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Abstract: Agricultural mechanization service (AMS) is a critical path to achieving agricultural green
transformation with smallholders as the mainstay of agricultural production. Based on the panel
data of 30 Chinese provinces from 2011 to 2020, this paper measures the AGTFP using the Super-SBM
model and examines the effects of different AMS supply agents on AGTFP and spatial spillover
effects through the spatial Durbin model. The main conclusions are as follows: First, China’s AGTFP
showed a stable growth trend, with the mean value increasing from 0.1990 in 2011 to 0.5590 in
2020. Second, the specialization (SPO) and large-scale (LSO) of AMS supply organizations have
significantly positive effect on the AGTFP of the local province. However, SPO has a significantly
positive effect on the AGTFP of the neighboring provinces, while LSO has the opposite effect. Third,
the specialization of AMS supply individuals (SPI) has significantly negative effect on the AGTFP of
the local province. In contrast, the large-scale AMS supply individuals (LSI) has the opposite effect.
Furthermore, the spatial spillover effects of both are insignificant. Fourth, the spatial spillover effect
of AGTFP shows asymmetry among different regions and indicates that AMS resources flow from
non-main grain production and economically developed regions to main grain production and less
developed regions. These findings provide helpful policy references for constructing and improving
the agricultural mechanization service system and realizing the agricultural green transformation in
economies as the mainstay of agricultural production.

Keywords: agricultural mechanization; agricultural green transformation; smallholder; spatial
spillover effect; China

1. Introduction

Agricultural green transformation is a critical path for the continuous promotion
of agricultural modernization and an essential foundation for human society to achieve
sustainable development. Since the reform and opening up, China’s agricultural modern-
ization process has made remarkable achievements. On the one hand, the productivity of
Chinese agriculture has increased significantly [1]. According to statistics, China’s total
grain production increased from 43.07 million tons in 2003 to 68.24 million tons in 2021,
and China has achieved an increase in grain production for eighteen consecutive years.
On the other hand, the industrial structure continues to be optimized. The value added of
primary industry in China has decreased from 27.7% of GDP in 1978 to 7.3%, gradually
approaching the average level of developed countries [2]. However, the rapid development
of agricultural modernization in China has been accompanied by excessive use of agri-
cultural chemicals, irrational utilization of agricultural waste, vast consumption of fossil
energy, and soil destruction. These problems have led to severe agricultural non-point
source pollution and carbon emission [3–6]. Meanwhile, as one of the most populous
developing countries in the world, China uses 9% of the global arable land to feed nearly
21% of the global population [7]. The continued expansion of food demand further pushes
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the need for economies to achieve a green revolution centered on sustainable and intensive
agricultural development [8–10].

The Chinese government attaches great importance to the agricultural green trans-
formation. In the 13th Five-Year Plan, the word “green” was included in the national
development concept for the first time. Subsequently, the Chinese government has repeat-
edly emphasized the importance of agricultural green transformation in several consecutive
Central Government No. 1 documents and programmatic documents such as the 14th
Five-Year Plan. It has built specific initiatives for agricultural green transformation to
construct high-standard farmland, modern seed industry development, agricultural mech-
anization promotion, and action to reduce chemical fertilizers. However, the agricultural
green transformation in China is complex, and the central problem lies in the pattern of
smallholder production and operation formed by the household contract responsibility
system. There are about 200 to 300 million smallholder farmers in China, and they have
made significant contributions to China’s food security as the mainstay of agricultural
production [11,12]. However, smallholders are closely associated with land fragmentation,
highly dependent on high to excessive factor inputs, and inefficient production [13]. It has
to be acknowledged that it is a relatively slow process to solve the problem of agricultural
scale operations by land transfer. Currently, the development of the rural land transfer
market in China still lags significantly behind the transfer of rural labor, and the proportion
and total area of rural land transfer households urgently need improvement [14]. Based on
this, socialized agricultural services with agricultural mechanization services (AMS) as the
core are considered essential to solving the dilemma of “smallholder management” [15,16].

As early as 500 years ago, “wheat cutters” appeared in China that provided profes-
sional wheat-cutting services across hundreds of kilometers, the early agricultural social
service in China. Moreover, with the rapid improvement of agricultural mechanization, the
AMS system in China has also been rapidly developed. According to statistics, the total
output value of the agriculture, forestry, animal husbandry, and fishery service industry
snowballed from 287.34 billion yuan in 2011 to 702.98 billion yuan in 2020, of which the in-
come from agricultural machinery operation services in 2020 was as high as 361.503 billion
yuan, accounting for 51.42% of the total output value. AMS is essentially a specific form of
vertical division of agriculture, which involves smallholders in modern agriculture and
replaces land-scale operations with service-scale operations. Furthermore, AMS can break
through the paradox of “smallholder management” in which small-scale decentralized op-
eration characteristics cannot endogenize economies of scale [17]. Therefore, exploring the
critical role of AMS in the agricultural green transformation can help increase smallholder
productivity and reduce adverse environmental impacts to ensure food security. As a result,
it can provide important policy implications for the agricultural green transformation in
China and other countries with smallholders as the mainstay of agricultural production.

Most studies have visualized agricultural green transformation as agricultural green
total factor productivity (AGTPF), and many valuable studies have been conducted in the
following directions: (1) Measurement and decomposition of AGTFP. To measure AGTFP,
we need to construct an indicator system from two dimensions: input and output. Input
indicators mainly include labor, land, machinery, fertilizer, and agricultural energy con-
sumption [18–20]. In the output dimension, compared with the traditional total factor
productivity in agriculture, the measurement of AGTFP incorporates undesired outputs
into the indicator system, mainly including carbon emissions and agricultural non-point
source pollution [21]. However, some scholars argue that it is questionable whether live-
stock farming and organic solid waste should be considered as pollution in agricultural
non-point source pollution [22]. On this basis, the decomposition of AGTFP reveals that
technological progress is considered the driving force for the continuous growth of AGTFP
in China [23], while declining technical efficiency and scale efficiency slow down the growth
of AGTFP [24]. (2) Spatiotemporal characteristics of AGTFP. Existing studies have reached a
certain consensus on the spatiotemporal evolution characteristics of AGTFP in China. Since
the reform and opening up, China’s AGTFP has shown a fluctuating growth trend, but
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the gaps among regions have also gradually expanded [25–27]. AGTFP in eastern, central,
and western China decreases in order [22,28,29]. (3) Analysis of the driving mechanism of
AGTFP. Changes in factor inputs directly contribute to AGTFP, including farm size expan-
sion, green manure application, agricultural mechanization increase, and human capital
input [30–33]. At the same time, policy interventions are also essential to address factor
input overload and environmental damage externalities. Existing studies have empirically
tested that implementing crop insurance, carbon trading systems, and other agricultural
environment protection policies can help increase AGTFP [18,19,34]. In addition, the use
of new technologies is also a significant driving force for the sustained growth of AGTFP,
including renewable energy consumption, the spread of Internet technologies, and the
development of inclusive digital finance [35–37]. Some scholars have also studied the
influencing factors that hinder the growth of AGTFP, including factor market distortion,
resource mismatch, farmland pollution, agricultural disasters, and climate change [38–41].

In addition, some studies have also explored the critical role of agricultural services in
promoting agricultural green transformation. Xu et al. characterized agricultural services
in terms of agricultural services output and indicated that agricultural services helped
to promote the growth of AGTFP, and the improvement effect was higher in the eastern
region [42]. Zhu et al. characterized productive agricultural services in terms of the number
of people employed in agricultural services and indicated that productive agricultural
services effectively improved agri-environmental efficiency by optimizing inputs and
increasing outputs [43]. From a micro perspective, Li et al. showed that adopting green
agricultural services by farmers helped improve AGTFP, and the improvement effect was
more substantial with higher adoption [44]. Zhang et al. showed that fertilizer application
services and pest control services were crucial aspects of promoting AGTFP [45]. From a
comprehensive perspective, studies have recognized the critical role of agricultural services
in the agricultural green transformation. However, few studies have directly focused on
the impact of AMS on the agricultural green transformation. At the same time, compared
with other agricultural services, the “cross-regional operation” feature of AMS has also
been neglected, which will underestimate the spatial spillover effect of AMS in promoting
agricultural green transformation. In addition, AMS has multiple supply agents. However,
the existing studies have not considered this reality, so there is a lack of in-depth research
on the development direction of AMS with the goal of agricultural green transformation.

