation in land use and the interaction between explanatory factors and analytical
variables, thereby revealing the drivers of land use [31,32]. The core of the geographical
detector is that when an independent variable has an enormous impact on a variable, its
spatial distribution must be similar [32,33]. The advantage of a geographic detector is that
it can detect not only numerical and qualitative data [34], but also whether there is an
interaction between the two factors and the strength, direction, linearity, or non-linearity of
the interaction.

Simulating LUCC is a complex issue that involves physical, environmental, demo-
graphic, and socio-economic factors [35]. Currently, the commonly used land use simulation
models include ANN-CA [36] and CLUE-S models [37,38], but they hardly simulate the
complex interaction and competition between different land use types [39–41]. The CA
model is a discrete dynamical model that simulates the complex interactions and compe-
tition between natural phenomena and land use types [42–44]. Although the CA model
can excellently simulate land use through the definition of transformation rules, it cannot
effectively include the time series of LUCC. As a result, many researchers have introduced
the Markov chain to achieve better results for the simulation of LUCC [44–46], but fewer
studies have been conducted to assess the impact of drivers and constraints on LUCC. Lack
of assessment of LUCC impact factors ultimately leads to failure of full compliance and
uptime monitoring of the atlas. Previous studies have only examined the drivers of a single
LUCC, and few have explored the effects on multiple LUCCs in terms of multiple aspects
such as population, natural environment, locational traffic, and economic development. In
addition, fewer studies have combined geodetectors with CA-Markov, and scenarios of
food security were not considered in future scenario simulations.

To address the above-mentioned problems, this study detected the drivers of cul-
tivated lands, forest lands, grasslands, and rural construction areas in Shanxi from the
following four dimensions: population, natural environment, regional transportation, and
economic development. The CA-Markov model was then used to simulate the scenarios of
natural growth (NG), ecological protection (EP), economic development (ED), food security
(FS), ecological protection–economic development (EP-ED), and ecological protection–food
security (EP-FS) in 2030, which would provide a basis for efficient and sustainable devel-
opment of land resources in Shanxi in the future. We hypothesized that the data used in
the paper are a true and reliable reflection of the study area. Hence, the objectives of the
present study were to determine: (1) how did the spatiotemporal transformation of LUCC
develop in Shanxi during 2000–2020? (2) What were the driving forces for LUCC from
2000 to 2020? (3) How will LUCC progress under different land use scenarios in the future?

2. Study Area and Data Source
2.1. Study Area Description

Shanxi Province (33◦34′–40◦44′ N, 110◦14′–114◦33′ E) is set at an altitude of 207–3071
m and comprises a total area of about 14.1 × 104 km2 (Figure 1). The landform types
in this area are complex and diverse, and the mountainous area accounts for about one
quarter of the total area. The valleys are vertical and horizontal, spanning the two major
river systems of the Yellow River and the Haihe River. The overall climate of the region
is dry, with average annual temperature of 4.2 to 15.6 ◦C, in addition to average annual
precipitation of 363 to 776 mm. The climate type of Shanxi is classified as a temperate
continental monsoon climate zone. The area of ecologically fragile areas is large and the
causes of vulnerability are complex. The areas of soil erosion have exceeded 10.8× 104 km2,
accounting for 69.5% of the total land area. The areas of extremely sensitive and highly
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sensitive areas have reached 7.7 × 104 km2, accounting for 49.5% of the total land area. The
ecological environment in this area has become one of the most critically fragile areas of
the world due to soil erosion and environmental degradation.

Figure 1. Location of the study area.

2.2. Data Sources

The historical land use data were derived from Landsat TM/ETM images that were
generated through visual interpretation based on national field surveys (Table 1). Such
data have been previously used in similar studies and exhibit an accuracy of over 90% [4].
The land use data were reclassified into nine types, including cultivated lands, forest lands,
orchard lands, grasslands, water bodies, rural construction areas (rural settlements and
other construction lands), urban built-up areas, unused land, and wetlands. The distances
to urban built-up areas, rural construction areas, and rivers were obtained using ArcGIS
reclassification of land use data for each time period that was considered and Euclidean
distance calculations at a spatial resolution of 300 m (Figure 2). All the driving force data
(Table 1; Figure 2) were resampled to 300 m to reduce the calculation cost and expedite the
simulation process.

Table 1. Data format and sources.

Dataset Format Resolution Time Data Source

Land use/cover Raster 30 m 2000, 2010, 2020
Data Center for Resources and Environmental Sciences of

the Chinese Academy of Sciences
(http://www.resdc.cn/ (accessed on 20 June 2021))

Temperature Raster 1 km 2005–2015
Precipitation Raster 1 km 2005–2015

NPP Raster 1 km 2005–2015
Erosion modulus Raster 1 km 2005–2015

Roads Vector 30 m 2020 OpenStreeMap (https://www.openhistoricalmap.org/
(accessed on 20 June 2021))

Population density
Excel - 2000–2020

Chinese National Bureau of Statistics
(http://www.stats.gov.cn/ (accessed on 20 June 2021))Economic indicators

Elevation Raster 30 m 2020 Data Center of Geospatial data cloud
(https://www.gscloud.cn/ (accessed on 20 June 2021))Slope Raster 30 m 2020

http://www.resdc.cn/
https://www.openhistoricalmap.org/
http://www.stats.gov.cn/
https://www.gscloud.cn/
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Figure 2. Driving factors of LUCC.