Given the limitations of existing studies, the research questions of this paper are as
follows. (1) Whether there is an impact and spatial spillover effect of AMS on AGTFP.
(2) Whether the development direction of different AMS agents is the same under the
goal of agricultural green transformation. (3) Is there heterogeneity in the spatial spillover
effect of AMS among different regions? To solve these problems, this paper measures the
AGTFP using the Super-SBM model based on the panel data of 30 provinces from 2011 to
2020 in China. Based on this, the spatial Durbin model tests the influence of the degree
of specialization and large-scale of different AMS supply agents on the AGTFP and the
spatial spillover effect. Furthermore, this paper uses the two-regime spatial Durbin model
to test the asymmetry of the spatial spillover effect between different regimes. This paper
aims to provide theoretical support for the agricultural green transformation in economies
with smallholders as the mainstay of agricultural production.

The rest of this paper is organized as follows. Section 2 provides a literature review
and constructs a theoretical framework. Section 3 presents the methodology, empirical
models, and data sources. Section 4 describes the empirical results and findings. Section 5
provides further discussion and limitations. Section 6 provides the main conclusion.

2. Literature Reviews and Theoretical Framework
2.1. Literature Reviews

Adam Smith proposed early in the Wealth of Nations that the division of labor could
lead to gains from specialization and emphasized that market size determines the division
of labor. However, because of the lack of scale, the division of labor in agricultural pro-
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duction tends to be less prevalent than in industrial production. Under this view, Otsuka
proposed that only in large farms can investments in mechanization generate adequate
returns for operators. Therefore, he argued that the specialized division of labor in Chinese
agricultural production would be challenging due to the scale of agriculture and that
labor productivity growth would be prolonged [46]. However, the practice of agricultural
development in China shows that with an average agricultural size of about 0.5 ha, China
has developed a division of labor and experienced rapid agricultural mechanization. For
this reason, the rapid development of AMS has facilitated the organic combination of the
provision of specialized labor and the services of large harvesting machines, thus effectively
increasing agricultural productivity by achieving economies of scale in services [47].

Adequate research has been conducted regarding the factors influencing AMS pur-
chase decisions and the economic and social effects they produce. Specifically, the operation
scale is an essential factor influencing the adoption of AMS by farmers. Due to the vast sunk
costs and high maintenance costs of agricultural machinery, it is often not cost-effective
for smallholders who lack the capital to purchase machinery on their own [17,48]. There-
fore, small farmers tend to prefer to purchase AMS. In contrast, large-scale operators
tend to purchase machinery on their own and have a tendency to further transform into
agricultural mechanization service providers [49]. In addition to the scale of operation,
non-farm employment income, education level, and farming experience are influential
factors affecting farmers’ purchase of AMS [50–52]. Moreover, at the macro level, the
level of economic development, population size and agricultural machinery purchase
subsidy policy have an important impact on the level of AMS in each province [53]. Some
scholars have explored the impact of purchasing AMS on farmers’ agricultural production.
Deng et al. found that the productivity of farmers who purchased AMS increased by 25.61%
in a sample of farmers in Shandong [54]. A study by Tang et al. showed that agricultural
services helped farmers reduce their production costs and technical services had the most
significant impact, followed by processing services and AMS [55]. The study by Qiu et al.
further indicated that the increase in productivity after purchasing AMS was significantly
higher in medium-sized farms than in small and large farms [56]. Some scholars have
also explored the impact of AMS adoption on farm household welfare. Among them, Mi
et al. used a sample of cotton farmers in Xinjiang and found that the adoption of AMS by
small farmers significantly increased household income, consumption expenditure, and
off-farm employment opportunities [57]. Lyne et al. found that the extension of AMS in
South Africa contributed to higher household agricultural income and helped farmers
improve the quality of their agricultural products [58]. However, the breakdown and poor
maintenance of agricultural machinery will reduce the profitability of AMS supply agents
and further weaken the improvement of AMS to the welfare of farm households [59]. In
addition, excessive AMS prices will also lead to the withdrawal of smallholder farmers
from agricultural production, which in turn will negatively impact smallholder welfare [60].
In general, existing studies have been valuable and well-explored around AMS. However,
a suitable theoretical framework for the mechanism of action between AMS and AGTFP
has yet to be established.

2.2. Theoretical Framework

By combing the existing studies, this paper constructs a theoretical framework of the
impact of AMS on AGTFP from four aspects, including factor allocation, planting structure,
technological progress, and spatial spillover effect, as shown in Figure 1. AMS affects
AGTFP by changing the allocation of agricultural production factors, mainly resource
inputs (labor, land, agricultural machinery) and environmental inputs (pesticides, fertilizers,
agricultural films). From the perspective of resource factor inputs, the rapid development of
AMS services will directly increase the input scale of agricultural machinery factors, which
will directly cause the expansion of agricultural energy consumption and bring potential
problems for the green transformation of agriculture in the economy. However, AMS will
also effectively promote the transfer of agricultural labor through the labor substitution
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effect, which expands the land operation scale [48,53]. Furthermore, economies of scale help
to achieve increased agricultural productivity and reduce agricultural carbon emissions.
In terms of environmental factor inputs, AMS can improve farmers’ expectations of crop
yields, which in turn effectively reduces excessive inputs of environmental factors such
as pesticides and fertilizers through factor substitution mechanisms [45,61]. Additionally,
AMS can help promote the formation of pro-environmental behaviors among farmers,
which in turn improves the AGTFP at the micro level [44]. However, it has also been
pointed out that AMS enhances the use of abandoned or poorly managed arable land,
thereby increasing the intensity of environmental factor inputs such as pesticides [62].
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AMS affects AGTFP by changing the cropping structure. Cash crops are more labor-
intensive than food crops, and AMS constrains the “non-grain trend “ of crops by facilitating
the transfer of agricultural labor. At the same time, food crops are more suitable for
mechanization than cash crops, so with the increase in labor cost and the decrease in
AMS price, farmers will prefer to grow food crops. In addition, the development of AMS
will increase the comparative advantage of food crops by improving the expansion of
the agricultural operation scale, thus promoting a “food-based” cropping structure [11].
Compared with cash crops, food crops have a smaller scale of production factor inputs and
a more significant carbon sink effect. Therefore, substituting food crops for cash crops will
help increase the AGTFP of agricultural systems.

AMS affects AGTFP through technological advances. Firstly, applying AMS can effec-
tively improve the efficiency of all types of energy use in agricultural production, thereby
reducing agricultural energy inputs in the input dimension and undesired outputs such as
agricultural carbon emissions. Secondly, the rapid development of AMS can also replace
traditional agricultural energy with new and renewable energy sources, thus optimizing
energy use structure [63]. Thirdly, AMS can bring advanced organizational management
experience to agricultural producers and deepen the specialization of agricultural produc-
ers through vertical division of labor, which contributes to the improvement of agricultural
production organization, management level, and production efficiency [64]. Fourthly, AMS
can help increase the timeliness of operations in the agricultural production chain, avoiding
the impact of work-hour delays on crop growth, thus indirectly increasing output.

The spatial spillover effect of AMS. Compared with other agricultural services, the
cross-regional operation is an important feature of AMS. The vast territory of China and
the apparent difference in crop production cycles between regions provide the possibility
for the cross-regional operation of AMS. At the same time, the cross-regional operation
also helps to expand the market scale and further deepen the degree of vertical division
of labor in the whole agricultural system, which is more conducive to the realization of
service economies of scale [65]. The cross-regional operations of AMS are mainly driven by
large- and medium-sized agricultural machinery. They operate between regions within a
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day’s economic distance, and operations’ intensity increases yearly [66]. Meanwhile, due
to the high seasonal requirements of crop production, AMS agents often operate across
regions between different latitudes [67]. Therefore, through cross-regional operations, AMS
can influence the allocation of production factors, cropping structure, and technological
progress in neighboring regions, changing the AGTFP of the whole agricultural system.

3. Methodology and Data
3.1. Measurement of AGTFP

AGTFP is an important indicator of the agricultural green transformation. Currently,
productivity is widely measured using the non-parametric approach. In a non-parametric
method such as envelopment analysis (DEA), the efficiency of a decision-making unit is
described by the relationship between inputs and outputs on a linear piecewise frontier
constructed by the DEA model [23,68–70]. In addition, some scholars have combined DEA
models with machine learning to optimize the productivity measures [71,72]. In the early
research, the method requires the selection of input and output angles of the model and
the same proportional variation of inputs or outputs, thus making it difficult to match its
measurement results with the actual situation. Therefore, considering the non-angle and
non-radial characteristics of the DEA model, the super-SBM model is proposed. Based on
this, this paper incorporates agricultural carbon emissions as non-expected outputs into the
super-SBM model to measure the AGTFP. It is assumed that the decision unit k has input
vectors x ∈ RM, desired output vectors yg ∈ Rs1 , and undesired output vectors yb ∈ Rs2 ,
respectively. For the decision unit k to be measured, as in Equation (1):

ρ = min
1+ 1

m ∑m
i=1

s−i
xik

1− 1
s1+s2

(
∑

s1
r=1

sg
r

yg
rk
+∑

s2
t=1

sb
t

yb
rk

)

s.t.
n
∑

j=1,j 6=k
xijλj−s−i ≤ xik

n
∑

j=1,j 6=k
yrjλj+sg

r ≤ yg
rk

n
∑

j=1,j 6=k
ytjλj−sb

t ≤ yb
tk

λ ≥ 0, sg ≥ 0, sb ≥ 0, s− ≥ 0

(1)

where ρ represents the AGTFP under the super-SBM model, which can be greater than 1,
so that the effective decision unit can be distinguished, λ is the weight vector, and sg, sb,
and s− are slack variables.

From the model set, it is clear that the input and output variables selection is critical for
the measurement of AGTFP. Concerning existing studies, this paper constructs an indicator
system for measuring AGTFP, as shown in Table 1. In contrast to existing studies, this paper
replaces the irrigated area factor with the amount of agricultural water consumption. This
is because both irrigated area and land input elements are characterized using land area,
and it is unreasonable to put both in the same model. Meanwhile, due to the significant
differences in farming practices and crop cultivation structures in different regions, the
weight of agricultural water consumption per unit of irrigated area is different. Therefore,
it is impossible to truly reflect the amount of water resources input through the irrigated
area [22]. In addition, this paper selects agricultural carbon emissions as undesired output.
Referring to existing studies [73–76], this paper defines the sources of agricultural carbon
emissions as pesticides, agricultural fertilizers, agricultural plastic films, agricultural diesel
fuel, agricultural machinery, and irrigation. The carbon emission factors of each type of
carbon source refer to IPCC [77].
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Table 1. Indicator system construction for AGTFP.

Indicator Index Definition Mean Unit

Input
indicators

Labor
input Number of employees in agriculture 780.16 10,000 peoples

Land
input The sowing area of crops 5336.93 1000 HA

Mechanical
input Total power of agricultural machinery 3318.60 10,000 kW

Fertilizer
input Chemical fertilizer application in agriculture 185.89 10,000 tons

Film
input Amount of Agricultural plastic film application 7.98 10,000 tons

Pesticide
input Amount of pesticide application 5.35 10,000 tons

Energy
input Amount of Agricultural diesel consumption 66.75 10,000 tons

Water
input Amount of Agricultural water consumption 121.89 100 million m3

Output
indicators

Desired
output The gross production of agriculture 1784.42 100 million yuan

Undesired
output Agricultural carbon emissions 29,416.66 10,000 tons

3.2. Variables Description
3.2.1. Core Explanatory Variables

Based on the two research scales of organization and individual, this study decon-
structs the development of AMS into large-scale and specialization, from which four core
explanatory variables are constructed. At the organizational level, it mainly includes large-
scale AMS supply organizations (LSO) and specialized AMS supply organizations (SPO).
The former is indicated by the ratio of the number of AMS organizations with agricultural
machinery with the original value of 500,000 yuan or more to the number of total AMS
organizations; the ratio of the number of agricultural machinery specialized cooperatives
to the number of total AMS organizations indicates the latter. From the individual level,
it mainly includes large-scale AMS supply individuals (LSI) and specialized AMS supply
individuals (SPI). The former is indicated by the ratio of the number of AMS farmers with
agricultural machinery with the original value of 200,000 yuan or more to the number
of total AMS farmers; the ratio of AMS specialized farmers to the number of total AMS
farmers indicates the latter.

As shown in Figure 2, the development of AMS in China shows the primary trend
of large-scale specialization. From the organization level, while the number of AMS
organizations steadily increased from 2011 to 2020, LSO continued to grow from 11.51% to
30.40%, and SPO continued to grow from 16.33% to 38.72%. However, at the individual
level, while the number of AMS farmers declined, LSI slightly increased from 1.08% to
1.77%, and SPI decreased from 12.45% to 10.53% in 2011–2020. The weakening of AMS
at the individual level is due to the massive shift of rural labor, with some AMS farmers
moving to non-farm sector employment. It may also be due to the structural shift of some
AMS farmers from individual to organizational through cooperatives and acquisitions.
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3.2.2. Control Variables

This paper selects the following control variables concerning the existing literature:
(1) Degree of industrialization (IND), the ratio of value added of secondary industry to
total output value; (2) Per capita disposable income of rural residents (lnDI), in yuan;
(3) Agricultural fiscal expenditure (lnAFE), in billion yuan; (4) Area affected, in thousand
hectares; (5) Urbanization rate (UR), the ratio of the number of permanent urban residents
to the number of permanent residents at the end of the year in the province; (6) GDP per
capita (lnGDP), the ratio of gross regional product to the number of permanent residents
at the end of the year; (7) Mechanization intensity (MI), the ratio of total agricultural
machinery power to sown area; (8) Population (POP), the number of people registered
at the end of the year. To exclude the effect of prices, the relevant data are converted to
constant prices with 2011 as the base period. Descriptive statistics are shown in Table 2.

Table 2. Descriptive statistics of control variables.

Variable Mean Std. Dev. Max Min

IND 0.337 0.080 0.100 0.574
lnDI 9.354 0.418 8.271 10.461

lnAFE 6.160 0.573 4.519 7.200
lnDIS 5.985 1.550 0.693 8.349

UR 59.006 12.218 35.030 89.600
lnGDP 10.841 0.436 9.706 12.013

MI 0.328 0.112 0.136 0.693
POP 4599.783 2837.845 568.000 12,624.000

3.3. Empirical Models
3.3.1. Spatial Durbin Model

In order to study the effects of different AMS supply agents on AGTFP and spatial spillover
effects, the following spatial Durbin model (SDM) was constructed for empirical analysis.
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yit= ρ ∑n
i=1 Wijyit+β1AMSit+δ1 ∑n

i=1 WijAMSit+β2Xit+δ2 ∑n
i=1 WijXit+µi+γt+εit (2)

In Equation (2), yit is the explanatory variable, which indicates the observed value
of AGTFP of the province i in year t; AMSit is the core explanatory variable, including
LSO and SPO at the organizational level and LSI and SPI at the individual level; Xit is the
control variable, including the eight control variables mentioned above; Wij indicates the
spatial weight matrix, and in order to ensure the robustness of the research results, the
spatial adjacency matrix, geographic distance matrix, and economic distance matrix are
constructed for spatial econometric analysis, respectively; ρ is the spatial autocorrelation
coefficient, which indicates the impact of AGTFP of neighboring provinces on the local
region; β1 and β2 are the coefficient to be estimated for the core explanatory variables and
control variables, respectively; δ1 and δ2 are the estimation coefficient of the spatial lag term
of the core explanatory variables and control variables, respectively; µi and γt indicate the
individual effect and time effect, respectively, and εit is the random disturbance term.