3. Methodologies
3.1. Degree of Land Use Dynamism (K)

K =
Ub −Ua

Ua
× 1

T
× 100% (1)

S =

(
n

∑
i=1

∆Ui−j

2 ∑n
i Uit1

)
× (t2 − t1)

−1 × 100% (2)

where K is the degree of land use dynamism during the study period; Ua and Ub are the
areas of a land use type at the beginning and end of the study period, respectively; and T is
the study period in years; S is the integrated use dynamic attitude of the study area; ∆Ui−j
is the area of land type i transformed to non-i land type in the time period t1 − t2; Uit1 is
the area of land use type i in the study area in time t1.

3.2. Driving Factors of LUCC and Geographical Detector Model

According to the intensity of LUCC in the study area from 2000 to 2020, four land types
with high conversion intensity, namely, cultivated lands, forest lands, grasslands, and rural
construction areas, were selected to analyze their driving forces. From four dimensions of
population, natural environment, location traffic, and economic development, 18 driving
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factors (Figure 2) were selected to construct the index system of driving factors. Natural
factors include elevation (m), slope (m), distance from river (m), average temperature
(◦C), and annual average precipitation (mm). Population factor is population density
(person/km2). Economic factors include per capita value added of primary and secondary
industries (104 yuan/person), urbanization rate (%), proportion of agriculture population
(%), total power of agricultural machinery (104 kilowatts), local financial expenditures
(104 yuan), and grain yield per unit area (kg/ha). There are the following five transportation
factors: distance to provincial highway (m), distance to national trunk highway (m),
distance to railway (m), distance to rural construction areas (m), and distance to urban
construction lands (m). To ensure consistency of data and overcome unit differences among
the influencing factors, the 18 selected factors were resampled and classified into 9 levels
(slope is classified into 6 levels) according to the natural breakpoint method.

The geographical detector(Figure 3) consists of four detectors [33], namely, factor
detector, interaction detector, risk detector, and ecological detector. In this paper, 18 po-
tential driving factors of LUCC in Shanxi were explored by using the factor detector and
interaction detector. Factor detector explores the extent to which one factor X (driving
factors) explains the spatial differentiation of Y (LUCC) as measured by value q. A larger
value of q indicates a greater impact of the factor on LUCC and stronger explanatory power,
and conversely, less explanatory power. The expression formula q is as follows:

q = 1− ∑L
h=1 Nhσ2

Nσ2 = 1− SSW
SST

(3)

SSW =
L

∑
h=1

Nhσ2
h (4)

SST = Nσ2 (5)

where q(0 ≤ q ≤ 1) is the explanatory power of the influencing factor on LUCC; h is the
stratification of variable Y or factor X; Nh and N are the number of stratification samples
and the number of cells in the whole area, respectively; σ2 and σ2

h are the variance of LUCC
in the study area and stratum h, respectively; L is the number of stratifications; SSW and
SST are the sum of variance within the stratification and the total variance of the whole
area, respectively.

Figure 3. The principle of a geographical detector.

Interaction detector evaluates whether the two influencing factors (X) will increase the
explanatory power of the dependent variable Y when they work together. When the two
factors interact, the results have the following five situations [31,32]:

(1) q(X1∩ X2) ≤ Min(q(X1), q(X2)), non-linear weakening; (2) q(X1∩ X2) > q(X1) +
q(X2), non-linear enhancement; (3) Min(q(X1), q(X2)) < q(X1∩ X2) < Max(q(X1), q(X2)),
single-factor nonlinear weakening; (4) q(X1∩ X2) > Max(q(X1), q(X2)), two-factor en-
hancement; (5) q(X1∩ X2) = q(X1) + q(X2), independent.

3.3. CA-Markov Model

The expression formulas for the CA-Markov model [16,47] are as follows:

S(t+1) = Pij × S(t) (6)
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where S(t) and S(t+1) are the states of the landscape structure at t and t + 1 times, respec-
tively, while Pij denotes the transfer state.

The expression formulas for Pij are as follows:

Pij =

P11 · · · P1n
...

. . .
...

Pn1 · · · Pnn

 (7)

where 0 ≤ Pij < 1, ∑n
j=1 Pij = 1(i, j = 1, 2 · · · , n)

S(t+1) = f (St, N) (8)

where t and t + 1 denote the times before and after the cellular automata, respectively; S
is the discrete, finite set of states of the cellular automata; N is the domain of the cellular
automata; and f is the spatial transformation rule for the cellular automata.