3.3.2. Two-Regime Spatial Durbin Model

The cross-regional operations of AMS organizations and individuals are driven by
demand and revenue and thus exhibit asymmetrical characteristics. On the one hand, the
Chinese government set 13 provinces, including Anhui, Shandong, Henan, etc., as the
main grain production areas in 2001 to ensure food security. The main grain-production
areas undertake important grain production tasks, so their demand for AMS is strong.
Meanwhile, developed regions such as Beijing, Shanghai, and Tianjin have higher prices
for AMS, which are also more attractive to the flow of AMS organizations and individuals.
Therefore, referring to the study of Elhorst [78], this paper constructs a two-regime Spatial
Durbin Model to test the heterogeneity effect of AMS to AGTFP. The specific settings of the
model are as follows:

yit= ρd=1dit ∑n
i=1 Wijyit+ρd=0(1− d it)∑n

i=1 Wijyit+β1AMSit+δ1 ∑n
i=1 WijAMSit+β2Xit+δ2 ∑n

i=1 WijXit+µi+γt+εit (3)

In Equation (3), dit is a binary dummy variable that distinguishes different regime,
and the specific replication rules are as follows. The other coefficients remain consistent
with Equation (2).

d1
it =

{
1, main grain producing area
0, else

(4)

d2
it =

{
1, developed area
0, else

(5)

3.4. Data Resources

Since the SBM model is sensitive to abnormal data and there are differences in the
statistical caliber of some regions, the data of Tibet, Hong Kong, Macau, and Taiwan
provinces are excluded. Finally, this study constructs the panel data of 30 provinces in
China from 2011 to 2020. Specifically, the core explanatory variable AMS is obtained from
the China Agricultural Machinery Industry Yearbook (2012–2021); the data on agricultural
value added, total agricultural machinery power, crop sown area, agricultural fertilizer
application, agricultural plastic film use, agricultural diesel fuel, and pesticide use used in
the calculation of AGTFP are taken from the China Rural Statistical Yearbook (2012–2021); the
number of employees in the primary industry is obtained from the WIND database; other
control variables such as regional GDP and agricultural-related fiscal expenditure are taken
from the China Statistical Yearbook (2012–2021).
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4. Results
4.1. Temporal Evolutionary Characteristics of AGTFP in China

Table 3 shows the AGTFP of China’s provinces from 2011 to 2020. Overall, China’s
AGTFP shows a stable upward trend, with the average value increasing from 0.1990 in
2011 to 0.5590 in 2020 (line 2), with an average annual growth rate of 13.42%. Between
2011 and 2020, Jilin (line 13) and Inner Mongolia (line 11) have the lowest AGTFP averages
of 0.1449 and 0.1549, respectively, and Jilin is also one of the provinces with the slowest
AGTFP growth rate of 4.08% per year. Beijing (line 7) and Hainan (line 27) have the highest
average value of AGTFP, with 0.6385 and 0.5887, respectively. At the same time, Tianjin
(line 8) and Ningxia (line 35) have the fastest growth rate, with an average annual growth
rate of 24.28% and 27.22%, respectively.

Table 3. The measurement results of AGTFP in China, 2011–2020.

Province 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Whole 0.1990 0.2168 0.2353 0.2489 0.2620 0.2874 0.3094 0.3534 0.4327 0.5590
MGP 0.1799 0.1938 0.2083 0.2157 0.2229 0.2337 0.2416 0.2572 0.2827 0.3567

NMGP 0.2136 0.2344 0.2560 0.2743 0.2919 0.3285 0.3612 0.4269 0.5474 0.7138
EDR 0.2510 0.2733 0.2989 0.3154 0.3346 0.3684 0.4026 0.4595 0.5887 0.6812

UEDR 0.1730 0.1885 0.2035 0.2157 0.2257 0.2469 0.2628 0.3003 0.3547 0.4979
Beijing 0.3095 0.3768 0.4432 0.4943 0.5720 0.6139 0.6896 0.8063 1.0572 1.0217
Tianjin 0.1607 0.1694 0.1829 0.1935 0.2013 0.2087 0.2319 0.3130 0.3422 0.4642
Hebei 0.1655 0.1779 0.1935 0.1894 0.1859 0.2014 0.2142 0.2430 0.2602 0.3007
Shanxi 0.1366 0.1451 0.1559 0.1628 0.1564 0.1738 0.1937 0.2029 0.2180 0.2582

Inner Mongolia 0.1388 0.1457 0.1567 0.1558 0.1496 0.1544 0.1460 0.1561 0.1660 0.1803
Liaoning 0.2074 0.2290 0.2400 0.2431 0.2689 0.2772 0.2851 0.3235 0.3659 0.3925

Jilin 0.1445 0.1521 0.1529 0.1525 0.1470 0.1305 0.1199 0.1332 0.1429 0.1737
Heilongjiang 0.1418 0.1726 0.2123 0.2251 0.2234 0.2261 0.2399 0.2536 0.2823 0.3050

Shanghai 0.3783 0.3894 0.4177 0.4117 0.4089 0.3600 0.3548 0.4444 0.4600 0.4356
Jiangsu 0.2197 0.2442 0.2566 0.2678 0.2994 0.3032 0.3100 0.3119 0.3283 0.3973

Zhejiang 0.2261 0.2447 0.2791 0.3005 0.3139 0.3598 0.4334 0.4496 0.5377 0.5467
Anhui 0.1330 0.1431 0.1506 0.1615 0.1623 0.1690 0.1820 0.1840 0.1978 0.2169
Fujian 0.2892 0.3233 0.3445 0.3760 0.3976 0.5018 0.5953 0.7180 1.0882 1.0268
Jiangxi 0.1290 0.1380 0.1822 0.1910 0.2117 0.2303 0.2339 0.2466 0.2695 0.2887

Shandong 0.1936 0.1999 0.2262 0.2402 0.2495 0.2531 0.2591 0.2767 0.2929 0.3163
Henan 0.1897 0.2002 0.2066 0.2297 0.2290 0.2353 0.2434 0.2652 0.2944 0.3475
Hubei 0.2231 0.2379 0.2488 0.2527 0.2573 0.2907 0.3042 0.3149 0.3530 0.3912
Hunan 0.2003 0.2080 0.2030 0.2059 0.2061 0.2203 0.2322 0.2401 0.2880 0.3265

Guangdong 0.2918 0.3120 0.3413 0.3557 0.3733 0.4705 0.5106 0.5865 0.7635 1.1907
Guangxi 0.2183 0.2233 0.2348 0.2442 0.2541 0.2795 0.3054 0.3301 0.4389 0.4881
Hainan 0.3048 0.3362 0.3490 0.3946 0.4270 0.5433 0.5923 0.8344 1.0507 1.0547

Chongqing 0.2178 0.2355 0.2488 0.2616 0.2725 0.3220 0.3372 0.3732 0.6644 1.0216
Sichuan 0.2528 0.2702 0.2785 0.2898 0.3076 0.3461 0.3712 0.3951 0.4344 1.0000
Guizhou 0.1585 0.1984 0.2248 0.2934 0.3967 0.4520 0.5047 0.5756 0.7185 1.0977
Yunnan 0.1424 0.1600 0.1794 0.1899 0.1915 0.2016 0.2115 0.2824 0.4057 1.0000
Shaanxi 0.2495 0.2671 0.2943 0.3203 0.3210 0.3548 0.3812 0.4548 0.5889 1.0372
Gansu 0.1008 0.1087 0.1158 0.1184 0.1229 0.1403 0.1629 0.1803 0.2065 0.3193

Qinghai 0.1539 0.1743 0.2014 0.2057 0.1989 0.2219 0.2342 0.2579 0.3168 0.4640
Ningxia 0.1197 0.1285 0.1402 0.1468 0.1633 0.1787 0.1902 0.2167 0.2102 0.3456
Xinjiang 0.1727 0.1924 0.1984 0.1935 0.1912 0.2021 0.2116 0.2308 0.2387 0.3620

Note: MGP is the main grain production area; NMGP is the non-main grain production area; EDR is the
economically developed region; NEDR is the economically developing region.

By 2011–2015 China’s 12th Five-Year Plan period (column 2 and column 6, line 2), the
national AGTFP average value increased from 0.1990 to 0.2620 with an average annual
growth rate of 7.51%. 2016–2020 is China’s 13th Five-Year Plan period (column 7 and
column 11, line 2). The national average value of AGTFP increases from 0.2874 to 0.5590,
with an average annual growth rate of 18.15%. In comparison to the “12th Five-Year” period,
China’s AGTFP growth rate and magnitude are higher. The reasons for this are, first, the
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development concept differences. During the “12th Five-Year Plan” period, the main goal of
China’s agricultural production was to ensure the adequate supply of food and other major
agricultural products. In the “13th Five-Year Plan” period, the basic principle of China’s
agricultural production is to adhere to sustainable development, and the “13th Five-Year
Plan” clearly proposes to “take the path of output efficiency, resource conservation, and
environmental friendliness.” Second, the difference in development basis. During the “12th
Five-Year Plan” period, China still faced the difficulties of weak agricultural infrastructure,
low material equipment, and lagging social services. At the beginning of the “13th Five-
Year Plan”, China built 400 million mu of high-standard farmland, and the contribution
rate of agricultural science and technology progress and the total mechanization rate of
crop cultivation, planting, and harvesting have reached 56% and 63%, respectively.

From the perspective of different regions, the degree and speed of agricultural green
transformation in the main grain production areas are slightly lower than the non-main
grain production areas (line 3 and line 4), with the average AGTFP values of 0.1799 and
0.3567 in 2011 to 0.2136 and 0.7138 in 2020, respectively, and the average annual growth
rates of 11.61% and 14.81%, respectively. This is because the main grain production areas
are critical to ensuring national food security, and increasing total grain production is
their top priority. At the same time, this also means that the main grain production areas
will be the main battlefield for the agricultural green transformation in China. The mean
value of AGTFP in economically developed regions (line 5), represented by large urban
agglomerations such as Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta,
is 0.2510 in 2011 and 0.6812 in 2020, significantly higher than 0.1730 in 2011 and 0.4979 in
2020 in economically developing regions (line 6). Economically developed regions have
a higher level of agricultural modernization and a noticeable technology diffusion effect,
thus promoting the rapid growth of AGTFP.

4.2. Applicability Test of the Spatial Econometric Model

Before using the spatial model regression, the spatial autocorrelation test needs to be
performed on AGTFP. As seen from Figure 3, the Moran’s I of AGTFP is between 0.138 and
0.229, and the Moran’s I of each year is significant at the 5% statistical level. It indicates
a significant spatial autocorrelation of AGTFP in China, which is suitable for regression
analysis using the spatial econometric model. Specifically, during the 12th Five-Year Plan
period (2011–2015), the AGTFP of each province in China showed a decreasing trend and
fell to the lowest point of 0.138 in 2015. It can be concluded that the inter-provincial AGTFP
in China has clustering characteristics, i.e., high values are clustered with high values,
and low values are clustered with low values. However, the clustering characteristics
vary widely between years and are relatively unstable overall. This also indicates that
there are still significant differences in AGTFP between provinces, and there is more room
for development.

On this basis, this paper adopts a series of tests to determine the applicability of the
spatial Durbin model. First, in the LM test, the LM statistics of the spatial lag model and
the spatial error model are 146.754 and 229.790, respectively, and both are significant at
the 1% statistical level. This indicates that the original hypothesis of no spatial lag and
the spatial error should be rejected, and the spatial panel model should be used for the
empirical analysis. Second, in the LR test, the statistical value is 47.860 when the spatial
Durbin model is compared with the spatial error model and 31.360 when the spatial Durbin
model is compared with the spatial lag model, and both are significant at the 1% statistical
level. This indicates that the spatial Durbin model cannot be reduced to a spatial error
model and a spatial lag model in this study. Finally, the Hausman test has a statistical value
of 29.120, which is significant at the 1% statistical level. This indicates that the original
hypothesis of using random effects should be rejected, and a fixed effects spatial Durbin
model should be used.
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4.3. The Impact of AMS Supply Organizations on AGTFP

Table 4 demonstrates the effect of AMS supply organization on AGTFP. Under the
three spatial weight matrices, the spatial autoregressive coefficient of AGTFP is positive
and significant at the 1% statistical level for both LSO and SPO as the core explanatory
variables, which is consistent with the studies of Xiao et al. [23] and Ma et al. [79]. This
suggests that the AGTFP of neighboring provinces or provinces with similar degrees of
economic development can effectively contribute to the increase in AGTFP of the local
province. The possible influence mechanism is the inter-regional technology spillover effect
and demonstration effect. At the same time, this finding is consistent with the previous
spatial autocorrelation test and further reflects the validity of the findings of this study.

Regarding the main effects, the regression coefficients of LSOs ranged from 0.132–0.172,
all of which were statistically significant at the 10% level. The regression coefficients of
SPO ranged from 0.194–0.255, all of which were significant at the 1% statistical level. These
results show that increasing the scale and specialization of AMS organizations in the
local region can effectively increase AGTFP and thus promote the green transformation
of agriculture. Specifically, the expansion of the AMS organization scale helps to increase
agricultural productivity and effectively restrain excessive input of environmental factors
through the factor substitution mechanism, thus increasing AGTFP. At the same time, the
increase in AMS organization specialization helps to accelerate the technological progress
in agricultural production, promoting agricultural green transformation.

Regarding the control variables, the expansion of the affected area will lead to a
decrease in food production and agricultural output, resulting in a significant decrease in
AGTFP. As for the micro-level explanation, after suffering from natural disasters, in order to
reduce losses to avoid falling into poverty, farmers and other operators will increase factor
inputs such as fertilizers and pesticides on non-affected plots, which increases undesired
output. Meanwhile, higher regional GDP means better regional economic development
and agricultural infrastructure, promoting a significant increase in AGTFP. This finding
also provides supporting evidence for the later paper to explore the effect of AMS on
AGTFP from the level of economic development. In addition to this, the intensity of
agricultural mechanization and population size will also significantly increase AGTFP,
which is consistent with Zhu et al. [31] and Chi et al. [80].



Int. J. Environ. Res. Public Health 2023, 20, 1655 13 of 23

Table 4. The impact of AMS on AGTFP in China: the organizational level.

W1 W2 W3

LSO 0.164 *
(0.090)

0.132 *
(0.071)

0.172 **
(0.083)

SPO 0.228 ***
(0.057)

0.255 ***
(0.077)

0.194 ***
(0.064)

IND −0.703 **
(0.322)

−0.099
(0.303)

−0.432
(0.311)

−0.018
(0.292)

−0.508 *
(0.308)

−0.006
(0.286)

lnDI −0.070
(0.208)

−0.309
(0.204)

−0.192
(0.200)

−0.351 *
(0.194)

−0.240
(0.203)

−0.429 **
(0.195)

lnAFE −0.076
(0.049)

−0.077
(0.050)

−0.054
(0.048)

−0.032
(0.047)

−0.093 *
(0.050)

−0.055
(0.050)

lndisaster −0.015 *
(0.009)

−0.016 *
(0.009)

−0.015 *
(0.008)

−0.016 **
(0.008)

−0.018 **
(0.008)

−0.232 ***
(0.008)

UR 0.000
(0.005)

0.006
(0.005)

−0.001
(0.005)

−0.001
(0.005)

0.000
(0.005)

0.002
(0.005)

lnGDP 0.303 ***
(0.075)

0.261 ***
(0.073)

0.288 ***
(0.071)

0.247 ***
(0.064)

0.255 ***
(0.069)

0.230 ***
(0.064)

MI 0.321 ***
(0.117)

0.297 ***
(0.112)

0.320 ***
(0.110)

0.300 ***
(0.106)

0.377 ***
(0.113)

0.337 ***
(0.110)

POP 0.000 **
(0.000)

0.000 *
(0.000)

0.000 ***
(0.000)

0.000 **
(0.000)

0.000 ***
(0.000)

0.000 ***
(0.000)

LSO*W −0.437 ***
(0.167)

−1.662 **
(0.673)

−1.119 **
(0.507)

SPO*W 0.379 ***
(0.146)

1.265 ***
(0.639)

0.877 **
(0.402)

IND*W 0.433
(0.643)

0.560
(0.637)

−3.737
(2.823)

−1.859
(2.730)

2.164
(2.141)

0.412
(2.106)

lnDI*W 0.086
(0.382)

0.279
(0.369)