3.4. Scenarios Design

The study designed NG, EP, ED, FS, EP-ED, and EP-FS scenarios to project land use
in 2030. The driving factors and weights of the six future scenarios were selected and
formulated on the basis of Table 2, and the q values of drivers were standardized as their
weights. Under the NG scenario, no policy was involved, and the drivers of LUCC were
chosen according to Table 3. Other scenario simulations are based on the NG scenario.
Under the EP scenario, the rapid growth of construction land is limited, and the areas with
severe soil erosion and low net plant primary productivity (NPP) are protected. The ED
scenario is characterized by rapid economic development [48], accelerated urbanization,
and encroachment on cultivated lands and grasslands. Under the FS scenario, cultivated
lands are prevented from being occupied by built-up areas, and the continuous and stable
increase of cultivated land is protected. The EP-ED scenario combines ecological protection
and economic development, with ecological protection and economic development as its
constraints and drivers, respectively. The EP-FS scenario combines ecological protection
and food security, and limits the encroachment of construction lands on cultivated lands
and ecological lands.

Table 2. Explanatory forces of LUCC drivers during 2010–2020 (q ).

Land Use Types X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18

2000
to

2010

Cultivated lands 0.31 0.30 0.41 0.46 0.25 0.30 0.39 0.47 0.18 0.01 0.08 0.06 0.14 0.09 0.04 0.04 0.19 0.16
Forest lands 0.43 0.49 0.53 0.43 0.57 0.39 0.53 0.36 0.27 0.01 0.06 0.04 0.13 0.06 0.07 0.13 0.28 0.30
Grasslands 0.42 0.43 0.58 0.47 0.59 0.41 0.53 0.63 0.10 0.00 0.04 0.18 0.17 0.08 0.07 0.09 0.24 0.20

Rural construction areas 0.16 0.20 0.36 0.22 0.21 0.24 0.18 0.23 0.13 0.01 0.03 0.08 0.09 0.07 0.01 0.03 0.15 0.04

2010
to

2020

Cultivated lands 0.12 0.08 0.15 0.27 0.08 0.16 0.25 0.36 0.08 0.02 0.01 0.01 0.13 0.04 0.03 0.01 0.09 0.16
Forest lands 0.36 0.36 0.30 0.34 0.19 0.40 0.13 0.26 0.11 0.00 0.06 0.13 0.09 0.06 0.09 0.07 0.11 0.03
Grasslands 0.11 0.16 0.21 0.11 0.16 0.21 0.26 0.38 0.07 0.01 0.00 0.03 0.16 0.01 0.03 0.02 0.09 0.09

Rural construction areas 0.20 0.32 0.34 0.25 0.30 0.41 0.40 0.23 0.04 0.02 0.02 0.07 0.05 0.04 0.02 0.06 0.07 0.07

Note: X1, X2, X3, X4, X5, X6, X7, X8, and X9 indicate per capita value added of primary industry, per capita value
added of secondary industry, population density, urbanization rate, proportion of agriculture population, total
power of agricultural machinery, local financial expenditures, grain yield per unit area, elevation (m), and slope;
X10, X11, X12, X13, X14, X15, and X16, indicate distances to provincial highway, national trunk highway, railway,
urban construction lands, rural construction areas, and river; X17 and X18 indicate average temperature and
annual average precipitation.

3.5. Model Precision Verification

In the accuracy assessment of LUCC simulation, the sensitivity value (FOM) and
kappa coefficient were selected to test the prediction accuracy. The sensitivity value (FOM)
index can comprehensively measure the modeling accuracy of simulated changes, focusing
on the accuracy of the change area, rather than the accuracy of the entire study area, and is
therefore widely used for accuracy verification. The range of FOM is 0–1, where the higher
the FOM, the higher the simulation accuracy [49].
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Table 3. NG scenario parameter setting (J-shape curve).

Land Use Types Monotonically Increasing Monotonically Decreasing

Cultivated lands

Grain yield per unit area, total power of agricultural
machinery, precipitation, urbanization rate, per capita
value added primary industry, distance from railway,

proportion of agriculture population

Elevation

Forest lands Per capita value added of primary industry, elevation,
local financial expenditures

Grain yield per unit area, distance from
national trunk highway

Grasslands Elevation

population density, grain yield per unit
area, average annual precipitation,

proportion of agriculture population,
total power of agricultural machinery

Rural construction areas
Urbanization rate, population density, local financial

expenditures, per capita value of added
secondary industry

Proportion of agriculture
population, elevation

FOA =
B

A + B + C + D
(9)

where A is the number of cells that changed in the simulated map but actually stayed
the same; B is the number of cells that changed in the simulated and actual maps and
changed correctly; C is the number of cells that changed in the simulated and actual maps
but changed incorrectly; and D is the number of cells that stayed the same in the simulated
map but changed in the actual map.

The expression formula for the Kappa Test model is as follows:

kappa =
Po − Pc

Pp − Pc
(10)

where P0 is the proportion of correct simulations; Pc is the expected proportion of correct
simulations in random scenarios; Pp is the amount of correct simulations in the ideal
classification case (i.e., 100%).