0.701
(1.229)

1.044
(1.135)

0.095
(0.887)

0.605
(0.791)

lnAFE*W 0.315 ***
(0.098)

0.311 ***
(0.099)

1.479 ***
(0.357)

1.808 ***
(0.344)

0.287
(0.231)

0.470 **
(0.201)

lndisaster*W −0.006
(0.017)

0.010
(0.016)

0.028
(0.054)

0.734
(0.055)

−0.022
(0.034)

0.030
(0.032)

UR*W −0.045 ***
(0.011)

−0.047 ***
(0.011)

−0.027
(0.029)

−0.022
(0.028)

−0.006 *
(0.021)

−0.016
(0.019)

lnGDP*W 0.224 *
(0.134)

0.357 ***
(0.110)

−0.196
(0.529)

0.571
(0.407)

−0.062
(0.389)

0.510
(0.333)

MI*W −0.091
(0.232)

0.135
(0.225)

0.471
(0.695)

0.767
(0.680)

−0.852
(0.689)

0.468
(0.630)

POP*W 0.000 *
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

rho 0.232 **
(0.093)

0.289 ***
(0.090)

1.638 ***
(0.294)

1.845 ***
(0.283)

0.728 ***
(0.209)

0.802 ***
(0.204)

Province FE YES YES YES YES YES YES
Time FE YES YES YES YES YES YES

R-squared 0.261 0.235 0.444 0.511 0.245 0.373
Obs 300 300 300 300 300 300

Note: Standard errors in parentheses, *, ** and *** indicate significant at the 10%, 5% and 1% statistical levels, respectively.

In terms of the spatial lagged variables, the regression coefficients of LSO*W ranged
from −0.437 to −1.662 and were all significant at the 5% statistical level, i.e., there was a
significant negative spatial spillover effect of the effect of LSO on AGTFP. On the other hand,
the regression coefficients of SPO*W ranged from 0.379 to 1.265, and all were significant
at the 1% statistical level, i.e., there was a significant positive spatial spillover effect of
the effect of SPO on AGTFP. The spatial spillover effect is significant precisely because
both LSOs and SPOs are the supplying agents of agricultural machinery cross-regional
operation services. In addition, the regression coefficient of lnAFE*W is significantly
positive, indicating that the expansion of the scale of agriculture-related expenditures in
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neighboring provinces will contribute to the increase in AGTFP in this province, a similar
finding to that of Xiao et al. [23].

On this basis, the spatial effects of the core explanatory variables are further decom-
posed, and the results are shown in Table 5. Taking the spatial adjacency weight matrix (W1)
as an example, the direct effects of LSO and SPO on AGTFP are significantly positive at the
5% and 1% statistical levels, respectively, which indicate that the scale development of AMS
supply organizations can effectively promote the increase in AGTFP in this province. How-
ever, the indirect effect of LSO is significantly negative at the 1% statistical level, indicating
that the scaling up of AMS supply organizations in neighboring provinces will inhibit the
increase in AGTFP in this province. In contrast, the indirect effect of SPO is statistically
significant and positive at the 5% level, indicating that the increased specialization of AMS
supply organizations in neighboring provinces will promote the increase in AGTFP in this
province. The indirect effects are closely related to the differences in the production and
operation modes between LSOs and SPOs. The cross-regional operation of AMS supply
organizations is a supplement to the supply of AMS in neighboring provinces based on
meeting the demand for AMS in the local province. It forms a complementary relation-
ship with the AMS supply bodies in neighboring provinces. However, with the further
expansion of the scale of AMS supply organizations, LSOs mainly involving agricultural
enterprises and leading enterprises are formed, equipped with higher-value agricultural
machinery and more advanced production technologies. Cross-regional operations of LSOs
can achieve a monopoly of the agricultural machinery market in neighboring provinces
with cost and price advantages [81], thus causing a severe impact on the agricultural
mechanization service system in foreign provinces and ultimately reducing the AGTFP. At
the same time, the cross-regional operation of LSOs will also form an AMS system with
large-scale households as the core through the coercive effect of service economies of scale.
It will accelerate the marketization process of land leasing and force smallholders out of
agricultural production [49,82].

Table 5. Spatial effect decomposition: the organizational level.

W1 W2 W3

DE IE TE DE IE TE DE IE TE

LSO 0.192 **
(0.094)

−0.412 ***
(0.153)

−0.219
(0.150)

0.232 **
(0.096)

−0.825 ***
(0.313)

−0.593 **
(0.282)

0.270 ***
(0.070)

−1.270 ***
(0.439)

−1.000 **
(0.445)

SPO 0.211 ***
(0.068)

0.278 **
(0.123)

0.489 ***
(0.157)

0.209 ***
(0.067)

0.355
(0.233)

0.564 **
(0.259)

0.172 ***
(0.065)

0.442 *
(0.239)

0.614
(0.254)

Note: Standard errors in parentheses, *, ** and *** indicate significant at the 10%, 5% and 1% statistical levels, respectively.

4.4. The Impact of AMS Supply Individuals on AGTFP

As shown in Table 6, the regression coefficients of LSI ranged from 0.224 to 0.386
under the three spatial weight matrices, and all were statistically significant at the 10%
level. This indicates that the scaling of AMS individuals helps promote agricultural green
transformation. Meanwhile, the regression coefficient of LSI is higher than that of LSO. This
is because the unique advantage of LSI over LSO is that it is nested in the social network of
rural society as a member of Chinese rural society. Therefore, LSI can effectively improve
the pro-environmental behavior of farmers through the moderating effect of social trust,
which in turn can increase AGTFP more efficiently [83]. The regression coefficients of SPI
range from −0.398 to −0.311, all were significant at the 1% statistical level. This suggests
that the degree of specialization of AMS individuals will inhibit the green transformation
of agriculture. There are three main reasons for this. First, the formation of economies of
scale in service is the essential condition for AMS to promote the green transformation
of agriculture in the economy. However, increasing AMS individual specialization does
not mean a simultaneous scale increase. As shown by statistical data, the number of SPI
in China in 2020 is 5.96 times that of LSI, and the value is as high as 330.036 in Guizhou
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province. Second, specialized farmers take the provision of AMS as their main source of
income and thus may cause excessive input of agricultural machinery elements driven by
profit maximization, increasing the undesired output of agricultural production. Third,
the value of agricultural machinery owned by specialized farm households is lower than
that of LSI. Due to their endowment constraints, they cannot afford to carry out frequent
renewal and maintenance of agricultural machinery. Thus, their supply quality of AMS is
lower, which in turn causes a decrease in the efficiency of agricultural production factor
allocation. In terms of spatial lag variables, the regression coefficients of LSI*W and SPI*W
are not significant, which indicates that there is no spatial spillover effect of the effects of
LSI and SPI on AGTFP.

Table 6. The impact of AMS on AGTFP in China: the individual level.

W1 W2 W3

LSI 0.224 *
(0.130)

0.386 **
(0.164)

0.237 *
(0.138)

LSI*W −0.273
(0.252)

−0.523
(0.687)

0.110
(0.156)

SPI −0.398 ***
(0.102)

−0.311 ***
(0.110)

−0.341 ***
(0.101)

SPI*W 0.250
(0.274)

1.290
(0.854)

−0.093
(0.405)

rho 0.295 ***
(0.091)

0.258 ***
(0.092)

1.813 ***
(0.284)

1.826 ***
(0.291)

0.841 ***
(0.205)

0.786 ***
(0.215)

Control
Variables YES YES YES YES YES YES

Province FE YES YES YES YES YES YES
Time FE YES YES YES YES YES YES

R-squared 0.185 0.293 0.512 0.508 0.451 0.467
Obs 300 300 300 300 300 300

Note: Standard errors in parentheses, *, ** and *** indicate significant at the 10%, 5% and 1% statistical levels, respectively.

This paper further decomposes the spatial effects of LSI and SPI, and the results are
shown in Table 7. Under the three spatial weight matrices, the direct effect of LSI is sig-
nificantly positive at the 10% statistical level, and the direct effect of SPI is significantly
negative at the 1% statistical level. This indicates that the scale development of individual
AMS significantly increases the AGTFP of the local province, while specialization devel-
opment suppresses the AGTFP of the local province. Meanwhile, the indirect effects of
LSI and SPI are insignificant, which means the LSI and SPI of neighboring provinces do
not affect the AGTFP of the local province. The reason for this is that, compared to AMS
supply organizations, AMS supply individuals face the dilemma of higher acquisition and
maintenance costs of agricultural machinery, insufficient demand matching ability due
to information asymmetry, and difficulties in transporting agricultural machinery across
regions [65]. Therefore, it is difficult for AMS supply individuals to influence the green
transformation of agriculture in other provinces through cross-regional operations.

Table 7. Spatial effect decomposition: the individual level.

W1 W2 W3

DE IE TE DE IE TE DE IE TE

LSI 0.238 *
(0.134)

−0.270
(0.233)

−0.032
(0.250)

0.414 **
(0.171)

−0.485
(0.416)

−0.071
(0.429)

0.241 *
(0.143)

0.035
(0.117)

0.277 *
(0.152)

SPO −0.406 ***
(0.105)

0.290
(0.251)

−0.116
(0.265)

−0.360 ***
(0.109)

0.906
(0.565)

0.546
(0.485)

−0.336 ***
(0.104)

0.041
(0.305)

−0.296
(0.330)

Note: Standard errors in parentheses, *, ** and *** indicate significant at the 10%, 5% and 1% statistical levels, respectively.
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4.5. Regional Heterogeneity Analysis

Table 8 demonstrates the empirical results of the two-regime spatial Durbin model
based on the spatial weight matrix of economic distance. The comparison with the results
in Tables 4 and 6 reveals that the significance and the direction of action of the regression
coefficients of each core explanatory variable remain consistent, which further strengthens
the reliability and stability of the findings of this study. On this basis, we focus on the
asymmetry of spatial spillover effects among different zone systems. From the results of d1,
the regression coefficient of rho1 is negative but not significant, the regression coefficient
of rho2 is significantly positive at the 1% statistical level, and the regression coefficient of
rho1-rho2 is significantly negative at the 5% statistical level. This indicates an asymmetry
in the spatial spillover effect of AGTFP, and the spatial spillover effect is significantly
higher in non-main grain production areas than in main grain production areas. There
are two main reasons for this. First, the crop sowing area in the main grain production
areas is vast, and the terrain is flat, so the demand for AMS is more significant and more
favorable for agricultural machinery operation. With the rapid development of AMS,
the main grain production areas with massive market scale can easily form service scale
economy and operation scale economy through the horizontal and vertical division of
labor, significantly improving AMS supply agents’ profit. Therefore, the AMS supply
agents in the main grain production areas are more inclined to prioritize meeting the
demand for AMS in the local province. Second, from 2011 to 2020, the average value of
SPO in non-main grain production areas increased from 0.2430 to 0.5370, and the average
value of LPO increased from 0.1514 to 0.3941, while the average value of SPO in grain-
producing regions increased from 0.2634 to 0.4536, and the average value of LPO increased
from 0.1967 to 0.3542. Therefore, compared with non-main grain production areas, the
average value of LPO increased from 0.1514 to 0.3941. Although they have more total AMS
supply organizations, main grain production areas do not show significant advantages in
developing AMS specialization and large-scale and even gradually lag from the early lead.

Table 8. Empirical results of heterogeneity analysis.

d1 d2

LSO 0.171 ***
(2.612)

0.173 ***
(2.587)

LSO*W −0.180 **
(−2.140)

−0.183 **
(−2.201)

SPO 0.135 *
(1.886)

0.131 *
(1.746)

SPO*W 0.308 *
(1.866)

0.286 *
(1.730)

LSI 0.546 ***
(3.281)

0.597 ***
(3.526)

LSI*W −0.035
(−0.033)

0.318
(0.305)

SPI −0.234 ***
(−2.728)

−0.223 ***
(−2.584)

SPI*W 0.441
(1.159)

0.439
(1.132)

rho1 −0.157
(−1.250)

−0.177
(−1.405)

−0.103
(−0.813)

−0.167
(−1.298)

0.272 ***
(2.982)

0.269 ***
(2.972)

0.272 ***
(2.947)

0.272 ***
(2.947)

rho2 0.410 ***
(3.303)

0.405 ***
(3.268)

0.348 ***
(2.776)

0.411 ***
(3.289)

−0.197
(−0.986)

−0.223
(1.110)

−0.218
(−1.078)

−0.218
(−1.078)

rho1-rho2 −0.567 ***
(−3.173)

−0.582 ***
(−3.259)

−0.452 **
(−2.504)

−0.578 ***
(−3.169)

0.469 **
(2.129)

0.493 **
(2.227)

0.491 **
(2.194)

0.491 **
(2.194)

Control
Variables YES YES YES YES YES YES YES YES
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Table 8. Cont.

d1 d2

Province FE YES YES YES YES YES YES YES YES
Time FE YES YES YES YES YES YES YES YES

R-squared 0.847 0.843 0.845 0.853 0.847 0.844 0.847 0.853
Obs 300 300 300 300 300 300 300 300

Note: T-value in parentheses, *, ** and *** indicate significant at the 10%, 5% and 1% statistical levels, respectively.

From the results of d2, the regression coefficients of rho1 are all significantly positive
at the 1% statistical level, the regression coefficients of rho2 are not significant, and the
regression coefficients of rho1-rho2 are all significantly positive at the 5% statistical level.
This indicates that the spatial spillover effect of AGTFP is asymmetric among provinces with
different levels of economic development, and the spatial spillover effect is significantly
higher in economically developed provinces than in other provinces. This is because
economically developed provinces have the advantage of transportation infrastructure,
which helps to promote the free flow of factors between regions [84,85]. Therefore, it helps
to reduce the mechanical transportation costs of AMS supply organizations when operating
across regions, thus forming an asymmetry of the spatial spillover effect. In addition to
this, compared with other provinces, economically developed provinces have a higher
level of scientific research investment and promotion of agricultural machinery [86], which
provides essential support for AMS to exert spatial spillover effects.

5. Discussion

For countries constrained by the pattern of “smallholder management” due to the
fragmentation of land and unclear land property rights, attempts to rely on economies
of scale to deepen the horizontal division of labor in agriculture and thus promote the
agricultural green transformation are often ineffective. In contrast, the construction of AMS
system can deepen the vertical division of labor in agriculture through the realization of
the service scale economy and thus become another effective path to agricultural green
transformation in economies with smallholders as the mainstay of agricultural production.
This paper’s theoretical contributions and innovations are mainly reflected in the following
three aspects by comparing the existing studies.

5.1. Development Path of AMS under the Goal of Agricultural Green Transformation

The existing studies have demonstrated the critical role of AMS in improving agricultural
productivity and environmental efficiency at both macro and micro levels [42,44,54,55,57,83].
These findings provide an essential theoretical basis for AMS’s positive role in agriculture’s
green transformation. However, the issue of how to promote the rapid development of
AMS remains controversial. The reason for this is that most studies have measured the
development of AMS in terms of AMS production value and farmers’ decision to purchase
AMS. The resulting policy insights are focused on two general aspects of promoting the rapid
development of AMS and improving farmers’ responsiveness, which is challenging to form
practical guidance for the rapid development of AMS to achieve the goal of agricultural green
transformation. Unlike the existing studies, this paper constructs indicators related to the
development of AMS in terms of specialization and the degree of scale from the multiple
service supply agents in the Chinese AMS market. The results show that the impact of different
AMS supply agents on AGTFP shows apparent differentiation. Among them, the impact
of SPO, LSO, and LSI on AGTFP are significantly positive, but the effects of SPI on AGTFP
are significantly negative. This key finding provides essential insights into the development
path of China’s AMS system under the goal of green transformation in agriculture, namely, to
increase the support of AMS supply organizations and actively promote the transformation of
AMS supply individuals.
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Expressly, compared to AMS supply organizations, AMS supply individuals are
limited by their inadequate endowments, which make it difficult for them to acquire
high-value agricultural machinery and have relatively low management skills due to the
lack of training [87]. Meanwhile, although China has been implementing the agricultural
machinery acquisition subsidy policy for a long time, the beneficiaries of this policy are
mainly large-scale operators, not small-scale operators [88]. Therefore, due to endowment
constraints and policy exclusion, it is difficult for AMS supply individuals to provide
high-quality AMS with green agricultural attributes. Based on this, actively promoting the
transformation of AMS supply individuals becomes the primary issue in constructing the
development path of AMS. This paper presents two transformation possibilities combined
with China’s agricultural development practice. First, with the rapid rise of labor prices,
the wage income that can be brought by non-farm employment exceeds the operating
income by providing AMS. The rapid labor market development provides an opportunity
for the transformation of AMS supply individuals. Therefore, it is possible to promote
the withdrawal of some agricultural machinery professionals from the AMS market by
increasing the non-agricultural transfer of rural labor. This initiative can eliminate some
old and low-value agricultural machinery to improve the quality of AMS supply and
give up part of the AMS market demand to cultivate other AMS supply agents. Secondly,
farmers’ cooperatives have played an essential role in China’s rural economic development
by building a close interest linkage mechanism among smallholders through the “weak-
weak association” [89,90]. Similarly, agricultural machinery professional cooperatives are
an essential part of the AMS supply organization and have played an important role in
promoting the agricultural green transformation. Therefore, AMS supply individuals with
high-value agricultural machinery can be actively fostered to transform into AMS supply
organizations in a “weak-weak association” approach.