The basic framework design is shown in Figure 4.

Figure 4. Schematic showing the design framework for this study.
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4. Results and Analyses
4.1. LUCC, Transformation Patterns and the Spatial Modes
4.1.1. LUCC

Using the year 2020 as an illustration (Figure 5a; Table 3), it can be seen that the
Shanxi, cultivated lands (36.36%) made up the biggest proportion of land use, followed
by grasslands (28.78%), forest lands (28.73%), rural construction areas (3.79%), and urban
built-up areas (0.84%).

Figure 5. Land use structure (a), and dynamic change (b).

According to Figure 5b, there was an accelerated change in land use between 2000
and 2010 as the S value was higher than it was between 2010 and 2020. Between 2000
and 2010, the K values for urban built-up areas and rural construction areas were 11.81%
and 10.37%, respectively, indicating a strong growth in the area. However, the K values
between 2010 and 2020 were 1.9% and 1.27%, respectively, showing a deceleration in the
region during that time. Accordingly, the K value for the cultivated land from 2000 to
2010, was −0.53%, showing a significant decrease in croplands throughout this period.
Indicating an escalating trend in various land uses, the K values for urban built-up areas,
rural construction areas orchard lands, water bodies, and forest lands from 2000 to 2020
were 6.15%, 4.80%, 1.16%, 0.36%, and 0.06%, respectively. Due to their lower size compared
to other land use types (Figure 5a), unused lands, orchard lands, wetlands, and water
bodies had higher K values.

4.1.2. Land Use Transformation Patterns

The conversion of cultivated lands, grasslands, and forest lands, with contribu-
tion values of 17.55 × 104 ha, 5.07 × 104 ha, and 1.64 × 104 ha, respectively, between
2000 and 2010, resulted in an increase in rural construction areas, demonstrating a net
increase of 24.15 × 104 ha (or 103.7%) (Table 4); urban built-up areas increased (net in-
crease of 5.56 × 104 ha), which was brought about by the conversion of cultivated lands
(3.93 × 104 ha); net increase in forest lands comprised 5.2 × 104 ha, which was primar-
ily brought about by the conversion of cultivated lands (4.19 × 104 ha) and grasslands
(2.03 × 104 ha). The rural construction areas increased by a net amount of 6.04 × 104 ha
(or 12.7%) between 2010 and 2020, receiving net transfers of cultivated lands, grasslands,
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and forest lands totaling 3.69 × 104 ha, 1.62 × 104 ha, and 1.4 × 104 ha respectively; the net
increase in urban built-up areas was 1.88 × 104 ha, and this primarily occurred due to the
conversion of cultivated land (0.97 × 104 ha) and rural construction areas (0.75 × 104 ha).

Table 4. Land use conversion area (104 ha).

Land Use Types Cultivated
Lands

Forest
Lands

Orchard
Lands Grasslands Water

Bodies

Urban
Built-Up

Areas

Rural Con-
struction

Areas

Unused
Lands Wetlands Total

2000 to
2010

Cultivated lands 496.79 7.68 1.84 14.23 1.16 4.05 18.55 0.05 0.34 544.70
Forest lands 3.49 387.73 0.31 7.79 0.18 0.13 1.74 0.02 0.03 401.41

Orchard lands 0.32 1.01 4.60 0.10 0.01 0.03 0.11 0.00 0.01 6.17
Grasslands 11.51 9.82 0.21 387.01 0.29 0.49 5.32 0.06 0.10 414.81

Water bodies 0.57 0.10 0.01 0.17 3.97 0.08 0.26 0.06 0.36 5.58
Urban

built-up areas 0.12 0.01 0.00 0.01 0.00 4.07 0.13 0.00 0.00 4.34

Rural
construction

areas
1.00 0.10 0.01 0.25 0.07 0.99 20.86 0.00 0.01 23.29

Unused lands 0.29 0.04 0.02 0.10 0.00 0.00 0.07 0.44 0.01 0.96
Wetlands 1.45 0.13 0.04 0.21 1.09 0.05 0.41 0.04 5.45 8.87

Total 515.55 406.61 7.03 409.87 6.77 9.90 47.44 0.68 0.34 1410.14

2010 to
2020

Cultivated lands 484.15 5.41 0.16 16.13 0.75 1.31 6.95 0.03 0.76 515.67
Forest lands 6.43 390.55 0.24 7.41 0.06 0.09 1.70 0.02 0.05 406.55

Orchard lands 0.42 0.10 6.32 0.10 0.01 0.00 0.08 0.00 0.01 7.03
Grasslands 17.27 8.60 0.10 380.96 0.20 0.14 2.33 0.04 0.18 409.82

Water bodies 0.31 0.06 0.00 0.18 5.58 0.01 0.09 0.04 0.48 6.75
Urban

built-up areas 0.34 0.01 0.00 0.07 0.00 9.33 0.11 0.00 0.03 9.90

Rural
construction

areas
3.26 0.30 0.02 0.71 0.06 0.86 42.17 0.00 0.05 47.44

Unused lands 0.06 0.01 0.00 0.02 0.06 0.00 0.01 0.48 0.04 0.68
wetlands 0.49 0.08 0.01 0.21 0.45 0.03 0.03 0.03 4.96 6.29

Total 512.73 405.13 6.86 405.79 7.17 11.78 53.48 0.64 6.56 1410.14

4.1.3. Land Use Spatial Structure

The northwestern part of Shuozhou City, the core metropolitan region of Taiyuan City,
the border region of Lvliang and Jizhong Cities were the main places where LUCC was
concentrated between 2000 and 2020 (Figure 6). The central Linfen and Yangquan Cities, as
well as the border of Jizhong and Changzhi Cities, saw the greatest growth in cultivated
lands between 2000 and 2020. Increases in forest lands were primarily concentrated in
the central region of Datong City and the southeastern region of Changzhi City. The core
metropolitan areas of Hunyuan and Lingqiu Datong City, Kelan and Wuzhai Counties
of Xinzhou City, Jiaocheng County of Lvliang City, and Taiyuan City account for the
majority of the growth in the rural construction areas. The increase in grasslands primarily
was concentrated in the northwestern region of Lvliang City. Urban built-up areas are
concentrated in the Pingcheng and Yungang Counties of Datong City, Yaodu District of
Linfen City, as well as the border of Lvliang and Jinzhong City.

4.2. Analysis of Drivers of LUCC
4.2.1. Analysis of Single-Factor Drivers

Throughout the study period, the explanatory power of land use drivers displayed
diverse characteristics at various stages (Table 2). The conversion of other lands to cultivated
lands between 2000 and 2020 was primarily affected by factors such as grain yield per
unit area, urbanization rate, population density, local financial expenditure, per capita
value added of primary industry, total power of agricultural machinery, precipitation,
and grain yield per unit area. In 2000–2010 and 2010–2020, the dominant factors of the
increase in forest lands were the proportion of agricultural population (0.57) and the total
power of the agricultural machinery (0.40). In addition, from 2000 to 2020, factors such
as population density, per capita secondary productivity, per capita primary productivity,
urbanization rate, temperature, and elevation played a critical role in the conversion of non-
forest lands to forest lands. The conversion of various land use types to grasslands between
2000 and 2020 was significantly influenced by grain yield per unit area, population density,
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and local financial expenditures. The proportion of agriculture population and the total
power of agricultural machinery between 2000 and 2020 had a significantly impact on the
conversion of other lands to grasslands. The conversion of other lands to rural construction
areas between 2000 and 2010 and between 2010 and 2020 was predominantly impacted
by population density and total power of agricultural machinery, with q values being
0.36 and 0.41, respectively. It was also affected by grain yield per unit area, urbanization
rate, proportion of agricultural population, per capita added value of secondary industry,
and local financial expenditures.

Figure 6. Spatial distribution of LUCCs in Shanxi from 2000–2010 (a), and 2010–2020 (b).

4.2.2. Analysis of Interaction Drivers

The interactive detection of four drivers of LUCC in Shanxi between 2000 to 2010 and
2010 to 2020 (Figure 7) showed that the interaction of two of the 18 drivers exhibited a
nonlinear or synergistic improvement. These results indicated that LUCC was a result of
numerous factors, including the natural environment, population, regional, and economic
development. Population density, grain yield per unit area, proportion of agriculture popu-
lation, local finance expenditures, and per capita added value of primary and secondary
industries all had relatively strong interactions with LUCC. However, the correlation be-
tween LUCC and elevation, slope, precipitation, and temperature were relatively weak.
These findings showed that natural factors were the critical basis of the LUCC in Shanxi,
while human activities and economics accelerated the development of LUCC.

Grain yield per unit area was only 0.47 for the conversion of other lands to cultivated
lands between 2000 and 2010, but the q value for interaction with other factors was above
0.52, and the interaction with population density reached the highest value (0.95); the q
value for the interaction between grain yield per unit area and the proportion of agriculture
population was the maximum (0.82) during 2010–2020; the average temperature alone has
the lowest q value but as it interacts with other factors, the q value rises, reaching a high of
0.72 for the interaction with per capita added of secondary industry. For the conversion
of other lands to forest lands, the interaction between population density, local financial
expenditures, and the proportion of agriculture population were most significant between
2000 and 2010; urbanization rate, population density, total power of agricultural machinery,
and the per capita added value of secondary industry were the highest between 2010 and
2020. As can be seen, the urbanization rate, population density, and economy all have
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an impact on the conversion of farmlands to forests. For the increase in grasslands, the
interaction between per capita value added of secondary industry and population density
had the largest q value (0.98) from 2000 to 2010, while the interaction between per capita
value added of secondary industry and grain yield per unit area had the highest q value
(0.81) from 2010 to 2020. The slope’s impact on the growth of grasslands was the least
significant between 2000 and 2020, but it greatly increased after interacting with other
factors. Between 2000 and 2020, the effects of per capita value added of secondary industry
and population density were most significant for the conversion of other lands to rural
construction areas. Interaction with total power of agricultural machinery, proportion of
agriculture population, and the local financial expenditures were also higher, which overall
reflected the increased demand for built-up areas in the more populated regions.