5.2. Characteristics of AMS Cross-Regional Operations

There has been a debate on the relationship between agricultural mechanization and
the green transformation of agriculture. Specifically, some scholars believe that the negative
environmental impact of energy consumption caused by agricultural mechanization cannot
be ignored. In contrast, some scholars believe that the carbon reduction effect of agricultural
mechanization will offset or even reverse its negative environmental impact. The main
reason for this debate is that some existing studies ignore the critical impact mechanism
of cross-regional operation of agricultural mechanization [42,80]. Meanwhile, the impact
of AMS on AGTFP will be underestimated because AMS operating across regions is not
counted in the total AMS of neighboring provinces. With the promotion of agricultural
mechanization, the scale of cross-regional operation of AMS in China has become larger
and larger. In 2020, the area of cross-regional operation of agricultural machinery in China
was 19899.67 khm2, accounting for 35.22% of the area operated by agricultural machinery
cooperatives. Therefore, the cross-regional operation has become an essential channel
for AMS to promote agricultural green transformation. Based on this, this paper uses a
spatial Durbin model test to find a significant spatial spillover effect of AMS on AGTFP.
This finding further demonstrates the critical reality that AMS promotes agricultural green
transformation in neighboring provinces through cross-regional operations.

The analysis of the spatial lag term found that the spatial spillover effect of AMS supply
organizations was significant. However, the spatial spillover effect of AMS supply individ-
uals was not significant. This finding suggests that the cross-regional operation of AMS
is mainly driven by AMS supply organizations, similar to the findings of Fang et al. [66]
and Wu et al. [67]. Unlike existing studies, this paper further finds that the spatial spillover
effect of specialization of AMS supply organizations on AGTFP is significantly positive. In
contrast, the spillover effect of large-scale AMS supply organizations is significantly nega-
tive. This finding suggests that a single-minded push for rapid AMS development does
not effectively promote a green transformation of agriculture. Local government should
regulate the cross-regional operation behavior of large-scale AMS supply organizations
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is necessary. Furthermore, it is also necessary to cultivate AMS supply agents in the local
province through agricultural machinery purchase subsidy policies. These initiatives can
counteract the impact of large-scale AMS supply organizations from other regions on the
agricultural mechanization service market in the local province.

6. Conclusions

This study examines the development of AMS in China and explores how economies
with smallholder as the mainstay of agricultural production can construct a transition path
to green agriculture. Based on the panel data of 30 provinces in China from 2011 to 2020, this
paper measures the AGTFP using the Super-SBM model. Based on this, using the spatial
Durbin model and the two-regime spatial Durbin model, this paper tests the influence
and spatial effect of different AMS supply agents on AGTFP. The main conclusions are
as follows.

First, during the study period, China’s AGTFP showed a stable growth trend, with
the mean value increasing from 0.1990 in 2011 to 0.5590 in 2020. Among them, the AGTFP
of Beijing and Hainan is relatively higher. In contrast, the AGTFP of Jilin and Inner
Mongolia are always lower. By stage, compared with the 12th Five-Year Plan period
(2011–2015), the average value and the growth rate of AGTFP in the 13th Five-Year Plan
period (2016–2020) is higher and faster. By region, agricultural green transformation is
faster in non-main grain production and economically developed regions. In contrast,
agricultural green transformation tasks are relatively heavier in food-producing and less
economically developed regions.

Second, AMS is an essential factor influencing the growth of AGTFP, but there are still
differences among different supplying agents. At the organizational level, the degree of
specialization and large-scale of AMS supply organizations will significantly contribute
to the increase in AGTFP of the local province. However, the cross-regional operation of
specialized AMS supply organizations will significantly increase the AGTFP of neighboring
provinces. In contrast, the cross-regional operation of large-scale AMS supply organizations
will significantly decrease the AGTFP of neighboring provinces. At the individual level, the
degree of specialization of AMS supply individual will significantly decrease the AGTFP
of the local province. In contrast, the large-scale MAS supply individual has the opposite
effect. At the same time, individual AMS supply agents cannot operate across regions.

Third, the spatial spillover effect of AGTFP is asymmetric due to the significant
differences in the supply of AMS among different regions. Specifically, the spatial spillover
effect of AGTFP is significantly higher in non-main grain production areas than in main
grain production areas. In comparison, the spatial spillover effect of AGTFP is significantly
higher in economically developed areas than in less developed areas. Meanwhile, the
spatial spillover effect asymmetry also reflects the flow direction of AMS resources.

Based on the above conclusions, to further promote the agricultural green transfor-
mation in China, this paper provides the following policy implications. First, promoting
the popularization of agricultural mechanization throughout agricultural production. It
will help to provide an essential foundation for the rapid development of the AMS market.
Meanwhile, with the goal of green transformation of agriculture, it is necessary to enhance
agricultural machinery’s R&D and production capacity and promote clean energy-based
agricultural machinery to replace traditional fossil energy-based agricultural machinery.
Second, actively promote the transformation of AMS supply individuals to AMS supply
organizations. Encourage small farmers to join together extensively to realize the transfor-
mation through the “farmers’ cooperative.” It can improve the organization of AMS supply
subjects. Third, improve the service quality of AMS supply organizations. Increase the
agricultural machinery purchase subsidies for AMS supply organizations to improve the
service quality and agricultural machinery scale of AMS supply organizations. Meanwhile,
strengthen the construction of agricultural mechanization personnel to improve the man-
agement capacity of AMS supply organizations. Fourth, the main grain-producing and less
economically developed regions should accelerate the construction of local AMS systems.
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The central government needs to provide corresponding financial support, resource incli-
nation, and legal regulation to guarantee the construction of the AMS systems in critical
regions. It will help to avoid the unbalanced and insufficient process of agricultural green
transformation among regions.

The main limitations of this paper are the following three aspects. First, based on
provincial panel data, this study finds a spatial spillover effect of the cross-regional opera-
tion behavior of AMS supply organizations on the impact of AGTFP. However, although
AMS supply individuals cannot operate across regions between provinces, it is still being
determined whether they operate across regions between smaller administrative units such
as counties and communes. Therefore, future research can explore more deeply the cross-
regional operation characteristics of different AMS supply individuals based on county
panel data. Second, combining statistical data and existing studies [56,65], AMS in China
has developed rapidly since 2004. Unfortunately, limited by data availability issues, this
study only examined the relationship between AMS and AGTFP during 2010–2020 and
has yet to provide a clear picture of the full development of AMS in China. Therefore,
longer-term panel data could be considered in future studies to more accurately capture the
relationship between the development of AMS and the agricultural green transformation.
Third, AMS exists in many aspects of agricultural production, such as tillage, sowing,
irrigation, and harvesting [43,64]. A possible future research direction is to explore in depth
the heterogeneous role of AMS in different product segments in promoting the agricultural
green transformation, which will help to construct a more comprehensive AMS system.
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