Figure 7. Interaction detection of LUCC drivers from 2000 to 2010 (a) and 2010 to 2020 (b).

4.3. Simulation of LUCC under Various Scenarios in 2030

The land use for 2020 was predicted using 2000 and 2010, then validated with the
actual data from 2020, which revealed a Kappa value of 89.09% and a FOA value of 70.5%.
These findings demonstrate the CA-Markov model’s dependably accurate performance for
LUCC simulation in Shanxi.

Figure 8A shows the spatial distribution of land use in Shanxi under the six sce-
narios estimated for 2030. We arbitrarily chose three regions for comparison in order to
further explain the inconsistent findings of land use modeling under different scenarios
(Figure 8C1–C3). The conversion of forest lands under the NG scenario resulted in an
increase in grasslands and construction lands (Table 5). The distribution of grasslands
increased, but it was dispersed, with the majority of it concentrated in the southeast of
Lvliang and Linfen Cities, in the Lingqiu County of Datong City, and in the Youyu and
Jingle Counties of Shuozhou City (Figure 8B). The construction land was primarily concen-
trated in the surrounding region of Taiyuan, Fenyang, and Changzhi Cities, the junction of
Xiaoyi and Jiexiu Cities, and Linfen and Yuncheng Cities. According to the EP scenario,
the conversion of grasslands into cultivated lands was primarily concentrated in Lingqiu
County of Datong City, Wutai and Jingle County of Qizhou City, and Yushe County of
Jizhong City. The conversions to rural construction areas dominate the LUCC processes
in the ED and EP-ED scenarios, and the growth harms largely the cultivated lands and
grasslands. The increase in rural construction areas was primarily concentrated in Fenyang
City, Xiaoyi City, and Lucheng County. Under the scenario of FS, the increase in cultivated
land primarily occurred due to the conversion of grasslands and forest lands, and which
were particularly concentrated in the south of Shanxi, the Jizhong City, and its fertile soil
region. According to the scenario of EP-FS, both cultivated lands and grasslands increased
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fragmentally, with cultivated lands being primarily concentrated in Shanxi’s southeast, and
grasslands being primarily concentrated in its northeast and west.

Figure 8. Spatial distribution of land use in Shanxi under the six scenarios estimated for 2030.
(A,B) indicate the simulation results of land use in 2030 and the spatial distribution of area increase
of each land use type, respectively; (C1–C3) indicate the three randomly selected areas from (A).
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Table 5. The area and proportion of land use types under various scenarios from 2000 to 2030.

Year Area
(104 ha)

Cultivated
Lands

Forest
Lands

Orchard
Lands Grasslands Water

Bodies

Urban
Built-Up

Areas

Rural
Construction

Areas

Unused
Lands Wetlands

2000 542.72 401.41 6.17 414.81 5.58 4.34 25.42 0.96 8.87
2010 515.70 406.61 7.03 409.87 6.77 9.90 47.44 0.68 6.29
2020 512.77 405.10 6.86 405.79 7.29 11.78 53.49 0.64 6.58
2030 NG 512.05 383.05 6.37 413.14 6.89 14.51 66.76 0.59 6.92

EP 501.26 399.25 6.79 423.21 7.59 13.17 51.70 0.68 6.65
ED 502.05 405.62 6.72 400.37 7.13 13.06 68.08 0.64 6.62
FS 531.87 397.81 6.51 396.37 6.89 14.15 49.52 0.69 6.49

EP-ED 502.08 405.57 6.72 400.40 7.12 13.06 68.08 0.64 6.62
EP-FS 521.39 386.80 6.46 415.70 6.93 14.20 51.36 0.61 6.84

5. Discussion
5.1. Spatiotemporal LUCC Characteristics

Socio-economic development and rapid urban expansion have exacerbated the ten-
sion between humans and the environment [23,50]. According to the survey, Shanxi’s
construction areas both showed a substantial increased trend between 2000 and 2020. Rural
construction areas increased primarily derived from conversions of cultivated lands and
grasslands, and they were primarily concentrated in the core metropolitan area of each
county, such as Hunyuan and Lingqiu Counties, Bali and Wuzhai Counties, Jiaocheng
County, and the center of Taiyuan and Datong City. The increase of urban built-up areas
was primarily derived from conversions of cultivated lands, and this was mostly con-
centered around the area of the core metropolitan. These findings agreed with those of
other researchers [51,52] who have examined local locations in China. Economic benefits
are often the primary consideration in the management of land resource in developing
countries [53]. The GDP of Shanxi increased more than nine times between 2000 and
2020, and improvements in financial conditions have prompted a sizable influx of people
from rural to urban areas, promoting the growth of cities and surrounding built-up areas.
Changes in perceptions and levels of consumption have also led to structural changes in
agriculture, such as the conversion of some cultivated lands to orchard lands. Between
2000 and 2020, forest lands were primarily derived from conversions of cultivated land and
grasslands, and this was linked to specific policies promulgated by the government, such as
returning farmland to forests [54]. The main goals of the policy are to preserve high-quality
croplands, convert cultivated lands vulnerable to soil erosion and desertification, convert
parts of the steppe to become forest lands of high ecosystem service values, and restore
forest vegetation. These changes have resulted in significant changes in land use in the
study areas, especially in areas with intensive agricultural activities. This has resulted in
a gradual decrease in cultivated lands and grasslands, mainly concentrated in the cen-
ter of Datong City and the southeastern part of Changzhi City. Policies and regulations
contribute the most to LUCC, resulting in the fragmentation of land structure and food
security [55–57]. As the world’s most populous country, improving the efficiency of the
use of cultivated lands and ensuring food security is of critical significance. Strengthening
farmland protection is the most important mechanism for stabilizing the domestic food
supply. Therefore, Shanxi should establish an effective land use mechanism, control urban
expansion, balance urban construction land and rural construction areas [58], increase
investment in agricultural water conservancy facilities [59], and strictly protect high-quality
cultivated lands.

5.2. The Response of Driving Factors to LUCC

LUCC results from the interplay of multiple factors, which play a role at different
spatiotemporal scales [25]. This paper explores the driving mechanisms of changes in
cultivated lands, forest lands, grasslands, and rural construction areas from the dimen-
sion of the natural environment, population, location and transportation, and economic
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development using a geographic probe model. The theoretical universality and practical
applicability remain to be further tested. The interaction detection results of the driving
factors of the four LUCCs showed that the interactions of the selected 18 factors exhibited a
two-factor enhancement or a non-linear enhancement. The dominant factor in the increase
of cultivated lands from 2000 to 2020 was grain yield per unit area. However, Arowolo and
Deng [60] studied the drivers of cropland change in Nigeria and the results showed bio-
physical, socio-economic, and proximity factors are significant determinants of transition to
cultivated land use. The results differ from those of this paper, which may be related to the
different drivers selected. The crop production environment and land production capacity
are reflected by grain yield per unit area, which determined the growing conditions of the
regional soil environment [61,62]. Therefore, the cultivated land is more likely to transfer
to areas with fertile soils. In addition to demographic and economic impacts, forest lands
are strongly influenced by natural factors (temperature and elevation). Forest lands can
provide animals with enough water, food, habitat, breeding areas, and other essential envi-
ronmental conditions [62,63]. Thus, a continuous and stable growth of forest lands should
be maintained in the future, which will lead to a more stable ecological structure. Grain
yield per unit area, population density, and local financial expenditures were the major
driving forces in grasslands. Grasslands played a significant role value in the development
of animal husbandry [64] and the protection of biodiversity [65], the conservation of soil
and water [66], and ecological balance. Areas with poor soils and low population fall more
readily into wasteland and thus naturally develop into weed lands. However, financial
expenditures for ecological conservation can protect natural grasslands and prevent their
degradation. The increase in rural construction areas was mostly influenced by population
density and total power of agricultural machinery in 2000–2010 and 2010–2020, respectively.
Rapid economic development and increased agrarian machinery have left a surplus of
rural labor. In addition, engaging in non-agricultural activities increased the net income
per capita of rural residents, resulting in farmers’ reluctance to rely on their own farmland
for subsistence and thus migrate to towns for high returns [67,68]. The migration of popu-
lations to cities accelerates the demand for construction land and promotes the expansion
of rural residential land around cities.

5.3. Future Land Use Scenario Simulation and Deficiencies

Extensive field surveys are difficult and costly [69]. In contrast, satellite remote sensing
may be the only economically viable method to routinely collect data on land types within
large watersheds at high spatiotemporal resolutions [70–72]. The land use remote sensing
data in this paper are based on remotely sensed imagery from Landsat TM satellites in
the U.S. The accuracy of Landsat generated by national field surveys and manual visual
interpretation was greater than 90% cent [73]. For this paper, we first checked the accuracy
of the forecast simulations and found that the Kappa value of both the valid and predicted
values for 2020 was 89.09%, and the FOA value was 70.1%. The simulation performance of
these models is generally acceptable. Six scenarios of land use in 2030 depicting different
development strategies were designed to consider socio-economic development, ecological
protection, and food security. The EP scenario limits the expansion of built-up areas and
protects ecologically vulnerable areas, and these simulation results are reflected in the
increase of grasslands. The NG, ED, and EP-ED scenarios accelerate urbanization, which
leads to a significant increase in built-up areas, and these observations are also reflected in
our study. The FS and EP-FS scenarios protect high quality cultivated lands, resulting in a
continuous increase in farmland area. All these simulation results are clearly consistent
with our expected results. Therefore, the simulation results of this paper for different
scenarios of land use in 2030 have high reliability and can truly reflect the land use results
under different scenarios.

Grasslands increase sporadically in scenarios of NG, EP, and EP-FS. Increases in
grasslands are linked to changes in socio-economic factors, such as the marginalization of
cultivated lands and the loss of labor due to the rise in the opportunity cost of farming,



Int. J. Environ. Res. Public Health 2023, 20, 1626 15 of 19

which in turn leads to the abandonment of cropland. Grasslands contribute to regional
ecology not only by increasing carbon sequestration and oxygen release [74,75], but also by
controlling regional temperature and moisture through vegetation transpiration, thereby
regulating the climate [76,77]. As a result, political strategies such as “Ecological Red
Line” should be implemented to protect ecological land and gradually improve the quality
of the environment [78]. Furthermore, implementing ecological protection should focus
on extremely ecologically sensitive regions (such as hilly mountainous areas or regions
prone to soil erosion), and public service positions should be set up to protect ecological
achievements. Eco-agriculture and special cultivation will be vigorously developed in
highly ecologically sensitive areas to enhance the ecological habitat environment. For
the cultivated lands that are difficult to transport and abandon, emphasis should be on
encouraging forest planting and giving subsidies. Built-up areas under scenarios of NG,
ED, and EP-ED increase substantially through encroachment on cultivated lands, grass-
lands, and forest lands. In the future, we should coordinate urban land planning and
ecosystem pattern optimization, encourage the revitalization of stock construction land,
steadily reduce the scale of new construction land, improve the land management system,
avoid the waste of land caused by rapid land urbanization, and circumvent the adverse
effects of rapid land urbanization. In both the FS and EP-FS scenarios, cultivated lands
are increasing. China, as the world’s most populous agricultural country, faces enormous
resource and environmental pressures and economic and social risks in food production on
the assumption that the potential for developing domestic farm resources is approaching
its limit. We should improve the strict cultivated land protection system and the system of
saving and intensive use. Cultivated lands remain the basis of the food supply. Ensuring
sufficient cultivated lands and steadily increasing the grain production capacity of crop-
land are fundamental to ensuring the country’s food security. Future land use scenarios
are beneficial for decision-makers to make good decisions that balance socio-economic,
ecological, and food security benefits.

Despite the excellent performance of the Geodetector-MCE-CA-Markov model in land
use simulation, there are still some gaps in the study due to limitations in data collection
and the research methods. First, for temperature, precipitation, NPP, and erosion modulus
data due to the availability of their resources, the average data from 2005 to 2015 were
used instead of the average data from 2000 to 2020 in this paper. This may have a small
error in the analysis of the results. Further, it was not precise to determine what the impact
factors are for each land use type. Finally, some critical parameters, such as EP and FS,
are neglected in the simulations. Ecological protection should consider carbon storage
which is also an essential parameter for measuring the ecological environment [79,80].
The simulation of FS scenarios should take into account regional differences in climate
factors, cropping systems, agricultural development, land transfer, and socio-economic
development through extensive field research and farmer surveys. Future work should
therefore consider the impact of policies on land drivers across multiple scenarios in
an integrated way. The mechanisms of LUCC should be further explored through a
combination of more comprehensive and more accurate data to select directions for land
use optimization.

6. Conclusions

The structure, spatiotemporal changes, and transformation characteristics of LUCC
in Shanxi from 2000 to 2020 were analyzed, and the driving mechanism for changes in
cultivated lands, forest lands, grasslands, and rural construction areas was analyzed using
the geographical detector from four dimensions, namely, population, natural environment,
location traffic, and economic development. Simulated parameters were set based on the
above findings, and the CA-Markov model was used to simulate the land use under differ-
ent scenarios in 2030. The results indicated that: (1) Rural construction areas, urban built-up
areas, water bodies, forest land and orchards showed an increasing trend from 2000 to 2020,
while cultivated lands, grassland, unused land, and wetland showed a decreasing trend.
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The increase in rural construction areas and forest lands occurred due to the transformation
of cultivated land and grasslands, and the increase in urban built-up areas and orchards
primarily occurred due to the conversion of cultivated land. (2) The increase of cultivated
lands, forest lands, grasslands, and rural construction areas was primarily influenced by
the amount of grain yield per unit area, urbanization rate, population density, and local
financial expenditures, and both two-factor interactions showed a nonlinear or synergistic
enhancement. The synthesis indicated that the increase in cultivated lands, forest lands,
grasslands, and rural construction areas were constrained by natural factors and driven
by population and economic development as a population–economic–natural dominated
driver. (3) Under the NG, ED, and EP-ED scenarios, the built-up areas will increase signifi-
cantly, while under the FS and EP-FS scenarios, the cultivated lands will increase. These
future land use scenarios can inform decision-makers to make sound decisions that balance
socio-economic, ecological, and food security benefits.
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